KR20030035521A - Organic electrolytic solution and lithium secondary battery adopting the same - Google Patents

Organic electrolytic solution and lithium secondary battery adopting the same Download PDF

Info

Publication number
KR20030035521A
KR20030035521A KR1020010067622A KR20010067622A KR20030035521A KR 20030035521 A KR20030035521 A KR 20030035521A KR 1020010067622 A KR1020010067622 A KR 1020010067622A KR 20010067622 A KR20010067622 A KR 20010067622A KR 20030035521 A KR20030035521 A KR 20030035521A
Authority
KR
South Korea
Prior art keywords
lithium
weight
lithium secondary
electrolyte
electrolyte solution
Prior art date
Application number
KR1020010067622A
Other languages
Korean (ko)
Other versions
KR100477744B1 (en
Inventor
김주엽
승도영
류영균
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR10-2001-0067622A priority Critical patent/KR100477744B1/en
Priority to JP2002315834A priority patent/JP3643825B2/en
Priority to CNB021479224A priority patent/CN1320685C/en
Priority to US10/283,334 priority patent/US7087349B2/en
Publication of KR20030035521A publication Critical patent/KR20030035521A/en
Application granted granted Critical
Publication of KR100477744B1 publication Critical patent/KR100477744B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: Provided are an organic electrolyte which can form a uniform and stable protective film and retain high charge/discharge efficiencies of lithium when continuously charged/discharged, and a lithium secondary battery having excellent charge/discharge efficiencies. CONSTITUTION: The electrolyte comprises a polymer adsorbent having ethylene oxide which can be adsorbed on lithium metal, a material which can react with lithium to form an alloy, a lithium salt and an organic solvent. The adsorbent is selected from the group consisting of poly(ethylene) oxide, poly(ethyleneglycol) monomethyl ether, poly(ethyleneglycol) dimethyl ether, poly(ethyleneglycol) monomethyl acrylate, poly(ethyleneglycol) dimethyl acrylate, and a mixture thereof.

Description

유기 전해액 및 이를 채용한 리튬 2차전지{Organic electrolytic solution and lithium secondary battery adopting the same}Organic electrolytic solution and lithium secondary battery adopting the same

본 발명은 리튬 전지에 관한 것으로서, 더욱 상세하게는 리튬 금속표면에 안정하게 흡착하여 리튬의 충방전시에 전류분포를 균일하게 만들고, 리튬 이온의 이온 전도도를 높여 리튬전지의 수명이 향상되도록 하는 유기전해액 및 이를 채용한 리튬 전지에 관한 것이다.The present invention relates to a lithium battery, and more particularly, to stably adsorb on a lithium metal surface to make the current distribution uniform during charging and discharging of lithium, and to increase the ion conductivity of lithium ions to improve the life of the lithium battery. An electrolytic solution and a lithium battery employing the same.

최근 캠코더, 휴대용 통신기기, 휴대용 컴퓨터등의 각종 소형 휴대 전자기기의 소형화 및 경량화가 요구됨에 따라 구동전원인 전지의 소형화, 경량화, 박형화 및 고용량화에 대한 요구가 높아지고 있으며, 이에 대한 연구가 활발히 진행되어 왔다. 현재 상용화되어 사용되고 있는 리튬이온 2차전지는 음극 활물질로 카본을, 양극 물질로 전이금속 산화물(주로 LiCoO2)을 사용하고 있다. 이 중 음극물질인 카본의 경우 이론적 용량이 372mA/g으로 리튬금속을 직접 사용하는 경우(3860mA/g)에 비해 매우 낮은 값을 나타낸다.Recently, as the miniaturization and lightening of various small portable electronic devices such as camcorders, portable communication devices, portable computers, and the like, there is an increasing demand for miniaturization, light weight, thinning, and high capacity of a battery, which is a driving power source. come. Lithium ion secondary batteries that are currently commercially available use carbon as a negative electrode active material and a transition metal oxide (primarily LiCoO 2 ) as a positive electrode material. Among them, the negative electrode carbon has a theoretical capacity of 372 mA / g, which is much lower than that of lithium metal directly (3860 mA / g).

현재 리튬이온전지의 음극 재료는 탄소를 사용하지만 리튬 메탈 전지는 탄소 대신 리튬 메탈을 직접 사용하는 것이다. 이 같이 음극활물질로 탄소 대신 리튬메탈을 사용하였을 경우, 상당한 부피 및 무게의 감소를 가져 올 수 있다. 이것이 리튬 메탈전지의 가장 큰 장점이며 현재 2차전지의 연구가 리튬 메탈전지 쪽으로 바뀌어 가고 있는 것도 이러한 이유에서이다. 그러나, 리튬 메탈전지는 다음과 같은 몇 가지 문제점을 가진다. 싸이클에 따른 급격한 용량감소, 충방전시 부피변화, 전지의 안정성 등의 문제점을 갖고 있는데 이 모든 원인이 충방전시 수지상 (dendrite) 리튬의 성장에 의한 것이다. 리튬 메탈을 음극으로 사용한 2차전지는 모든 금속 중 가장 적은 밀도(0.53 g/cm2), 가장 높은 전위차(-3.045 V vs SHE: standard Hydrogen Electrode) 및 가장 높은 무게당 용량(3860 mAh/g)을 갖고 있으면서도 상기와 같은 문제점으로 인해 현재까지 상용화되고 있지 못하고 있다.Currently, negative electrode materials of lithium ion batteries use carbon, but lithium metal batteries use lithium metal directly instead of carbon. As such, when lithium metal is used instead of carbon as a negative electrode active material, it can bring about significant volume and weight reduction. This is the biggest advantage of lithium metal batteries, and that is why research on secondary batteries is shifting toward lithium metal batteries. However, lithium metal batteries have some problems as follows. There are problems such as rapid capacity reduction, cycle volume change and stability of battery according to cycle. All of these causes are due to growth of dendrite lithium during charge and discharge. The secondary battery using lithium metal as a negative electrode has the lowest density (0.53 g / cm 2 ), highest potential difference (-3.045 V vs SHE: standard hydrogen electrode) and highest capacity-weight (3860 mAh / g) among all metals. It has not been commercialized so far due to the above problems.

따라서, 상기의 충전시 수지상 리튬이 성장하는 문제를 해결하기 위한 연구가 활발히 진행되고 있다. 리튬을 안정화 시키는 방법은 크게 두 가지로 나눌 수 있는데, 보호막 형성에 의하여 수지상 리튬 성장을 억제시키는 물리적인 방법과 화학적인 방법에 의한 억제 방법이 그것이다. Besenhard(J. of Electroanal.Chem 1976, 68, 1) 등은 리튬 침전물의 형태가 표면 필름의 화학적 조성, 물리적 구조에 크게 의존한다는 것을 밝혀낸 바 있다. 즉, 표면 필름의 물리적, 화학적인 불균일이 수지상 리튬의 형성을 초래하는 것이다.Therefore, studies to solve the problem of growing dendritic lithium during the charging is actively progressing. Lithium stabilization can be largely divided into two methods, physical and chemical methods of inhibiting dendritic lithium growth by forming a protective film. Besenhard (J. of Electroanal. Chem 1976, 68, 1) et al. Found that the shape of lithium deposits is highly dependent on the chemical composition and physical structure of the surface film. In other words, the physical and chemical nonuniformity of the surface film causes the formation of dendritic lithium.

최근 Yoshio 등은(37th Battery Symposium in japan, 1996) 이런 리튬 음극의 비가역성을 개선하기 위해 리튬 메탈의 표면 상태를 제어하여 가역성을 높이고자 하는 연구들을 진행하였다. 이들 연구는 주로 전해액이나 리튬 메탈 자체에 첨가제(additive)를 적용하여 리튬 표면의 성질을 개선하고자 하는 것이다. 예를 들어, 첨가제로 이산화탄소, 2-메틸 퓨란, 마그네슘 아이오다이드, 벤젠, 피리딘, 하이드로 퓨란, 계면활성제 등을 첨가하여 치밀하고 얇으며 균일한 표면 층을 인위적으로 만들어 표면 성질을 개선한 바 있다. 이러한 연구들은 리튬 메탈 표면에 균일하고 리튬 이온의 전도성이 높은 보호막 층을 형성하여 균일한 전류 분포를 유도하여 수지상 리튬의 형성을 막는데 목적이 있다.Recently, Yoshio et al. (37th Battery Symposium in japan, 1996) conducted researches to improve the reversibility by controlling the surface state of lithium metal to improve the irreversibility of such a lithium anode. These studies mainly aim to improve the properties of lithium surfaces by applying additives to the electrolyte or to the lithium metal itself. For example, carbon dioxide, 2-methylfuran, magnesium iodide, benzene, pyridine, hydrofuran, surfactants, etc. were added as additives to artificially create a dense, thin and uniform surface layer to improve the surface properties. . These studies aim to prevent the formation of dendritic lithium by inducing a uniform current distribution by forming a protective film layer having a uniform and high conductivity of lithium ions on the surface of the lithium metal.

Naoi(K. Naoi et.al., J. of Electrochem.Soc.,147, 813(2000)) 등은 폴리에틸렌 글리콜 디메틸 에테르 내부의 나선형 에틸렌 옥사이드 체인 중심부분이 리튬의 충방전시에 리튬 이온의 경로로서 작용 하는 원리를 이용하여 폴리에틸렌 글리콜 디메틸 에테르를 리튬 메탈 표면에 흡착시켜 충방전시에 균일한 보호막을 유지시켜 준다는 연구결과를 보고하였다. 또한 Ishikawa(M.Ishikawa et.al., J. of Electrochem., 473, 279 (2000)) 등은 알루미늄 아이오다이드(AlI3)나 마그네슘 아이오다이드(MgI2)를 유기전해질 내에 첨가하여 리튬과의 합금화를 통하여 수지상 리튬의 성장을 억제하여 충방전 효율을 증가시킬 수 있다는 연구 결과를 발표하였다.Naoi (K. Naoi et. Al., J. of Electrochem. Soc., 147, 813 (2000)) et al. Described the route of lithium ions during the charging and discharging of lithium ions in the center of a spiral ethylene oxide chain inside polyethylene glycol dimethyl ether. By using a principle that acts as a polyethylene glycol dimethyl ether adsorbed on the lithium metal surface to maintain a uniform protective film during charging and discharging has been reported. In addition, Ishikawa (M.Ishikawa et.al., J. of Electrochem., 473, 279 (2000)) and the like added aluminum iodide (AlI 3 ) or magnesium iodide (MgI 2 ) to the organic electrolyte to The alloying with and can inhibit the growth of dendritic lithium to increase the charging and discharging efficiency has been published.

하지만, 이러한 노력들 조차 계속되는 충방전, 함침시간(immersion time)에 따라 균일한 표면 필름을 유지하는데 한계가 있으며, 단독으로 사용하는 경우에는 그 사이클 효율면에서 만족할 만한 효과를 거둘 수 없다.However, even these efforts have limitations in maintaining a uniform surface film according to continuous charge / discharge and immersion time, and when used alone, there is no satisfactory effect in terms of cycle efficiency.

따라서, 본 발명의 첫 번째 기술적 과제는 균일하고 안정된 보호피막을 형성함으로써 계속되는 충방전시에도 높은 리튬의 충방전 효율을 유지할 수 있는 전해액을 제공하는 것이다.Accordingly, the first technical problem of the present invention is to provide an electrolyte solution capable of maintaining high charge and discharge efficiency of lithium even during continuous charge and discharge by forming a uniform and stable protective film.

또한, 본 발명이 이루고자 하는 두 번째 기술적 과제는 상기 유기 전해액을 채용하여 충방전 효율이 우수한 리튬 2차전지를 제공하는 것이다.In addition, a second technical problem to be achieved by the present invention is to provide a lithium secondary battery having excellent charge and discharge efficiency by employing the organic electrolyte.

도 1은 본 발명에 의한 폴리에틸렌 글리콜 디메틸 에테르 (poly (ethylenglycol)dimethyl ether:PEGDME)가 첨가된 전해액과 음극 계면에서의 반응메카니즘을 나타낸다.1 illustrates a reaction mechanism at an anode interface with an electrolyte solution to which polyethylene glycol dimethyl ether (poly (ethylenglycol) dimethyl ether: PEGDME) is added according to the present invention.

도 2는 본 발명에 의한 폴리에틸렌 글리콜 디메틸 에테르(PEGDME)와 알루미늄 아이오다이드(AlI3)의 조성에 따른 리튬의 충방전 효율을 나타낸다.2 shows the charge and discharge efficiency of lithium according to the composition of polyethylene glycol dimethyl ether (PEGDME) and aluminum iodide (AlI 3 ) according to the present invention.

도 3은 실시예 2의 전해액을 채용한 전지의 용량을 테스트한 결과를 나타낸다.3 shows the results of testing the capacity of a battery employing the electrolyte solution of Example 2. FIG.

도 4는 종래의 폴리에틸렌 글리콜 디메틸 에테르의 첨가량에 따른 사이클 수명특성과 본 발명의 실시예 2의 전해액을 채용한 전지의 사이클 수명특성을 나타낸다.Figure 4 shows the cycle life characteristics according to the addition amount of the conventional polyethylene glycol dimethyl ether and the cycle life characteristics of the battery employing the electrolyte solution of Example 2 of the present invention.

도 5는 종래의 알루미늄 아이오다이드의 첨가량에 따른 사이클 수명특성과 본 발명의 실시예 2의 전해액을 채용한 전지의 사이클 수명특성을 나타낸다.5 shows the cycle life characteristics according to the addition amount of the conventional aluminum iodide and the cycle life characteristics of the battery employing the electrolyte solution of Example 2 of the present invention.

도 6은 실시예 2의 전해액을 채용한 전지에 대해 100사이클 후 전지의 음극표면에 대한 SEM사진을 비교한 결과를 나타낸다.FIG. 6 shows the result of comparing the SEM photograph of the negative electrode surface of the battery after 100 cycles with respect to the battery employing the electrolyte solution of Example 2. FIG.

도 7은 비교예 1의 전해액을 채용한 전지에 대해 100사이클 후 전지의 음극표면에 대한 SEM사진을 비교한 결과를 나타낸다.FIG. 7 shows the result of comparing the SEM photograph of the negative electrode surface of the battery after 100 cycles with respect to the battery employing the electrolyte solution of Comparative Example 1.

도 8은 비교예 2의 전해액을 채용한 전지에 대해 100사이클 후 전지의 음극표면에 대한 SEM사진을 비교한 결과를 나타낸다.FIG. 8 shows the result of comparing the SEM photograph of the negative electrode surface of the battery after 100 cycles with respect to the battery employing the electrolyte solution of Comparative Example 2.

상기 첫 번째 기술적 과제를 달성하기 위하여, 본 발명은 리튬 메탈에 흡착될 수 있는 에틸렌 옥사이드 체인을 가지는 폴리머 흡착제, 리튬과 반응하여 합금을 형성할 수 있는 물질, 리튬염 및 유기용매를 포함하는 것을 특징으로 하는 리튬2차전지용 전해액을 제공한다.In order to achieve the first technical problem, the present invention comprises a polymer adsorbent having an ethylene oxide chain that can be adsorbed to lithium metal, a material capable of forming an alloy by reacting with lithium, a lithium salt and an organic solvent It provides a lithium secondary battery electrolyte solution.

본 발명의 상기 폴리머 흡착제는 폴리에틸렌 옥사이드 (poly (ethylene)oxide), 폴리에틸렌 글리콜 모노메틸 에테르(poly (ethylenglycol) monomethyl ether), 폴리에틸렌 글리콜 디메틸 에테르(poly (ethylenglycol) dimethyl ether), 폴리에틸렌 글리콜 모노메틸 아크릴레이트 (poly(ethylenglycol) monomethyl acrylate) 및 폴리에틸렌 글리콜 다이메틸 아크릴레이트 (poly(ethylenglycol)dimethyl acrylate)로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물인 것이 바람직하다.The polymer adsorbent of the present invention is a polyethylene oxide (poly (ethylene) oxide), polyethylene glycol monomethyl ether (poly (ethylenglycol) monomethyl ether), polyethylene glycol dimethyl ether (poly (ethylenglycol) dimethyl ether), polyethylene glycol monomethyl acrylate (poly (ethylenglycol) monomethyl acrylate) and polyethylene glycol dimethyl acrylate (poly (ethylenglycol) dimethyl acrylate) is preferably one or two or more mixtures selected from the group consisting of.

본 발명의 일 실시예에 의하면, 상기 폴리머 흡착제의 첨가량은 전체 전해액 100중량부 당 0.1∼1 중량부인 것이 바람직하며, 이는 폴리머 흡착제 0.5∼5mM에 해당한다. 첨가량이 0.1 중량부 이하인 경우에는 리튬메탈과의 흡착성이 떨어져서 균일한 흡착이 어렵고 1 중량부 이상에서는 전해액의 점도가 높아져서 저항체로 작용하여 리튬이온의 전도도를 감소시키는 단점이 있다.According to one embodiment of the present invention, the amount of the polymer adsorbent added is preferably 0.1 to 1 parts by weight per 100 parts by weight of the total electrolyte, which corresponds to 0.5 to 5 mM of the polymer adsorbent. If the added amount is 0.1 parts by weight or less, the adsorption with lithium metal is difficult to uniformly adsorbed, and more than 1 part by weight has a disadvantage of reducing the conductivity of lithium ions by acting as a resistor to increase the viscosity of the electrolyte.

또한, 상기 흡착제가 폴리에틸렌글리콜 디메틸 에테르(PEGDME)의 첨가량은전체 전해액 100중량부 당 0.2∼1 중량부인 것이 바람직하며 이는 PEGDME 1.00mM∼5.00mM에 해당하는 값이다.In addition, the amount of the adsorbent polyethylene glycol dimethyl ether (PEGDME) is preferably 0.2 to 1 parts by weight per 100 parts by weight of the total electrolyte solution, which is a value corresponding to 1.00mM to 5.00mM PEGDME.

본 발명의 다른 실시예에 의하면, 상기 폴리머 흡착제의 중량평균 분자량은 200∼2000인 것이 바람직하다. 분자량이 200 이하일 경우에는 리튬메탈과의 흡착성이 떨어지는 단점이 있고, 2000 이상일 때에는 전해액의 점도가 높아져서 리튬이온의 전도도가 낮아지는 단점이 있다.According to another embodiment of the present invention, the weight average molecular weight of the polymer adsorbent is preferably 200 to 2000. When the molecular weight is 200 or less, there is a disadvantage in that the adsorption with lithium metal is inferior, and in the case of 2000 or more, the viscosity of the electrolyte is increased, so that the conductivity of lithium ions is lowered.

본 발명의 바람직한 실시예에 의하면, 상기 폴리에틸렌 글리콜 디메틸 에테르의 중량평균 분자량은 1000~2000인 것이 바람직하다.According to a preferred embodiment of the present invention, the weight average molecular weight of the polyethylene glycol dimethyl ether is preferably 1000 to 2000.

본 발명에 따른 전해액 조성물 중 상기 리튬과 반응하여 합금을 형성할 수 있는 물질은 알루미늄 아이오다이드(AlI3), 알루미늄 포스페이트(aluminium phophate), 알루미늄 설페이트(aluminium sulfate), 알루미튬 트리플레이트 (aluminium triflate), 마그네슘 아이오다이드 (magnesium iodide), 마그네슘 클로라이드 (magnesium chloride), 마그네슘 브로마이드(magnesium bromide), 마그네슘 퍼클로레이트(magnesium perchlorate), 마그네슘 헥사플루오로포스페이트 (magnesium hexafluorophosphate), 마그네슘 트리플레이트(magnesium triflate)로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물인 것이 바람직하다.In the electrolyte composition according to the present invention, a material capable of forming an alloy by reacting with lithium is aluminum iodide (AlI 3 ), aluminum phosphate, aluminum sulfate, aluminum triflate, and aluminum triflate. ), Magnesium iodide, magnesium chloride, magnesium bromide, magnesium perchlorate, magnesium hexafluorophosphate, magnesium triflate It is preferably one or two or more mixtures selected from the group consisting of.

본 발명의 일 실시예에 의하면, 상기 리튬과 반응하여 합금을 형성할 수 있는 물질의 첨가량은 전체 전해액 100중량부 당 0.01∼0.3 중량부인 것이 바람직하며, 이는 리튬과 반응하여 합금을 형성할 수 있는 물질 100∼3000ppm에 해당하는 값이다. 첨가량이 0.01 중량부 이하에서는 리튬메탈과의 합금 형성이 잘 되지 않고0.3 중량부 이상에서는 생생된 합금의 두께가 두꺼워지기 때문에 반응성이 매우 낮아진다는 문제점이 있다.According to an embodiment of the present invention, the amount of the material capable of forming an alloy by reacting with lithium is preferably 0.01 to 0.3 parts by weight per 100 parts by weight of the total electrolyte, which may react with lithium to form an alloy. The value corresponds to 100 to 3000 ppm of material. If the added amount is 0.01 parts by weight or less, the alloy is not formed well with lithium metal, and at 0.3 parts by weight or more, there is a problem that the reactivity becomes very low because the thickness of the produced alloy becomes thick.

또한 상기 리튬과 반응하여 합금을 형성할 수 있는 물질이 알루미늄 아이오다이드인 경우의 첨가량은 전체 전해액 100중량부 당 0.05∼0.3 중량부, 즉 500∼3000ppm인 것이 바람직하다.In addition, when the material capable of forming an alloy by reacting with lithium is aluminum iodide, the amount of addition is preferably 0.05 to 0.3 parts by weight, that is, 500 to 3000 ppm per 100 parts by weight of the total electrolyte.

본 발명의 바람직한 실시예에 의하면 상기 폴리에틸렌 글리콜 디메틸 에테르의 첨가량은 전체 전해액 100중량부 당 0.29중량부이고(1.45mM), 상기 알루미늄 아이오다이드(AlI3)의 첨가량은 전체 전해액 100중량부 당 0.17중량부(1718ppm)인 것이 더욱 바람직하다.According to a preferred embodiment of the present invention, the amount of polyethylene glycol dimethyl ether added is 0.29 parts by weight per 100 parts by weight of the total electrolyte (1.45 mM), and the amount of the aluminum iodide (AlI 3 ) is added in 0.17 parts by weight of the total electrolyte. It is more preferable that it is a weight part (1718 ppm).

본 발명에 따른 전해액 조성물 중 상기 리튬염은 LiPF6, LiClO4, LiASF6, LiBF4, LiCF3SO3, LiN(CF3SO2)2, LiC(CF3SO2)3, LiSCN, LiSbF6및 LiAsF6로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물인 것이 바람직하며, 상기 리튬염의 농도는 0.4∼1.5M인 것이 바람직하다.In the electrolyte composition according to the present invention, the lithium salt is LiPF 6 , LiClO 4 , LiASF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSCN, LiSbF 6 And it is preferable that the mixture is one or two or more selected from the group consisting of LiAsF 6 , the concentration of the lithium salt is preferably 0.4 to 1.5M.

본 발명에 따른 전해액 조성물 중 상기 유기용매는 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 테트라하이드로퓨란(THF), 설포란 (sulforan), 2-메틸하이드로퓨란(2-methylhydrofuran) 및 감마-부티로락톤(γ-butyrolactone), 아세톤, 아세토니트릴, n-메틸-2-피롤리돈 (NMP) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것이 바람직하다.The organic solvent in the electrolyte composition according to the present invention is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), tetrahydrofuran (THF), Sulfolane, 2-methylhydrofuran and gamma-butyrolactone, acetone, acetonitrile, n-methyl-2-pyrrolidone (NMP) and mixtures thereof It is preferably any one selected from the group consisting of.

본 발명은 상기 두 번째 기술적 과제를 달성하기 위하여 리튬 메탈에 흡착될 수 있는 에틸렌 옥사이드 체인을 가지는 폴리머 흡착제, 리튬과 반응하여 합금을 형성할 수 있는 물질, 리튬염 및 유기용매를 포함하는 것을 특징으로 하는 리튬2차전지용 전해액을 채용한 리튬 2차 전지를 제공한다.The present invention is characterized in that it comprises a polymer adsorbent having an ethylene oxide chain that can be adsorbed to lithium metal, a material capable of forming an alloy by reacting with lithium, a lithium salt and an organic solvent in order to achieve the second technical problem. The lithium secondary battery which employ | adopted the electrolyte solution for lithium secondary batteries to provide is provided.

이하 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 사용되는 에틸렌 옥사이드 체인을 가지는 폴리머 흡착제는 리튬금속의 충방전시에 균일한 표면을 유지하기 위한 것으로서, 상기에서 설명한 바와 같이 폴리에틸렌 글리콜 디메틸 에테르를 사용하는 것이 가장 바람직하며, 이 경우에는 에틸렌 옥사이드에 붙어있는 단말기가 리튬 메탈과 반응하여도 전도성이 좋은 피막이 형성 될 수 있도록 한다. 한편, 흡착 효과 및 유동 효과를 고려 할 때, 상기 폴리에텔렌 글리콜 디메틸 에테르의 첨가량은 전체 전해액 100중량부 당 0.2 내지 1 중량부인 것이 바람직하다.The polymer adsorbent having an ethylene oxide chain used in the present invention is for maintaining a uniform surface during charging and discharging of lithium metal, and it is most preferable to use polyethylene glycol dimethyl ether as described above, in which case ethylene Even if the terminal attached to the oxide reacts with the lithium metal, a good conductive film can be formed. On the other hand, in consideration of the adsorption effect and the flow effect, it is preferable that the amount of the polyethylene glycol dimethyl ether added is 0.2 to 1 parts by weight per 100 parts by weight of the total electrolyte.

앞에서 설명한 바와 같이 본 발명에 있어서, 리튬과 반응하여 합금을 형성 시킬 수 있는 물질로는 알루미늄 아이오다이드를 사용하는 것이 가장 바람직하며, 이는 용액내로 쉽게 해리 될 수 있으며, 음이온이 고체 전해질 피막에 좋은 효과를 미칠 수 있기 때문이다. 한편, 상기 알루미늄 아이오다이드의 첨가량은 전체 전해액 100 중량부 당 0.05∼0.3 중량부인 것이 바람직하다.As described above, in the present invention, aluminum iodide is most preferably used as a material capable of reacting with lithium to form an alloy, which can be easily dissociated into a solution, and anion is good for a solid electrolyte film. Because it can have an effect. On the other hand, it is preferable that the addition amount of the said aluminum iodide is 0.05-0.3 weight part per 100 weight part of total electrolyte solution.

본 발명에 따른 전해액은 리튬염과 유기용매를 포함한다. 리튬염은 격자에너지가 작아 해리도가 커서 이온전도도가 우수하고 열안전성 및 내산화성이 좋은 것을 사용하는 것이 바람직하며, 이들을 단독 또는 선택적 혼합물로 사용할 수 있고리튬염의 농도는 0.4M 내지 1.5M이 바람직하다. 유기 전해액 내에서 리튬염의 이온전도도는 상기 범위에서 가장 높게 나타나기 때문이다.The electrolyte according to the present invention contains a lithium salt and an organic solvent. Lithium salts are preferably used because they have low lattice energy and have high dissociation, and thus have excellent ionic conductivity, good thermal stability and oxidation resistance, and they may be used alone or as a selective mixture. . This is because the ionic conductivity of the lithium salt in the organic electrolyte is the highest in the above range.

또한 상기 유기용매는 이온의 해리도를 높여 이온의 전도를 원활하게 하기 위해 유전율(극성)이 크고 저점도를 갖을 뿐만 아니라 리튬금속에 대한 반응성이 적은 것을 사용해야 하는데, 일반적으로는 고유전율, 고점도를 갖는 용매와 저유전율, 저점도를 갖는 용매로 구성된 두가지 이상의 혼합용액을 사용하는 것이 바람직하다.In addition, the organic solvent has to have a high dielectric constant (polarity) and low viscosity as well as low reactivity to lithium metal in order to increase dissociation of ions to facilitate ion conduction, and generally has a high dielectric constant and a high viscosity. It is preferable to use two or more mixed solutions composed of a solvent, a solvent having a low dielectric constant and a low viscosity.

일반적으로 리튬 2차전지의 충방전 거동은 표면에 형성되는 피막의 성질에 의해 큰 영향을 받는다. 리튬의 충방전 효율을 향상시키기 위해 다양한 리튬염 및 용매에 대한 연구가 진행되었으며, 첨가물에 대한 효과도 보고되고 있다. 하지만, 이러한 노력에도 불구하고 리튬 메탈의 최대 문제점인 수지상 리튬 형성의 문제점은 아직까지도 해결되지 않고 있으며, 첨가제를 통한 리튬 메탈의 안정화 또한 그 결과들이 아직까지는 음극으로 리튬 메탈을 사용하기에는 많은 문제점을 가지고 있다.In general, the charge and discharge behavior of a lithium secondary battery is greatly influenced by the properties of the film formed on the surface. Various lithium salts and solvents have been studied to improve the charge and discharge efficiency of lithium, and effects on additives have also been reported. However, despite these efforts, the problem of dendritic lithium formation, which is the biggest problem of lithium metal, has not been solved yet, and the stabilization of lithium metal through additives also has many problems to use lithium metal as a negative electrode. have.

본 발명의 유기전해액에 첨가되는 첨가조성은 기존의 발명물에 비해서 리튬의 충방전 효율이 매우 우수하며 리튬 금속 전지 뿐 아니라 리튬 이온 전지, 리튬 폴리머 전지 및 설퍼를 양극으로 채용하는 전지 등에 적용이 가능하다.The addition composition added to the organic electrolytic solution of the present invention is very excellent in the charge and discharge efficiency of lithium compared to the existing invention, and can be applied to a lithium metal battery, a lithium ion battery, a lithium polymer battery and a battery that employs sulfur as a positive electrode. Do.

이하, 상술한 유기 전해액을 사용하는 본 발명에 따른 리튬 2차전지 중 리튬 이온 전지 및 리튬 폴리머전지에 대하여 살펴보기로 한다.Hereinafter, a lithium ion battery and a lithium polymer battery of the lithium secondary battery according to the present invention using the above-described organic electrolyte will be described.

먼저, 캐소드 활물질, 도전제, 결합제 및 용매를 혼합하여 캐소드 활물질 조성물을 준비한다. 이 캐소드 활물질 조성물을 알루미늄 집전체상에 직접 코팅 및 건조하여 캐소드 극판을 준비한다. 또는 상기 캐소드 활물질 조성물을 별도의 지지체상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 알루미늄 집전체상에 라미네이션하여 캐소드 극판을 제조하는 것도 가능하다.First, a cathode active material composition is prepared by mixing a cathode active material, a conductive agent, a binder, and a solvent. The cathode active material composition is directly coated and dried on an aluminum current collector to prepare a cathode electrode plate. Alternatively, the cathode active material composition may be cast on a separate support, and then the film obtained by peeling from the support may be laminated on an aluminum current collector to manufacture a cathode electrode plate.

상기 캐소드 활물질로는 리튬 함유 금속 산화물로서, 특히 LiNi1-xCoxMyO2, (X=0-0.2, M=Mg, Ca, Sr, Ba, La, Y=0.001-0.02), LiCoO2, LiMnxO2x, LiNi1-xMnxO2x(x=1, 2)등을 사용하는 것이 바람직하다. 그리고 도전제로는 카본 블랙을 사용하는 것이 바람직하며, 결합제로는 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 또는 그 혼합물을 사용하는 것이 바람직하다. 이 때 캐소드 활물질, 도전제, 결합제 및 용매의 함량은 리튬 2차전지에서 통상적으로 사용하는 수준이다.The cathode active material is a lithium-containing metal oxide, in particular LiNi 1-x Co x M y O 2 , (X = 0-0.2, M = Mg, Ca, Sr, Ba, La, Y = 0.001-0.02), LiCoO It is preferable to use 2 , LiMn x O 2x , LiNi 1-x Mn x O 2x (x = 1, 2), and the like. It is preferable to use carbon black as the conductive agent, and vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene Or a mixture thereof is preferable. At this time, the content of the cathode active material, the conductive agent, the binder, and the solvent is at a level commonly used in lithium secondary batteries.

상술한 캐소드 극판 제조시와 마찬가지로, 애노드 활물질, 도전제, 결합제 및 용매를 혼합하여 애노드 활물질 조성물을 제조하며, 이를 구리 집전체에 직접 코팅하거나 별도의 지지체상에 캐스팅하고 이 지지체로부터 박리시킨 애노드 활물질 필름을 구리 집전체에 라미네이션하여 애노드 극판을 얻는다. 애노드 활물질로는 리튬 금속, 리튬 합금 또는 탄소재를 사용하는데, 그중에서도 메조페이스 구형입자를 사용하고, 이를 탄화시켜서 얻은 탄소 물질, 또는 섬유형 메조페이스 피치 파이버를 사용하여 이를 탄화 및 흑연화시켜서 얻은 섬유형 흑연(graphite fiber)인 것이 바람직하다. 또한, 애노드 활물질 조성물에서 도전제, 결합제 및 용매는 캐소드의 경우와 동일하게 사용되며, 경우에 따라서는 상기 캐소드 전극 활물질 조성물 및 애노드 전극 활물질 조성물에 가소제를 더 부가하여 전극판 내부에 기공을 형성하기도 한다.As in the case of manufacturing the cathode electrode plate described above, an anode active material composition is prepared by mixing an anode active material, a conductive agent, a binder, and a solvent, which is directly coated on a copper current collector or cast on a separate support and peeled from the support. The film is laminated on a copper current collector to obtain an anode plate. As the anode active material, a lithium metal, a lithium alloy or a carbon material is used. Among them, a fiber obtained by carbonizing and graphitizing a carbon material obtained by using mesoface spherical particles and carbonizing it, or a fibrous mesoface pitch fiber. It is preferably graphite graphite. In the anode active material composition, the conductive agent, the binder, and the solvent are used in the same manner as in the case of the cathode, and in some cases, a plasticizer is further added to the cathode electrode active material composition and the anode electrode active material composition to form pores inside the electrode plate. do.

한편, 세퍼레이터로는 리튬 2차전지에서 통상적으로 사용되는 것이라면 모두 다 사용가능하다. 즉, 리튬 이온 전지의 경우에는 폴리에틸렌, 폴리프로필렌 등과 같은 권취가능한 세퍼레이터를 사용하며, 리튬 폴리머 전지의 경우에는 유기전해액 함침 능력이 우수한 세퍼레이터를 이용하는데, 이러한 세퍼레이터는 하기 방법에 따라 제조가능하다.On the other hand, any separator can be used as long as it is commonly used in lithium secondary batteries. That is, in the case of a lithium ion battery, a coilable separator such as polyethylene or polypropylene is used, and in the case of a lithium polymer battery, a separator having excellent organic electrolyte solution impregnation ability is used. Such a separator can be manufactured according to the following method.

즉, 고분자 수지, 충진제, 가소제 및 용매를 혼합하여 세퍼레이터 조성물을 준비한다. 이 세퍼레이타 조성물을 전극상에 직접적으로 코팅 및 건조하여 세퍼레이터 필름을 형성하거나 또는 상기 세퍼레이터 조성물을 지지체 상에 캐스팅 및 건조한 다음, 상기 지지체로부터 박리시킨 세퍼레이터 필름을 전극 상부에 라미네이션하여 형성할 수 있다.That is, a separator composition is prepared by mixing a polymer resin, a filler, a plasticizer, and a solvent. The separator composition may be directly coated and dried on an electrode to form a separator film, or the separator composition may be cast and dried on a support, and then the separator film may be formed by laminating on the electrode. .

상기 고분자 수지는 특별히 한정되지는 않으나, 전극판의 결합제에 사용되는 물질들이 모두 사용가능하다. 여기에는 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 및 그 혼합물을 사용할 수 있다. 그 중에서도 특히 헥사플루오로프로필렌 함량이 8 내지 25중량%인 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머를 사용하는 것이 바람직하다.The polymer resin is not particularly limited, but any material used for the binder of the electrode plate may be used. Vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate and mixtures thereof can be used here. Among them, vinylidene fluoride-hexafluoropropylene copolymer having a hexafluoropropylene content of 8 to 25% by weight is particularly preferable.

상기한 바와 같은 캐소드 극판과 애노드 극판사이에 세퍼레이터를 배치하여 전지 구조체를 형성한다. 이러한 전지 구조체를 와인딩하거나 접어서 원통형 전지 케이스나 또는 각형 전지 케이스에 넣은 다음, 본 발명의 유기 전해액을 주입하면 리튬 이온 전지가 완성된다. 또는 상기 전지 구조체를 바이셀 구조로 적층한 다음, 이를 유기 전해액에 함침시키고, 얻어진 결과물을 파우치에 넣어 밀봉하면 리튬 폴리머 전지가 완성된다.The separator is disposed between the cathode electrode plate and the anode electrode plate as described above to form a battery structure. The battery structure is wound or folded, placed in a cylindrical battery case or a square battery case, and then the organic electrolyte solution of the present invention is injected to complete a lithium ion battery. Alternatively, the battery structure is laminated in a bi-cell structure, and then impregnated in the organic electrolyte, and the resultant is placed in a pouch and sealed to complete a lithium polymer battery.

본 발명의 첨가제로 사용된 에틸렌 옥사이드 체인을 가지는 폴리머의 기본 작동 메카니즘을 도 1에 나타내었다. 내부의 에틸렌 옥사이드 체인내에 리튬이온이 우선적으로 배치되어 있으며, 이러한 내부 나선형 이온 체인 중심부분이 리튬의 충방전시에 리튬이온의 경로로서 작용을 하게 된다. 리튬금속 표면 바로 앞부분에 흡착되어 있는 폴리머 첨가제는 충방전 시에 가역적으로 탈 흡착을 반복하며 균일한 표면을 유지시켜 리튬 메탈을 안정화 시키는 역할을 한다.The basic operating mechanism of a polymer having an ethylene oxide chain used as an additive of the present invention is shown in FIG. 1. Lithium ions are preferentially disposed in the inner ethylene oxide chain, and the inner portion of the inner spiral ion chain acts as a path for lithium ions during charging and discharging of lithium. The polymer additive adsorbed in front of the surface of the lithium metal reversibly desorbs during charging and discharging and stabilizes the lithium metal by maintaining a uniform surface.

본 발명에 첨가제로 사용된 리튬 합금을 형성할 수 있는 물질 중 금속 이온 은 리튬 이온과 반응하여 리튬 음극 표면에 리튬 합금 피막을 형성함으로써 수지상 리튬의 성장을 막아주는 역할을 한다. 또한 상기 리튬 합금을 형성할 수 있는 물질 중 금속 이온 성분 이외의 해리된 음이온은 고체 전해질 피막내로 함입되어 리튬 이온의 이온전도도를 높여 주는 역할도 한다.Among the materials capable of forming the lithium alloy used as an additive in the present invention, metal ions react with lithium ions to form a lithium alloy film on the surface of the lithium anode, thereby preventing growth of dendritic lithium. In addition, the dissociated anions other than the metal ion component among the materials capable of forming the lithium alloy may be incorporated into the solid electrolyte coating to increase the ion conductivity of lithium ions.

상기한 바와 같이 에틸렌 옥사이드 체인을 가지는 폴리머 및 리튬 합금을 형성할 수 있는 물질을 최적 조성비로 혼합한 전해액을 전지에 적용할 경우, 균일하고 안정한 보호피막을 형성함과 동시에 리튬의 충방전 효율이 기존에 비해 매우 향상된다.As described above, when an electrolyte solution in which a polymer having an ethylene oxide chain and a material capable of forming a lithium alloy is mixed in an optimum composition ratio is applied to a battery, a uniform and stable protective film is formed and lithium charge and discharge efficiency is existing. It is very improved.

이하, 바람직한 실시예를 들어 본 발명을 상세히 설명하나, 본 발명이 이에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to preferred embodiments, but the present invention is not limited thereto.

하기 실시예에서 사용된 LiPF6, LiSO3CF3은 일본 하시모토 주식회사의 전지시약급 제품을 정제없이 사용하였고, 유기전해액 제조시 사용된 용매는 Merck사의 전지시약급 제품이었으며, 모든 실험은 아르곤 가스(99.9999% 이상) 분위기하에서 실시하였다.LiPF 6 and LiSO 3 CF 3 used in the following examples were used as a battery reagent grade product of Hashimoto, Japan, without purification, and the solvent used when preparing the organic electrolyte solution was a battery reagent grade product of Merck, and all experiments were performed using argon gas ( 99.9999% or more).

<실시예 1><Example 1>

전해액을 보관할 플라스틱통에 1.15M LiPF6용액을 만들 수 있는 함량의 LiPF6를 넣은 다음, EC/DMC/EMC/PC 혼합용매(부피비 4:3:3:1)를 넣고 격렬하게 흔들어주어 상기 리튬금속염을 용해시켰다. 다음으로, 전체 전해액 기준으로 중량평균분자량이 2000인 폴리에틸렌 글리콜 디메틸 에테르 0.2 중량부(1mM), 알루미늄 아이오다이드 0.05 중량부(500ppm)를 첨가하여 유기 전해액을 제조하였다.Inserting the content of LiPF 6 to make a 1.15M LiPF 6 solution in a plastic bucket to hold the electrolyte solution and then, EC / DMC / EMC / PC mixed solvent (volume ratio 4: 3: 3: 1) was given into the vigorously shaking the lithium The metal salt was dissolved. Next, 0.2 parts by weight (1 mM) of polyethylene glycol dimethyl ether having a weight average molecular weight of 2000 based on the total electrolyte solution and 0.05 parts by weight (500 ppm) of aluminum iodide were added to prepare an organic electrolyte solution.

<실시예 2><Example 2>

폴리에틸렌 글리콜 디메틸 에테르 0.29 중량부(1.45mM), 알루미늄 아이오 다이드 0.17 중량부(1718ppm)를 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 유기전해액을 제조하였다.An organic electrolyte solution was prepared in the same manner as in Example 1, except that 0.29 parts by weight (1.45 mM) of polyethylene glycol dimethyl ether and 0.17 parts (1718 ppm) of aluminum iodide were added.

<실시예 3><Example 3>

폴리에틸렌 글리콜 디메틸 에테르 1 중량부(5mM), 알루미늄 아이오 다이드0.3 중량부(3000ppm)를 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 유기전해액을 제조하였다.An organic electrolytic solution was prepared in the same manner as in Example 1, except that 1 part by weight of polyethylene glycol dimethyl ether (5 mM) and 0.3 part by weight (3000 ppm) of aluminum iodide were added.

<실시예 4><Example 4>

폴리에틸렌 글리콜 디메틸 에테르 대신에 중량평균분자량 1000인 폴리에틸렌 글리콜 디메틸 아크릴레이트 0.2 중량부(1mM)를 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 유기전해액을 제조하였다.An organic electrolyte was prepared in the same manner as in Example 2, except that 0.2 part by weight (1 mM) of polyethylene glycol dimethyl acrylate having a weight average molecular weight of 1000 was used instead of polyethylene glycol dimethyl ether.

<실시예 5>Example 5

알루미늄 아이오다이드 대신에 마그네슘 아이오다이드 0.05중량부(500ppm)를 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 유기전해액을 제조하였다.An organic electrolyte was prepared in the same manner as in Example 2, except that 0.05 parts by weight (500 ppm) of magnesium iodide was used instead of aluminum iodide.

<비교예 1>Comparative Example 1

혼합 유기 전해액에 알루미늄 아이오다이드를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 전해액을 제조하였다.An electrolyte was prepared in the same manner as in Example 1 except that aluminum iodide was not added to the mixed organic electrolyte.

<비교예 2>Comparative Example 2

혼합 유기 전해액에 폴리에틸렌글리콜 디메틸 에테르를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 전해액을 제조하였다.An electrolyte solution was prepared in the same manner as in Example 1, except that polyethylene glycol dimethyl ether was not added to the mixed organic electrolyte solution.

상기 실시예 1-5 및 비교예 1-2에 따라 제조된 유기전해액의 충방전효율 특성을 평가하였다. 이때 상기 특성들은 다음과 같은 방법에 따라 평가하였다.The charging and discharging efficiency characteristics of the organic electrolyte prepared according to Examples 1-5 and Comparative Examples 1-2 were evaluated. At this time, the characteristics were evaluated according to the following method.

양극과 음극은 리튬금속을 사용하고, 세퍼레이터는 아사이사에서 제조된 것을 사용하였으며, 상기에서 제조된 유기전해액을 적용하여 코인셀(2016)을 제조한 후 충방전테스트를 수행하였으며, 그 충방전 효율을 하기 표 1에 나타내었다.Lithium metal was used as the positive electrode and negative electrode, and the separator was manufactured by Asai Co., Ltd. The coin cell (2016) was manufactured by applying the organic electrolyte solution prepared above, and then the charge and discharge test was performed. It is shown in Table 1 below.

폴리머 흡착제(중량부)Polymer adsorbent (parts by weight) 리튬과 합금형성가능물질(중량부)Material capable of forming alloys with lithium (parts by weight) 사이클 효율(%)Cycle efficiency (%) 실시예 1Example 1 PEGDME 0.2PEGDME 0.2 AlI30.05AlI 3 0.05 92.292.2 실시예 2Example 2 PEGDME 0.29PEGDME 0.29 AlI30.17AlI 3 0.17 98.498.4 실시예 3Example 3 PEGDME 1PEGDME 1 AlI30.3AlI 3 0.3 91.691.6 실시예 4Example 4 PEGDMA 0.2PEGDMA 0.2 AlI30.17AlI 3 0.17 97.297.2 실시예 5Example 5 PEGDME 0.29PEGDME 0.29 MgI20.05MgI 2 0.05 94.994.9 비교예 1Comparative Example 1 PEGDME 0.2PEGDME 0.2 -- 7878 비교예 2Comparative Example 2 -- AlI30.05AlI 3 0.05 8383

상기 표 1에 나타나 있는 바와 같이, 본 발명에 따른 전해액을 채용한 전지의 충방전 효율이 폴리에틸렌 글리콜 디메틸 에테르 단독 첨가(비교예 1) 또는 알미늄 아이오 다이드 단독 첨가(비교예 2) 전해액을 채용한 전지보다 우수함을 알 수 있다. 또한 실시예 2의 경우가 충방전효율이 가장높다는 것을 알 수 있으며, 이는 도 3에 나타낸 바와 같이 실험계획법을 통하여 확인한 최적조성에 대한 결과와 일치하였다. 즉, 본 발명의 최적 조성은 폴리에틸렌 글리콜 디메틸 에테르 0.29 중량부(145mM), 알루미늄 아이오 다이드 0.17 중량부(1718ppm)인 것으로 나타났으며, 실시예 2의 전해액을 채용한 전지의 용량을 측정하여 도 3에 나타내었다.As shown in Table 1, the charge and discharge efficiency of the battery employing the electrolyte according to the present invention is the polyethylene glycol dimethyl ether alone (Comparative Example 1) or aluminum iodide alone (Comparative Example 2) It can be seen that it is superior to the battery. In addition, in the case of Example 2 it can be seen that the charging and discharging efficiency is the highest, which is consistent with the results for the optimum composition confirmed through the experimental design method as shown in FIG. That is, the optimum composition of the present invention was found to be 0.29 parts by weight (145 mM) of polyethylene glycol dimethyl ether and 0.17 parts by weight (1718 ppm) of aluminum iodide, and the capacity of the battery employing the electrolyte solution of Example 2 was also measured. 3 is shown.

또한 폴리에틸렌 글리콜 디메틸 에테르의 첨가량을 변화시키며 그에 따른 사이클 수명특성을 측정하고 본 발명의 실시예 2의 전해액을 채용한 전지의 사이클 수명특성과 비교하여 도 4에 나타내었다. 본 발명에 따른 전해액을 채용한 경우에 사이클 수명특성이 우수함을 알 수 있다.In addition, it is shown in Figure 4 compared with the cycle life characteristics of the battery employing the electrolyte solution of Example 2 of the present invention was measured by changing the amount of polyethylene glycol dimethyl ether added accordingly. It can be seen that the cycle life characteristics are excellent when the electrolyte solution according to the present invention is employed.

도 5는 알루미늄 아이오다이드의 첨가량을 변화시키며 그에 따른 사이클 수명특성을 측정하고 본 발명의 실시예 2의 전해액을 채용한 전지의 사이클 수명특성과 비교한 것을 나타낸다. 그 결과를 통하여 본 발명에 따른 전해액을 채용한 경우에 사이클 수명특성이 향상됨을 알 수 있다.Figure 5 shows the change in the amount of addition of the aluminum iodide, and measured the cycle life characteristics according to the comparison with the cycle life characteristics of the battery employing the electrolyte solution of Example 2 of the present invention. As a result, it can be seen that the cycle life characteristics are improved when the electrolyte solution according to the present invention is employed.

또한 상기 실시예 2 및 비교예 1-2의 전해액을 채용한 전지를 100회 사이클을 거친 후 SEM사진을 통해 음극표면을 관찰한 결과를 도 6-8에 나타내었다. 본 발명의 실시예 2는 비교예보다 균일하고 안정된 보호피막이 형성됨을 알 수 있다.In addition, the result of observing the negative electrode surface through the SEM photograph after 100 cycles of the battery employing the electrolyte solution of Example 2 and Comparative Example 1-2 is shown in Figure 6-8. Example 2 of the present invention can be seen that a protective film more uniform and stable than the comparative example is formed.

<실시예 6><Example 6>

DOX/TGM(부피비 1:1)에 LiPF6를 용해시켜 1M의 LiPF6용액을 제조한 후 폴리에틸렌 글리콜 디메틸 에테르 0.29 중량부(145 mM), 알루미늄 아이오다이드 0.17 중량부(1718 ppm)을 첨가한 유기 전해액을 제조하였다.LiPF 6 was dissolved in DOX / TGM (volume ratio 1: 1) to prepare a 1 M LiPF 6 solution, followed by adding 0.29 parts by weight of polyethylene glycol dimethyl ether (145 mM) and 0.17 parts by weight of aluminum iodide (1718 ppm). An organic electrolyte was prepared.

<비교예 3>Comparative Example 3

DOX/DGM/DME/SUL(부피비 5:2:2:1)에 LiSO3CF3을 용해시켜 1M의 LiSO3CF3용액을 제조하고 첨가제로서 폴리에틸렌 글리콜 디메틸 에테르 0.29 중량부(145 mM)만을 사용하여 유기 전해액을 제조하였다.LiSO 3 CF 3 was dissolved in DOX / DGM / DME / SUL (volume ratio 5: 2: 2: 1) to prepare a 1M LiSO 3 CF 3 solution, using only 0.29 parts by weight of polyethylene glycol dimethyl ether (145 mM) as an additive. To prepare an organic electrolyte solution.

<비교예 4><Comparative Example 4>

첨가제로서 알루미늄 아이오다이드 0.17 중량부(1718ppm)만을 사용한 것을 제외하고는 비교예 3과 동일한 방법으로 유기 전해액을 제조하였다.An organic electrolyte was prepared in the same manner as in Comparative Example 3 except that only 0.17 parts by weight (1718 ppm) of aluminum iodide was used as the additive.

<비교예 5>Comparative Example 5

첨가제를 사용하지 않은 것을 제외하고는 비교예 3과 동일한 방법으로 유기 전해액을 제조하였다.An organic electrolyte was prepared in the same manner as in Comparative Example 3 except that no additive was used.

양극으로 설퍼를, 음극으로 리튬금속을 사용하고, 세퍼레이터는 아사이사에서 제조된 것을 사용하였으며, 상기 실시예 6 및 비교예 3-5에 의해 제조된 유기 전해액을 사용하여 전지를 제조하였으며, 상기 전지의 충방전 효율을 측정하여 하기 표 2에 나타내었다.Sulfur was used as a positive electrode, lithium metal was used as a negative electrode, and a separator manufactured by Asai Co., Ltd. was used, and a battery was prepared using the organic electrolyte prepared according to Example 6 and Comparative Example 3-5. The charge and discharge efficiency of the was measured and shown in Table 2 below.

폴리머 흡착제(중량부)Polymer adsorbent (parts by weight) 리튬과 합금형성가능물질(중량부)Material capable of forming alloys with lithium (parts by weight) 사이클 효율(%)Cycle efficiency (%) 실시예 6Example 6 PEGDME 0.29PEGDME 0.29 AlI30.17AlI 3 0.17 8686 비교예 3Comparative Example 3 PEGDME 0.29PEGDME 0.29 -- 8080 비교예 4Comparative Example 4 -- AlI30.17AlI 3 0.17 7575 비교예 5Comparative Example 5 -- -- 6161

상기 표 2에 나타난 바와 같이, 본 발명에 따른 전해액을 채용한 설퍼전지의 충방전 효율은 폴리에틸렌 글리콜 디메틸 에테르 단독첨가(비교예 3), 알루미늄 아이오다이드 단독첨가(비교예 4) 또는 첨가제를 넣지 않은 경우(비교예 5) 보다 우수함을 알 수 있다.As shown in Table 2, the charge and discharge efficiency of the sulfur battery employing the electrolyte according to the present invention is polyethylene glycol dimethyl ether alone (Comparative Example 3), aluminum iodide alone (Comparative Example 4) or additives If not (Comparative Example 5) can be seen that better.

상기 실시예 1-5 및 비교예 1-2에 따라 얻어진 유기전해액을 사용한 전지의 충방전 수명특성을 평가하기 위하여 리튬 폴리머 전지를 다음과 같이 제조하였다.In order to evaluate the charge and discharge life characteristics of the battery using the organic electrolyte solution obtained according to Example 1-5 and Comparative Example 1-2, a lithium polymer battery was prepared as follows.

리튬 니켈 코발트 옥사이드와 카본블랙과 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머와 N-메틸피롤리돈을 혼합하여 캐소드 활물질 조성물을 준비한 다음, 이를 알루미늄 호일에 코팅하였다. 이어서, 상기 결과물을 건조하고 이를 압연 및 절단하여 캐소드를 제조하였다.Lithium nickel cobalt oxide, carbon black, vinylidene fluoride-hexafluoropropylene copolymer, and N-methylpyrrolidone were mixed to prepare a cathode active material composition, which was then coated on aluminum foil. The resultant was then dried, rolled and cut to prepare a cathode.

이와 별도로, 흑연 분말과 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머와 N-메틸피롤리돈을 혼합하여 애노드 활물질 조성물을 준비한 다음, 이를 구리 호일상에 코팅하였다. 이어서, 상기 결과물을 건조한 다음, 이를 압연 및 절단하여 애노드를 제조하였다.Separately, graphite powder, vinylidene fluoride-hexafluoropropylene copolymer, and N-methylpyrrolidone were mixed to prepare an anode active material composition, which was then coated on copper foil. The resultant was then dried and then rolled and cut to prepare an anode.

다음으로, 아세톤 60ml에 elf-atochem사로부터 상품명 Kynar2801으로 구입가능한 비닐리덴플루오라이드/헥사플루오로프로필렌 공중합체 6g 용해시킨 후 실리카 4g을 2시간 동안 교반하면서 균일하게 혼합하고, n-부탄올 20ml을 가하여 24시간 동안 교반하여 고분자 매트릭스 조성물을 제조하였다. 이 고분자 매트릭스 조성물을 지지체 상에 캐스팅하고 60℃에서 건조하여 고분자 매트릭스를 제조하였다.Next, 6 g of vinylidene fluoride / hexafluoropropylene copolymer, available from elf-atochem under the trade name Kynar2801, was dissolved in 60 ml of acetone, and then 4 g of silica was uniformly mixed with stirring for 2 hours, and 20 ml of n-butanol was added thereto. Stirring for 24 hours to prepare a polymer matrix composition. This polymer matrix composition was cast on a support and dried at 60 ° C. to prepare a polymer matrix.

이어서, 제조된 양극판, 고분자 매트릭스 및 음극판을 순차적으로 라미네이팅하여 전극 구조제를 제조하였다. 다음으로, 전극구조체를 열풍 건조기에서 105℃로 건조한 후에 UBE사로부터 상품명 UBE3A로 구입가능한 에틸렌카보네이트, 디메틸렌카보네이트 및 디메틸에틸카보네이트가 3:3:4의 중량비로 혼합된 용매에 LiPF6가 1.3M의 농도로 포함된 전해액에 침지시켜 전극구조체 내로 전해액이 함습되도록 함으로써 리튬 폴리머 전지를 완성하였다.Subsequently, the prepared positive electrode plate, the polymer matrix, and the negative electrode plate were sequentially laminated to prepare an electrode structural agent. Next, LiPF 6 was 1.3 M in a solvent in which ethylene carbonate, dimethylene carbonate, and dimethyl ethyl carbonate, which are commercially available from UBE under the trade name UBE3A, were mixed at a weight ratio of 3: 3: 4 after drying the electrode structure at 105 ° C. in a hot air dryer. The lithium polymer battery was completed by immersing it in an electrolyte solution contained at a concentration of so that the electrolyte solution was moistened into the electrode structure.

이상과 같이 제조한 리튬 폴리머 전지에 대하여 방전용량과 300 싸이클 충방전 실험 후의 방전용량을 측정하여 초기방전용량에 대비하여 나타냈다. 방전용량과 충방전 수명특성은 1A 용량의 충방전기(Maccor사 제품)를 이용하였으며, 충전 및 방전은 각각 25℃에서 1C으로 실시하였으며, 충전 전압은 2.75 ~ 4.2V였다.For the lithium polymer battery manufactured as described above, the discharge capacity and the discharge capacity after the 300 cycle charge / discharge experiment were measured and shown in relation to the initial discharge capacity. Discharge capacity and charge / discharge life characteristics were 1A capacity charger and charger (manufactured by Maccor), and charging and discharging were carried out at 1C at 25 ° C, respectively, and the charging voltage was 2.75 ~ 4.2V.

상술한 방법에 따라 실시예 1-5 및 비교예 1-2에 따라 제조된 유기전해액을 채용한 전지성능테스트 결과를 하기 표 3에 나타내었다.According to the method described above, the results of the battery performance test using the organic electrolyte prepared according to Example 1-5 and Comparative Example 1-2 are shown in Table 3 below.

평균 표준 방전 용량(mAh)Average standard discharge capacity (mAh) 평균 고율(2C) 방전용량(%):표준대비Average High Rate (2C) Discharge Capacity (%): Standard 평균 1C) 방전용량 (%):표준대비Average 1C) Discharge Capacity (%): Standard 실시예 1Example 1 9090 8383 9191 실시예 2Example 2 9090 8686 9595 실시예 3Example 3 9090 8282 9090 실시예 4Example 4 9090 8181 8888 실시예 5Example 5 9090 8282 8989 비교예 1Comparative Example 1 9090 7979 8383 비교예 2Comparative Example 2 9090 7777 8282

표 3에 나타나 있는 바와 같이 실시예 1-5는 비교예 1-2 보다 고율(2C) 방전효율이 우수함을 알 수 있었다.As shown in Table 3, it can be seen that Example 1-5 has a higher rate (2C) discharge efficiency than Comparative Example 1-2.

본 발명에 따라 제조된 리튬2차전지용 전해액은 리튬이온 전지, 리튬 폴리머전지 및 리튬금속을 음극으로 사용하는 리튬금속 폴리머전지 등 모든 전지에 적용이 가능하며, 특히 리튬금속 폴리머전지에 있어서 리튬금속의 안정화 및 리튬의 이온전도도를 증가시키는 역할을 하므로 사이클특성이 특성이 향상되고 충방전 효율이 기존의 전해액에 비해 매우 우수하다.The lithium secondary battery electrolyte prepared according to the present invention can be applied to all batteries such as lithium ion batteries, lithium polymer batteries, and lithium metal polymer batteries using lithium metal as a negative electrode, and particularly in lithium metal polymer batteries. Because it plays a role of stabilizing and increasing the ion conductivity of lithium, the cycle characteristics are improved and the charge and discharge efficiency is very superior to the conventional electrolyte solution.

Claims (14)

리튬 메탈에 흡착될 수 있는 에틸렌 옥사이드 체인을 가지는 폴리머 흡착제, 리튬과 반응하여 합금을 형성할 수 있는 물질, 리튬염 및 유기용매를 포함하는 것을 특징으로 하는 리튬2차전지용 전해액.A polymer adsorbent having an ethylene oxide chain that can be adsorbed onto lithium metal, a material capable of forming an alloy by reacting with lithium, a lithium salt, and an organic solvent. 제 1항에 있어서, 상기 흡착제는 폴리에틸렌 옥사이드 (poly (ethylene)oxide), 폴리에틸렌 글리콜 모노메틸 에테르(poly (ethylenglycol)monomethyl ether), 폴리에틸렌 글리콜 디메틸 에테르(poly (ethylenglycol) dimethyl ether), 폴리에틸렌 글리콜 모노메틸 아크릴레이트 (poly(ethylenglycol) monomethyl acrylate) 및 폴리에틸렌 글리콜 다이메틸 아크릴레이트 (poly (ethylenglycol)dimethyl acrylate)로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 리튬 2차전지용 전해액.According to claim 1, wherein the adsorbent is polyethylene (poly (ethylene) oxide), polyethylene glycol monomethyl ether (poly (ethylenglycol) monomethyl ether), polyethylene glycol dimethyl ether (poly (ethylenglycol) dimethyl ether), polyethylene glycol monomethyl An electrolyte solution for a lithium secondary battery, characterized in that one or more mixtures selected from the group consisting of acrylate (poly (ethylenglycol) monomethyl acrylate) and polyethylene glycol dimethyl acrylate (poly (ethylenglycol) dimethyl acrylate). 제 2항에 있어서, 상기 폴리머 흡착제의 첨가량이 전체 전해액 100 중량부 당 0.1∼1 중량부인 것을 특징으로 하는 리튬 2차전지용 전해액.The electrolyte solution for a lithium secondary battery according to claim 2, wherein the amount of the polymer adsorbent added is 0.1 to 1 part by weight based on 100 parts by weight of the total electrolyte. 제 2항에 있어서, 상기 폴리에틸렌글리콜 디메틸 에테르의 첨가량이 전체 전해액 100중량부 당 0.2∼1 중량부인 것을 특징으로 하는 리튬 2차전지용 전해액.The electrolyte solution for a lithium secondary battery according to claim 2, wherein the amount of the polyethylene glycol dimethyl ether added is 0.2 to 1 part by weight based on 100 parts by weight of the total electrolyte solution. 제 2항에 있어서, 상기 폴리머 흡착제의 중량평균 분자량이 200∼2000인 것을 특징으로 하는 리튬 2차전지용 전해액.The electrolyte solution for lithium secondary batteries according to claim 2, wherein the weight average molecular weight of the polymer adsorbent is 200 to 2000. 제 2항에 있어서, 상기 폴리에틸렌 글리콜 디메틸 에테르의 중량평균 분자량이 1000~2000인 것을 특징으로 하는 리튬 2차전지용 전해액.The electrolyte solution for lithium secondary batteries according to claim 2, wherein the polyethylene glycol dimethyl ether has a weight average molecular weight of 1000 to 2000. 제 1항에 있어서, 상기 리튬과 반응하여 합금을 형성할 수 있는 물질이 알루미늄 아이오다이드(AlI3), 알루미늄 포스페이트(aluminium phophate), 알루미늄 설페이트(aluminium sulfate), 알루미늄 트리플레이트(aluminium triflate), 마그네슘 아이오다이드(magnesium iodide), 마그네슘 클로라이드(magnesium chloride), 마그네슘 브로마이드(magnesium bromide), 마그네슘 퍼클로레이트(magnesium perchlorate), 마그네슘 헥사플루오로포스페이트(magnesium hexafluorophosphate), 마그네슘 트리플레이트(magnesium triflate)로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 리튬 2차전지용 전해액.The method of claim 1, wherein the material capable of forming an alloy by reacting with lithium is aluminum iodide (AlI 3 ), aluminum phosphate, aluminum sulfate, aluminum triflate, Group consisting of magnesium iodide, magnesium chloride, magnesium bromide, magnesium perchlorate, magnesium hexafluorophosphate and magnesium triflate An electrolyte for a lithium secondary battery, characterized in that one or two or more mixtures selected from. 제 7항에 있어서, 상기 리튬과 반응하여 합금을 형성할 수 있는 물질의 첨가량이 전체 전해액 100중량부 당 0.01∼0.3 중량부인 것을 특징으로 하는 리튬 2차전지용 전해액.The electrolyte solution for a lithium secondary battery according to claim 7, wherein an amount of a substance capable of reacting with lithium to form an alloy is 0.01 to 0.3 parts by weight based on 100 parts by weight of the total electrolyte. 제 7항에 있어서, 상기 알루미늄 아이오다이드의 첨가량이 전체 전해액 100 중량부 당 0.05∼0.3 중량부인 것을 특징으로 하는 리튬 2차전지용 전해액.8. The lithium secondary battery electrolyte according to claim 7, wherein the amount of the aluminum iodide added is 0.05 to 0.3 parts by weight based on 100 parts by weight of the total electrolyte. 제 1항 내지 9항 중 어느 한 항에 있어서, 상기 폴리에틸렌 글리콜 디메틸 에테르의 첨가량이 전체 전해액 100 중량부 당 0.29 중량부이고, 상기 알루미늄 아이오다이드(AlI3)의 첨가량이 0.17 중량부인 것을 특징으로 하는 리튬 2차전지용 전해액.The method according to any one of claims 1 to 9, wherein the amount of polyethylene glycol dimethyl ether added is 0.29 parts by weight per 100 parts by weight of the total electrolyte, and the amount of aluminum iodide (AlI 3 ) added is 0.17 parts by weight. The electrolyte solution for lithium secondary batteries. 제 1항에 있어서, 상기 리튬염은 LiPF6,LiBF4, LiClO4, Li(CF3SO2)2, LiCF3SO3, LiSbF6및 LiAsF6로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 리튬 2차전지용 전해액.The method of claim 1, wherein the lithium salt is LiPF 6, LiBF 4 , LiClO 4 , Li (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSbF 6 And LiAsF 6 It characterized in that any one selected from the group consisting of The electrolyte solution for lithium secondary batteries. 제 1항에 있어서, 상기 리튬염의 농도는 0.4∼1.5M인 것을 특징으로 하는 리튬 2차전지용 전해액.The electrolyte solution for lithium secondary batteries according to claim 1, wherein the lithium salt has a concentration of 0.4 to 1.5 M. 제 1항에 있어서, 상기 유기용매는 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 아세톤, 아세토니트릴, n-메틸-2-피롤리돈 (NMP) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 리튬 2차전지용 전해액.The method of claim 1, wherein the organic solvent is selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, acetone, acetonitrile, n-methyl-2-pyrrolidone (NMP) and mixtures thereof. Lithium secondary battery electrolyte, characterized in that any one. 제 1항 또는 제 13항 중 어느 한 항에 따른 전해액을 사용하여 제조되는 것을 특징으로 하는 리튬 2차전지.A lithium secondary battery prepared using the electrolyte according to any one of claims 1 to 13.
KR10-2001-0067622A 2001-10-31 2001-10-31 Organic electrolytic solution and lithium secondary battery adopting the same KR100477744B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2001-0067622A KR100477744B1 (en) 2001-10-31 2001-10-31 Organic electrolytic solution and lithium secondary battery adopting the same
JP2002315834A JP3643825B2 (en) 2001-10-31 2002-10-30 Organic electrolyte for lithium secondary battery and lithium secondary battery using the same
CNB021479224A CN1320685C (en) 2001-10-31 2002-10-30 Organic electrolyte and lithium secondary cell using same
US10/283,334 US7087349B2 (en) 2001-10-31 2002-10-30 Organic electrolytic solution and lithium secondary battery employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0067622A KR100477744B1 (en) 2001-10-31 2001-10-31 Organic electrolytic solution and lithium secondary battery adopting the same

Publications (2)

Publication Number Publication Date
KR20030035521A true KR20030035521A (en) 2003-05-09
KR100477744B1 KR100477744B1 (en) 2005-03-18

Family

ID=19715572

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0067622A KR100477744B1 (en) 2001-10-31 2001-10-31 Organic electrolytic solution and lithium secondary battery adopting the same

Country Status (4)

Country Link
US (1) US7087349B2 (en)
JP (1) JP3643825B2 (en)
KR (1) KR100477744B1 (en)
CN (1) CN1320685C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312583B2 (en) 2012-12-21 2016-04-12 Samsung Electronics Co., Ltd. Protected anode for lithium air battery and lithium air battery including the same
US9716288B2 (en) 2012-10-24 2017-07-25 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method of preparing same
CN113659138A (en) * 2021-07-08 2021-11-16 南京理工大学 Application of alkyl chain modified covalent organic framework membrane in lithium battery

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1282180A1 (en) * 2001-07-31 2003-02-05 Xoliox SA Process for producing Li4Ti5O12 and electrode materials
EP1483206B1 (en) * 2002-03-08 2010-10-20 Altair Nanomaterials Inc. Process for making nano-sized and sub-micron-sized lithium-transition metal oxides
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US20080057386A1 (en) 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7282302B2 (en) 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
JPWO2005008700A1 (en) * 2003-07-17 2006-11-02 旭硝子株式会社 Electric double layer capacitor
US7491458B2 (en) 2003-11-10 2009-02-17 Polyplus Battery Company Active metal fuel cells
US7282295B2 (en) * 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
US20060234124A1 (en) * 2005-04-18 2006-10-19 Kejha Joseph B High rate primary lithium battery with solid cathode
US20070092798A1 (en) * 2005-10-21 2007-04-26 Spitler Timothy M Lithium ion batteries
US8652692B2 (en) 2005-11-23 2014-02-18 Polyplus Battery Company Li/Air non-aqueous batteries
WO2007075867A2 (en) 2005-12-19 2007-07-05 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
KR100846479B1 (en) 2006-08-21 2008-07-17 삼성에스디아이 주식회사 Organic electrolytic solution comprising electro-grafting monomer, and lithium battery employing the same
US8332028B2 (en) * 2006-11-28 2012-12-11 Polyplus Battery Company Protected lithium electrodes for electro-transport drug delivery
KR100898670B1 (en) * 2006-11-30 2009-05-22 삼성에스디아이 주식회사 Separator for Lithium Rechargeable Battery and Lithium Rechargeable Battery using The Same
US20090017364A1 (en) * 2007-01-18 2009-01-15 Altairnano, Inc. Methods for improving lithium ion battery safety
CN101785132B (en) * 2007-03-30 2013-09-04 爱尔达纳米公司 Method for preparing a lithium ion cell
JP2008305772A (en) * 2007-05-08 2008-12-18 Sony Corp Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution
WO2009006349A2 (en) * 2007-06-29 2009-01-08 Polyplus Battery Company Electrotransport devices, methods and drug electrode assemblies
US8323820B2 (en) 2008-06-16 2012-12-04 Polyplus Battery Company Catholytes for aqueous lithium/air battery cells
US20090069740A1 (en) * 2007-09-07 2009-03-12 Polyplus Battery Company Protected donor electrodes for electro-transport drug delivery
US20090286163A1 (en) * 2008-02-29 2009-11-19 The Regents Of The University Of California Electrolyte mixtures useful for li-ion batteries
JP5383530B2 (en) * 2010-01-25 2014-01-08 株式会社日立製作所 Nonaqueous electrolyte secondary battery
US8795904B2 (en) 2010-05-13 2014-08-05 The United States Of America As Represented By The Secretary Of The Army Nonaqueous electrolyte solvents and additives
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry
WO2013018212A1 (en) * 2011-08-03 2013-02-07 日立ビークルエナジー株式会社 Lithium-ion secondary battery electrolyte and lithium-ion secondary battery using same
JPWO2013018212A1 (en) * 2011-08-03 2015-03-02 日立ビークルエナジー株式会社 Electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
US8828575B2 (en) 2011-11-15 2014-09-09 PolyPlus Batter Company Aqueous electrolyte lithium sulfur batteries
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
US8828573B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrode structures for aqueous electrolyte lithium sulfur batteries
US8828574B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrolyte compositions for aqueous electrolyte lithium sulfur batteries
KR101305210B1 (en) 2012-03-30 2013-09-12 서울시립대학교 산학협력단 Electrolyte having improved charge and discharge, and capacitor comprising the same
US8932771B2 (en) 2012-05-03 2015-01-13 Polyplus Battery Company Cathode architectures for alkali metal / oxygen batteries
US20140093760A1 (en) * 2012-09-28 2014-04-03 Quantumscape Corporation Battery control systems
US9236634B2 (en) 2013-03-15 2016-01-12 Wildcat Discorvery Technologies, Inc. Electrolyte solutions for high cathode materials and methods for use
EP2973834B1 (en) 2013-03-15 2019-09-11 Wildcat Discovery Technologies, Inc. Battery comprising a polymeric additive and method of making it
US9287586B1 (en) 2015-01-16 2016-03-15 Wildcat Discovery Technologies, Inc. Electrolyte solutions for high energy cathode materials and methods for use
US9912011B1 (en) 2017-02-24 2018-03-06 Wildcat Discovery Technologies, Inc Electrolyte additives
US9985316B1 (en) 2017-02-24 2018-05-29 Wildcat Discovery Technologies, Inc Electrolyte additives
EP3656004A1 (en) 2017-07-21 2020-05-27 QuantumScape Corporation Active and passive battery pressure management
KR102229461B1 (en) 2018-05-14 2021-03-18 주식회사 엘지화학 Electrolyte and lithium secondary battery comprising the same
WO2019221456A1 (en) * 2018-05-14 2019-11-21 주식회사 엘지화학 Electrolyte and lithium secondary battery comprising same
CN109326771B (en) * 2018-11-20 2022-03-11 中国电力科学研究院有限公司 Preparation method of metal lithium cathode and lithium iron phosphate battery
CN113316858A (en) * 2019-01-16 2021-08-27 加拿大蓝色解决方案有限公司 Hybrid solid electrolyte for all-solid-state batteries
CN109888381B (en) * 2019-03-12 2020-11-13 清华大学 Metal lithium negative electrode protection solution, metal lithium negative electrode surface protection method, negative electrode plate, lithium battery and lithium-air battery
KR20200126648A (en) * 2019-04-30 2020-11-09 에스케이이노베이션 주식회사 Lithium secondary battery
CN112864459B (en) * 2019-11-28 2022-07-12 广东工业大学 Electrolyte, preparation method thereof and secondary lithium metal battery
CN111313086B (en) * 2019-12-24 2022-11-01 安徽圣格能源科技有限公司 Electrolyte and lithium ion battery
CN113838671A (en) * 2020-06-23 2021-12-24 东莞东阳光科研发有限公司 Electrolyte additive for aluminum electrolytic capacitor and electrolyte
KR20220021555A (en) * 2020-08-14 2022-02-22 에스케이온 주식회사 Electrolyte solution for lithium secondary battery and lithium secondary battery including the same
CN112366351B (en) * 2020-10-16 2021-12-03 山东海科创新研究院有限公司 Lithium-supplementing slow-release capsule, electrolyte thereof and lithium ion battery
CN112421106A (en) * 2020-11-23 2021-02-26 浙江锋锂新能源科技有限公司 Composite film capable of prolonging cycle life of lithium battery and preparation method thereof
KR102560489B1 (en) 2021-02-04 2023-07-28 이미경 Connector for FFC
CN113903993B (en) * 2021-11-18 2024-04-09 中国科学院大学 Lithium metal battery electrolyte additive, electrolyte and battery thereof
CN114050266B (en) * 2021-11-23 2023-06-23 珠海鹏辉能源有限公司 Selenium disulfide composite nitrogen-doped reduced graphene oxide positive electrode material, preparation method thereof, lithium-selenium disulfide battery and power-related equipment
CN115954545B (en) * 2023-02-14 2023-06-02 安徽盟维新能源科技有限公司 Composite additive for improving rate performance, electrolyte and lithium metal battery
CN117736388B (en) * 2024-02-21 2024-05-14 瑞浦兰钧能源股份有限公司 Porous buffer material, secondary battery and preparation method of secondary battery

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907597A (en) * 1974-09-27 1975-09-23 Union Carbide Corp Nonaqueous cell having an electrolyte containing sulfolane or an alkyl-substituted derivative thereof
JPH067948B2 (en) * 1988-07-05 1994-02-02 一郎 塚田 Joint pattern formation method
JP3158412B2 (en) * 1990-03-16 2001-04-23 ソニー株式会社 Lithium secondary battery
US5110694A (en) * 1990-10-11 1992-05-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Secondary Li battery incorporating 12-Crown-4 ether
US5484670A (en) * 1992-06-22 1996-01-16 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For Arizona State University Lithium ion conducting ionic electrolytes
US5506073A (en) * 1992-06-22 1996-04-09 Arizona State University (Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University) Lithium ion conducting electrolytes
JPH07142090A (en) * 1993-11-18 1995-06-02 Yoshiharu Matsuda Lithium secondary battery electrolyte containing additive
JPH08138735A (en) * 1994-11-16 1996-05-31 Fujitsu Ltd Lithium secondary battery
US5529707A (en) * 1994-11-17 1996-06-25 Kejha; Joseph B. Lightweight composite polymeric electrolytes for electrochemical devices
JPH1135765A (en) * 1997-07-24 1999-02-09 Sharp Corp Solid polyelectrolyte and its production
GB9726008D0 (en) * 1997-12-10 1998-02-04 Secr Defence Eletrolyte
JP2000058120A (en) * 1998-08-07 2000-02-25 Kyushu Electric Power Co Inc Electrolyte for lithium secondary battery
CN1167162C (en) * 1998-12-25 2004-09-15 松下电器产业株式会社 Lithium secondary cell
JP3825574B2 (en) * 1999-02-22 2006-09-27 三洋電機株式会社 Non-aqueous electrolyte battery
JP2002117841A (en) * 2000-02-01 2002-04-19 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
JP2002075446A (en) * 2000-08-02 2002-03-15 Samsung Sdi Co Ltd Lithium-sulfur cell
JP4092631B2 (en) * 2001-09-20 2008-05-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9716288B2 (en) 2012-10-24 2017-07-25 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method of preparing same
US10090563B2 (en) 2012-10-24 2018-10-02 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method of preparing same
US9312583B2 (en) 2012-12-21 2016-04-12 Samsung Electronics Co., Ltd. Protected anode for lithium air battery and lithium air battery including the same
CN113659138A (en) * 2021-07-08 2021-11-16 南京理工大学 Application of alkyl chain modified covalent organic framework membrane in lithium battery

Also Published As

Publication number Publication date
US20030124433A1 (en) 2003-07-03
JP3643825B2 (en) 2005-04-27
JP2003151626A (en) 2003-05-23
CN1320685C (en) 2007-06-06
US7087349B2 (en) 2006-08-08
KR100477744B1 (en) 2005-03-18
CN1416191A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
KR100477744B1 (en) Organic electrolytic solution and lithium secondary battery adopting the same
EP3793005B1 (en) Method of manufacturing negative electrode for lithium secondary battery and lithium secondary battery
US7494746B2 (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including same
JP4837614B2 (en) Lithium secondary battery
KR100766967B1 (en) Electrode for rechargeable lithium battery, and rechargeable lithium battery prepared therefrom
KR100325868B1 (en) Organic electrolytic solution and lithium secondary battery adopting the same
CN101355146A (en) Anode, battery, and methods of manufacturing them
KR20100051711A (en) Electrode body, and lithium secondary battery employing the electrode body
CN101494302B (en) Battery
KR20180083274A (en) Non-aqueous electrolyte and lithium secondary battery comprising the same
KR101431259B1 (en) Additive for non-aqueous electrolyte and secondary battery using the same
EP2733780A2 (en) Nonaqueous electrolyte and lithium secondary battery using same
US20240290973A1 (en) Electrode plate, lithium-ion battery, battery module, battery pack and electric device
JP2006172721A (en) Electrolyte for secondary battery, and secondary battery using the same
EP4044313A1 (en) Electrolyte and electrochemical device and electronic device comprising same
CN1218423C (en) Nonaqueous electrolyte secondary battery
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
KR100558842B1 (en) Organic electrolytic solution and lithium battery adopting the same
KR100614368B1 (en) Lithium secondary battery
CN114583177B (en) Electrochemical device and electronic device comprising the same
KR102686564B1 (en) Anode comprising silicon-based negative electrode active material and lithium-ion battey comprising the same
KR102610497B1 (en) Non-aqueous electrolyte for lithium metal battery and lithium metal battey including the same
CN116014239A (en) Electrolyte containing phthalocyanine compound and preparation method and application thereof
CN116435594A (en) Dual-functional electrolyte for stabilizing electrode interface of lithium metal battery, lithium metal battery and preparation method
CN113921902A (en) Electrolyte additive, electrolyte, lithium ion secondary battery comprising electrolyte additive and application of lithium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130222

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140225

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150211

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160218

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180220

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190304

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20200214

Year of fee payment: 16