JPH08138735A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH08138735A
JPH08138735A JP6281780A JP28178094A JPH08138735A JP H08138735 A JPH08138735 A JP H08138735A JP 6281780 A JP6281780 A JP 6281780A JP 28178094 A JP28178094 A JP 28178094A JP H08138735 A JPH08138735 A JP H08138735A
Authority
JP
Japan
Prior art keywords
lithium
pyrrole
secondary battery
lithium secondary
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6281780A
Other languages
Japanese (ja)
Inventor
Tamotsu Yamamoto
保 山本
Kensuke Yoshida
賢介 吉田
Masami Tsutsumi
正己 堤
Isao Watanabe
勲 渡辺
Tsutomu Miyashita
勉 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6281780A priority Critical patent/JPH08138735A/en
Publication of JPH08138735A publication Critical patent/JPH08138735A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE: To improve a charging/discharging cycle characteristic by adding pyrrole or a pyrrole derivative and metallic halide to a nonaqueous electrolyte in a lithium secondary battery having a nonaqueous electrolyte of liquid wherein lithium salt is resolved in an organic solvent. CONSTITUTION: Liquid, wherein lithium salt is resolved in an organic solvent, is used as a nonaqueous electrolyte in a lithium secondary battery. Pyrrole or a pyrrole derivative and metallic halide are added to the nonaqueous electrolyte. Preferably, the concentration of purrole and a pyrrole derivative and that of metallic halide are 1-10vol.% and 10-300ppm degrees respectively. Lithium phosphate hexafluoride and boron lithium tetrafluoride etc., 2,5-dimethyl pyrrole and 2 acetyl N-methyl pyrrole, etc., and aluminum iodide and indium triiodide etc., are used for the lithium salt, pyrrole derivative, and metallic halide respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
し、詳しくはリチウム二次電池の充放電サイクル特性を
向上させるための非水電解液の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to improvement of a non-aqueous electrolyte for improving charge / discharge cycle characteristics of a lithium secondary battery.

【0002】リチウムを負極活物質とし、金属の酸化
物、硫化物、塩化物、又はハロゲンの炭素化合物などを
正極活物質としたリチウム電池は、電池電圧が高い、単
位体積及び単位重量あたりの電池容量が大きく小型化が
容易である、自己放電が少ないなどの理由から注目され
ている。現在のところ、二酸化マンガンや二硫化鉄を正
極活物質とするリチウム一次電池が実用化されている。
A lithium battery using lithium as a negative electrode active material and a metal oxide, sulfide, chloride, or halogen carbon compound as a positive electrode active material is a battery having a high battery voltage per unit volume and unit weight. It is attracting attention because of its large capacity, easy miniaturization, and low self-discharge. At present, lithium primary batteries using manganese dioxide or iron disulfide as a positive electrode active material have been put into practical use.

【0003】近年における電子機器の小型化にともな
い、金属リチウム又はリチウム合金を活物質とする電池
の二次電池化が期待されており、その実用化のために寿
命の改善が望まれている。
With the recent miniaturization of electronic devices, it is expected that batteries using metal lithium or a lithium alloy as an active material will be used as secondary batteries, and improvement of life is desired for practical use thereof.

【0004】[0004]

【従来の技術】金属リチウムを負極活物質とした非水電
解液系のリチウム二次電池には次の問題がある。すなわ
ち、放電時に負極から非水電解液中に溶け出たリチウム
イオンが、充電時において負極の表面に樹枝状のリチウ
ム(電析リチウム)となって析出する。この電析リチウ
ムは、充放電を繰り返すうちに次第に成長し、セパレー
タを貫通して正極に到達する。これによって内部短絡が
引き起こされるので、充放電サイクル特性が極めて良く
ない実用性に欠ける二次電池しか得られないという問題
がある。
2. Description of the Related Art A non-aqueous electrolyte type lithium secondary battery using metallic lithium as a negative electrode active material has the following problems. That is, the lithium ions dissolved from the negative electrode into the non-aqueous electrolyte solution during discharging are deposited as dendritic lithium (deposited lithium) on the surface of the negative electrode during charging. This electrodeposited lithium gradually grows during repeated charging and discharging, penetrates the separator, and reaches the positive electrode. Since this causes an internal short circuit, there is a problem in that only a secondary battery that has extremely poor charge / discharge cycle characteristics and lacks practicality can be obtained.

【0005】従来において、リチウム二次電池の内部短
絡を防止するために、非水電解液に金属ハロゲン化物を
添加することが試みられ、それによる寿命改善効果が報
告されている(吉竹伸介他著「リチウム電極−有機電解
液界面構造の充放電特性に及ぼす影響」平成5年第34
回電池討論会)。
Conventionally, it has been attempted to add a metal halide to a non-aqueous electrolytic solution in order to prevent an internal short circuit of a lithium secondary battery, and it has been reported that the life of the metal halide is improved by this (Shinsuke Yoshitake et al. "Effects of Lithium Electrode-Organic Electrolyte Interface Structure on Charging and Discharging Characteristics", Vol. 34, 1993
Annual Battery Debate).

【0006】上述の報告によると、リチウム塩として過
塩素酸リチウムを用い、金属ハロゲン化物としてヨウ化
アルミニウムを用いた場合に、寿命改善効果のあること
が報告されている。
According to the above report, it has been reported that when lithium perchlorate is used as the lithium salt and aluminum iodide is used as the metal halide, there is a life improving effect.

【0007】[0007]

【発明が解決しようとする課題】しかし、上述の報告中
において用いられている過塩素酸リチウムは、反応性が
高く、温度が高い場合に爆発性があって危険であるの
で、リチウム二次電池に用いるには何らかの対策を必要
とする。
However, the lithium perchlorate used in the above reports is highly reactive, and explosive and dangerous when the temperature is high. It requires some measures to be used for.

【0008】安全なリチウム二次電池を得るには、過塩
素酸リチウムに代えて、例えば安全な六フッ化リン酸リ
チウムを用いることが考えられる。しかし、本発明の発
明者らの実験によると、六フッ化リン酸リチウムを電解
質として用いた場合には、金属ハロゲン化物の添加によ
る寿命改善効果は見られなかった。
In order to obtain a safe lithium secondary battery, it is possible to use, for example, safe lithium hexafluorophosphate instead of lithium perchlorate. However, according to the experiments conducted by the inventors of the present invention, when lithium hexafluorophosphate was used as an electrolyte, the life improving effect due to the addition of the metal halide was not observed.

【0009】また、上述の報告による寿命改善効果で
は、リチウム二次電池の実用化において未だ不充分であ
ると考えられ、なお一層の寿命改善を行う必要がある。
本発明は、上述の問題に鑑みてなされたもので、充放電
サイクル特性に優れた寿命の長いリチウム二次電池を提
供することを目的とする。
Further, it is considered that the life improving effect reported above is still insufficient for practical use of the lithium secondary battery, and it is necessary to further improve the life.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium secondary battery having excellent charge / discharge cycle characteristics and a long life.

【0010】請求項3及び請求項4の発明は、寿命が長
く、安全なリチウム二次電池を提供することを目的とす
る。
It is an object of the inventions of claims 3 and 4 to provide a safe lithium secondary battery having a long life.

【0011】[0011]

【課題を解決するための手段】請求項1の発明に係るリ
チウム二次電池は、有機溶媒にリチウム塩を溶解させた
液を非水電解液としたリチウム二次電池であって、前記
非水電解液には、ピロール又はピロール誘導体、及び金
属ハロゲン化物が添加されていることを特徴とするもの
である。
A lithium secondary battery according to the invention of claim 1 is a lithium secondary battery in which a liquid obtained by dissolving a lithium salt in an organic solvent is used as a non-aqueous electrolytic solution. It is characterized in that pyrrole or a pyrrole derivative and a metal halide are added to the electrolytic solution.

【0012】有機溶媒としては、PC(プロピレンカー
ボネート)、THF(テトラヒドロフラン)、EC(エ
チレンカーボネート)、DME(1,2−ジメトキシエ
タン)、DEC(ジエチルカーボネート)、2−MeT
HF(2−メチル−テトラヒドロフラン)、ジメチルス
ルホキシド、γ−ブチロラクトン、ジオキソシラン、ス
ルフォラン、ジエチルホルムアミド、アセトニトリルが
例示される。
As the organic solvent, PC (propylene carbonate), THF (tetrahydrofuran), EC (ethylene carbonate), DME (1,2-dimethoxyethane), DEC (diethyl carbonate), 2-MeT
Examples are HF (2-methyl-tetrahydrofuran), dimethyl sulfoxide, γ-butyrolactone, dioxosilane, sulfolane, diethylformamide, and acetonitrile.

【0013】リチウム塩としては、LiPF6 (六フッ
化リン酸リチウム)、LiBF4 (四フッ化ホウ素酸リ
チウム)、LiClO4 (過塩素酸リチウム)が例示さ
れる。安全性の面からは、LiClO4 以外のリチウム
塩が望ましい。
Examples of the lithium salt include LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate) and LiClO 4 (lithium perchlorate). From the viewpoint of safety, lithium salts other than LiClO 4 are desirable.

【0014】ピロール誘導体としては、2,5−ジメチ
ルピロール、2アセチルN−メチルピロール、2−アセ
チルピロール、N−メチルピロールが例示される。金属
ハロゲン化物としては、AlI3 (ヨウ化アルミニウ
ム)、InI3 (三ヨウ化インジウム)、SnI2 (ヨ
ウ化錫)、PbI2 (二ヨウ化鉛)が例示される。
Examples of the pyrrole derivative include 2,5-dimethylpyrrole, 2acetyl N-methylpyrrole, 2-acetylpyrrole and N-methylpyrrole. As the metal halide, AlI 3 (aluminum iodide), InI 3 (triiodide indium), SnI 2 (iodine tin), PbI 2 (two lead iodide) are exemplified.

【0015】また、電池の正極活物質としては、LiC
oO2 (コバルト酸リチウム)、LiNiO2 (ニッケ
ル酸リチウム)、LiMnO2 (マンガン酸リチウ
ム)、LiMn2 4 (マンガン酸リチウムスピネ
ル)、V2 5 (五酸化バナジウム)が例示される。
Further, as the positive electrode active material of the battery, LiC is used.
Examples include oO 2 (lithium cobaltate), LiNiO 2 (lithium nickelate), LiMnO 2 (lithium manganate), LiMn 2 O 4 (lithium manganate spinel), and V 2 O 5 (vanadium pentoxide).

【0016】負極材料としては、金属リチウム、リチウ
ム−アルミニウム合金、リチウム−錫合金、リチウム−
鉛合金が例示される。
As the negative electrode material, metallic lithium, lithium-aluminum alloy, lithium-tin alloy, lithium-
An example is a lead alloy.

【0017】[0017]

【作用】負極のリチウムの表面には二重の皮膜が形成さ
れるが、非水電解液にピロール又はピロール誘導体を添
加することにより、液側の皮膜は薄くなり、抵抗も小さ
くなる。したがって、非水電解液中のピロール又はピロ
ール誘導体によって、液側の皮膜が薄くなり、非水電解
液中の金属ハロゲン化物との相乗効果によって、充放電
サイクル特性が向上し、顕著な寿命改善効果が得られ
る。
A double film is formed on the surface of lithium of the negative electrode. By adding pyrrole or a pyrrole derivative to the non-aqueous electrolyte, the film on the liquid side becomes thin and the resistance becomes small. Therefore, due to the pyrrole or pyrrole derivative in the non-aqueous electrolytic solution, the film on the liquid side becomes thin, and the synergistic effect with the metal halide in the non-aqueous electrolytic solution improves the charge / discharge cycle characteristics, resulting in a remarkable life improving effect Is obtained.

【0018】なお、非水電解液の電解質が過塩素酸リチ
ウムである場合には、二重の皮膜のうちの液側の皮膜が
薄く、抵抗も小さい。しかし、電解質が六フッ化リン酸
リチウムである場合には、液側の皮膜は不安定であり、
抵抗も大きい。そこで、電解質が六フッ化リン酸リチウ
ムである場合には、ピロール又はピロール誘導体を添加
することによって、液側の皮膜が薄くなって顕著な寿命
改善効果が得られる。
When the electrolyte of the non-aqueous electrolytic solution is lithium perchlorate, the liquid-side coating of the double coating is thin and the resistance is low. However, when the electrolyte is lithium hexafluorophosphate, the film on the liquid side is unstable,
The resistance is also great. Therefore, when the electrolyte is lithium hexafluorophosphate, by adding pyrrole or a pyrrole derivative, the film on the liquid side becomes thin and a remarkable life improving effect is obtained.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいて説明する。
但し、下記の実施例は一例であり、本発明は下記の実施
例のものに限定されない。
EXAMPLES The present invention will be described below based on examples.
However, the following examples are merely examples, and the present invention is not limited to the following examples.

【0020】図1は本発明のリチウム二次電池の充放電
サイクル特性の試験を行うための三極式セル5を模式的
に示す図である。三極式セル5は、秤量ビン11、秤量
ビン11の開口部を閉塞するゴム栓12、ゴム栓12を
貫通して取り付けられた2つのガラス管13,14、ル
ギン管15、ガラス管13の先端部に取り付けられた作
用極16、ガラス管14の先端部に取り付けられた対極
17、ルギン管15の内部に配置された参照極18、秤
量ビン11の内部にほぼ一杯に満たされた非水電解液1
9などから構成されている。
FIG. 1 is a diagram schematically showing a three-electrode type cell 5 for testing the charge / discharge cycle characteristics of the lithium secondary battery of the present invention. The triode type cell 5 includes a weighing bottle 11, a rubber stopper 12 that closes the opening of the weighing bottle 11, two glass tubes 13 and 14 attached through the rubber stopper 12, a Lugin tube 15, and a glass tube 13. A working electrode 16 attached to the tip, a counter electrode 17 attached to the tip of the glass tube 14, a reference electrode 18 arranged inside the Lugin tube 15, and a non-water filled in the weighing bottle 11 almost completely. Electrolyte 1
It is composed of 9 and the like.

【0021】作用極16、対極17、及び参照極18に
は、それぞれリード線16a,17a,18aが接続さ
れている。これらのリード線16a,17a,18aに
よって、作用極16と対極17との間に定電流電源21
が、作用極16と参照極18との間にレコーダ22が、
それぞれ接続されている。
Lead wires 16a, 17a and 18a are connected to the working electrode 16, the counter electrode 17 and the reference electrode 18, respectively. By these lead wires 16a, 17a, 18a, a constant current power supply 21 is provided between the working electrode 16 and the counter electrode 17.
However, a recorder 22 is provided between the working electrode 16 and the reference electrode 18,
Each is connected.

【0022】作用極16として、表面積が1cm2 、厚
さが30μmの金属リチウム箔が用いられ、対極17と
して、表面積が6cm2 、厚さが500μmの金属リチ
ウムが用いられている。また、参照極18として金属リ
チウム線が用いられている。
A metal lithium foil having a surface area of 1 cm 2 and a thickness of 30 μm is used as the working electrode 16, and a metal lithium having a surface area of 6 cm 2 and a thickness of 500 μm is used as the counter electrode 17. A metallic lithium wire is used as the reference electrode 18.

【0023】非水電解液19は、プロピレンカーボネー
トに六フッ化リン酸リチウムを1M(モル毎リッター)
の割合で溶解させ、これに添加剤として、2,5−ジメ
チルピロールを5vol.%、ヨウ化アルミニウムを重量比
で100ppmの濃度となるように加えて調製した。な
お、添加剤の濃度は、非水電解液19中における濃度で
ある。
The non-aqueous electrolyte solution 19 is propylene carbonate containing 1M lithium hexafluorophosphate (mole per liter).
Was dissolved at a rate of 2, and 2,5-dimethylpyrrole as an additive was added thereto at 5 vol.% And aluminum iodide was added so that the concentration became 100 ppm by weight. The concentration of the additive is the concentration in the non-aqueous electrolyte solution 19.

【0024】比較例として、添加剤を加えない非水電解
液19A、添加剤として2,5−ジメチルピロールを5
vol.%のみ添加した非水電解液19B、添加剤としてヨ
ウ化アルミニウムを100ppmのみ添加した非水電解
液19Cを用い、上述の非水電解液19を用いた場合と
同様の試験を行った。
As a comparative example, a non-aqueous electrolytic solution 19A containing no additive and 2,5-dimethylpyrrole as an additive
Using the non-aqueous electrolyte solution 19B containing only vol.% and the non-aqueous electrolyte solution 19C containing only 100 ppm of aluminum iodide as an additive, the same test as that using the above-mentioned non-aqueous electrolyte solution 19 was performed.

【0025】試験は、電流密度2mA/cm2 で500
秒間の充電を行った後で500秒間の放電を行い、これ
を1回の充放電サイクルとし、充放電サイクルを繰り返
した。作用極16の参照極18に対する電位が1Vを超
えた時点のサイクル数(回)を寿命とした。結果を表1
に示す。
The test was conducted at a current density of 2 mA / cm 2 and 500
After charging for 2 seconds, discharging was performed for 500 seconds, which was regarded as one charge / discharge cycle, and the charge / discharge cycle was repeated. The number of cycles (times) when the potential of the working electrode 16 with respect to the reference electrode 18 exceeded 1 V was defined as the life. The results are shown in Table 1.
Shown in

【0026】[0026]

【表1】 [Table 1]

【0027】表1によると、添加剤を加えない非水電解
液19Aを用いた場合と比較して、添加剤としてヨウ化
アルミニウムを100ppmのみ添加した非水電解液1
9Cの場合には寿命が却って約3割減少し、添加剤とし
て2,5−ジメチルピロールを5vol.%のみ添加した非
水電解液19Bの場合には約4倍の寿命改善効果があっ
た。
According to Table 1, the nonaqueous electrolytic solution 1 containing only 100 ppm of aluminum iodide as an additive was compared with the case of using the nonaqueous electrolytic solution 19A containing no additive.
In the case of 9C, the life was rather reduced by about 30%, and in the case of the nonaqueous electrolytic solution 19B containing only 5 vol.% Of 2,5-dimethylpyrrole as an additive, the life improving effect was about four times as long.

【0028】これに対して、本発明に係る非水電解液1
9を用いた場合には、添加剤を加えない非水電解液19
Aの場合と比較して、約7倍の寿命改善効果があった。
また、添加剤として2,5−ジメチルピロールを5vol.
%のみ添加した非水電解液19Bの場合と比較して約
1.5倍、添加剤としてヨウ化アルミニウムを100p
pmのみ添加した非水電解液19Cの場合と比較して約
10倍の寿命改善効果があった。
On the other hand, the non-aqueous electrolyte 1 according to the present invention
When 9 is used, the non-aqueous electrolyte solution containing no additive 19
Compared with the case of A, the life improving effect was about 7 times.
Also, 2,5-dimethylpyrrole was added as an additive in 5 vol.
% Compared with the case of the non-aqueous electrolytic solution 19B in which only 100% is added, aluminum iodide as an additive is 100 p
Compared with the case of the nonaqueous electrolytic solution 19C in which only pm was added, the life improving effect was about 10 times.

【0029】この試験結果によって、2,5−ジメチル
ピロールとヨウ化アルミニウムとの相乗効果によって、
大幅な寿命改善効果のあることが理解できる。さらに、
上述と同じ添加剤を用い、その濃度を種々変えて上述と
同様の試験を行った。結果を表2に示す。
This test result shows that the synergistic effect of 2,5-dimethylpyrrole and aluminum iodide gives
It can be understood that there is a significant life improvement effect. further,
The same additives as above were used, and the same tests as above were carried out with various concentrations thereof. Table 2 shows the results.

【0030】[0030]

【表2】 [Table 2]

【0031】表2によると、2,5−ジメチルピロール
の濃度が30vol.%を超えると、ヨウ化アルミニウムを
添加したことによる寿命改善効果が見られなくなる。ま
た、ヨウ化アルミニウムの濃度が500ppmを超える
と、2,5−ジメチルピロールを添加したことによる寿
命改善効果が見られなくなる。
According to Table 2, when the concentration of 2,5-dimethylpyrrole exceeds 30 vol.%, The life improving effect due to the addition of aluminum iodide cannot be seen. Further, when the concentration of aluminum iodide exceeds 500 ppm, the life improving effect due to the addition of 2,5-dimethylpyrrole cannot be seen.

【0032】また、2,5−ジメチルピロールの濃度が
1乃至10vol.%の範囲外となり、又はヨウ化アルミニ
ウムの濃度が10乃至300ppmの範囲外となると、
寿命改善効果が低下する。したがって、2,5−ジメチ
ルピロールの濃度は1乃至10vol.%程度が好ましく、
ヨウ化アルミニウムの濃度は10乃至300ppm程度
が好ましい。中でも、2,5−ジメチルピロールの濃度
が5vol.%でヨウ化アルミニウムの濃度が100ppm
の場合に、添加による寿命改善効果は無添加のものの7
倍程度あり、最も好ましい。
When the concentration of 2,5-dimethylpyrrole is out of the range of 1 to 10 vol.% Or the concentration of aluminum iodide is out of the range of 10 to 300 ppm,
The life improving effect is reduced. Therefore, the concentration of 2,5-dimethylpyrrole is preferably about 1 to 10 vol.%,
The concentration of aluminum iodide is preferably about 10 to 300 ppm. Above all, the concentration of 2,5-dimethylpyrrole is 5 vol.% And the concentration of aluminum iodide is 100 ppm.
In the case of, the life improvement effect by addition is 7
It is about double and most preferable.

【0033】さらに、上述の試験に用いた2,5−ジメ
チルピロールに代えてピロールを用い、その濃度を種々
変えて上述と同様の試験を行った。その結果を表3に示
す。
Further, pyrrole was used in place of 2,5-dimethylpyrrole used in the above-mentioned test, and the same test as above was carried out with various concentrations thereof. Table 3 shows the results.

【0034】[0034]

【表3】 [Table 3]

【0035】表3によると、ピロールの濃度が30vol.
%を超えると、ヨウ化アルミニウムを添加したことによ
る寿命改善効果が見られなくなる。また、ヨウ化アルミ
ニウムの濃度が500ppmを超えると、ピロールを添
加したことによる寿命改善効果が見られなくなる。
According to Table 3, the concentration of pyrrole is 30 vol.
If it exceeds%, the life improving effect due to the addition of aluminum iodide cannot be seen. Further, when the concentration of aluminum iodide exceeds 500 ppm, the life improving effect due to the addition of pyrrole cannot be seen.

【0036】また、ピロールの濃度が1乃至10vol.%
の範囲外となり、又はヨウ化アルミニウムの濃度が10
乃至300ppmの範囲外となると、寿命改善効果が低
下する。したがって、ピロールの濃度は1乃至10vol.
%程度が好ましく、ヨウ化アルミニウムの濃度は10乃
至300ppmが好ましい。中でも、ピロールの濃度が
5vol.%でヨウ化アルミニウムの濃度が100ppmの
場合に、添加による寿命改善効果は無添加のものの10
倍程度あり、最も好ましい。
The concentration of pyrrole is 1 to 10 vol.%.
Or the concentration of aluminum iodide is 10
If it is out of the range of 300 to 300 ppm, the life improving effect is reduced. Therefore, the concentration of pyrrole is 1 to 10 vol.
%, And the concentration of aluminum iodide is preferably 10 to 300 ppm. Above all, when the concentration of pyrrole is 5 vol.% And the concentration of aluminum iodide is 100 ppm, the life improving effect by addition is 10%.
It is about double and most preferable.

【0037】[0037]

【発明の効果】請求項1乃至請求項4の発明によると、
有機溶媒にリチウム塩を溶解させた液を非水電解液とし
たリチウム二次電池において、非水電解液に、ピロール
又はピロール誘導体、及び金属ハロゲン化物を添加する
ことによって、充放電サイクル特性が向上し、寿命が改
善される。
According to the inventions of claims 1 to 4,
In a lithium secondary battery in which a liquid obtained by dissolving a lithium salt in an organic solvent is used as a non-aqueous electrolyte, by adding pyrrole or a pyrrole derivative and a metal halide to the non-aqueous electrolyte, charge / discharge cycle characteristics are improved. And the life is improved.

【0038】請求項3及び請求項4の発明によると、安
全なリチウム二次電池を提供することができる。
According to the inventions of claims 3 and 4, a safe lithium secondary battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム二次電池の充放電サイクル特
性の試験を行うための三極式セルを模式的に示す図であ
る。
FIG. 1 is a diagram schematically showing a three-electrode cell for performing a charge / discharge cycle characteristic test of the lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

19 非水電解液 19 Non-aqueous electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 勲 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 宮下 勉 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Watanabe 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Inventor Tsutomu Miyashita 1015, Kamedotachu, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】有機溶媒にリチウム塩を溶解させた液を非
水電解液としたリチウム二次電池であって、 前記非水電解液には、ピロール又はピロール誘導体、及
び金属ハロゲン化物が添加されていることを特徴とする
リチウム二次電池。
1. A lithium secondary battery comprising a non-aqueous electrolytic solution prepared by dissolving a lithium salt in an organic solvent, wherein the non-aqueous electrolytic solution contains pyrrole or a pyrrole derivative and a metal halide. A lithium secondary battery characterized in that
【請求項2】前記ピロール又は前記ピロール誘導体の濃
度は1乃至10vol.%であり、前記金属ハロゲン化物の
濃度は10乃至300ppmである、請求項1記載のリ
チウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the concentration of the pyrrole or the pyrrole derivative is 1 to 10 vol.%, And the concentration of the metal halide is 10 to 300 ppm.
【請求項3】前記リチウム塩は六フッ化リン酸リチウム
である請求項1又は請求項2記載のリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the lithium salt is lithium hexafluorophosphate.
【請求項4】前記ピロール誘導体は2,5−ジメチルピ
ロールであり、前記金属ハロゲン化物はヨウ化アルミニ
ウムである請求項3記載のリチウム二次電池。
4. The lithium secondary battery according to claim 3, wherein the pyrrole derivative is 2,5-dimethylpyrrole, and the metal halide is aluminum iodide.
JP6281780A 1994-11-16 1994-11-16 Lithium secondary battery Withdrawn JPH08138735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6281780A JPH08138735A (en) 1994-11-16 1994-11-16 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6281780A JPH08138735A (en) 1994-11-16 1994-11-16 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08138735A true JPH08138735A (en) 1996-05-31

Family

ID=17643879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6281780A Withdrawn JPH08138735A (en) 1994-11-16 1994-11-16 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08138735A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477744B1 (en) * 2001-10-31 2005-03-18 삼성에스디아이 주식회사 Organic electrolytic solution and lithium secondary battery adopting the same
WO2005029632A1 (en) 2003-09-19 2005-03-31 Lg Chem, Ltd. Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
US7553588B2 (en) * 2003-03-13 2009-06-30 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and a lithium secondary battery comprising the same
US7794868B2 (en) 2005-12-02 2010-09-14 Lg Chem, Ltd. Battery module of high cooling efficiency
US7879485B2 (en) 2005-04-20 2011-02-01 Lg Chem, Ltd. Housing member for battery module
US7883793B2 (en) 2008-06-30 2011-02-08 Lg Chem, Ltd. Battery module having battery cell assemblies with alignment-coupling features
US8288031B1 (en) 2011-03-28 2012-10-16 Lg Chem, Ltd. Battery disconnect unit and method of assembling the battery disconnect unit
US8353315B2 (en) 2010-08-23 2013-01-15 Lg Chem, Ltd. End cap
US8426050B2 (en) 2008-06-30 2013-04-23 Lg Chem, Ltd. Battery module having cooling manifold and method for cooling battery module
JP2014524120A (en) * 2011-07-12 2014-09-18 コーニング インコーポレイテッド Composite protective layer for lithium metal anode and method of manufacturing the same
US8852778B2 (en) 2009-04-30 2014-10-07 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
JP2018056438A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Wound type nonaqueous lithium power storage element
WO2021241028A1 (en) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 Lithium secondary cell and non-aqueous electrolyte used for same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477744B1 (en) * 2001-10-31 2005-03-18 삼성에스디아이 주식회사 Organic electrolytic solution and lithium secondary battery adopting the same
US7553588B2 (en) * 2003-03-13 2009-06-30 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and a lithium secondary battery comprising the same
WO2005029632A1 (en) 2003-09-19 2005-03-31 Lg Chem, Ltd. Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
JP2007504619A (en) * 2003-09-19 2007-03-01 エルジー・ケム・リミテッド Non-aqueous lithium secondary battery with improved cycle characteristics and / or high temperature stability
KR100884482B1 (en) * 2003-09-19 2009-02-17 주식회사 엘지화학 Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
US7879485B2 (en) 2005-04-20 2011-02-01 Lg Chem, Ltd. Housing member for battery module
US7955726B2 (en) 2005-12-02 2011-06-07 Lg Chem, Ltd. Battery module of high cooling efficiency
US7794868B2 (en) 2005-12-02 2010-09-14 Lg Chem, Ltd. Battery module of high cooling efficiency
US7883793B2 (en) 2008-06-30 2011-02-08 Lg Chem, Ltd. Battery module having battery cell assemblies with alignment-coupling features
US8426050B2 (en) 2008-06-30 2013-04-23 Lg Chem, Ltd. Battery module having cooling manifold and method for cooling battery module
US8852778B2 (en) 2009-04-30 2014-10-07 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
US8353315B2 (en) 2010-08-23 2013-01-15 Lg Chem, Ltd. End cap
US8288031B1 (en) 2011-03-28 2012-10-16 Lg Chem, Ltd. Battery disconnect unit and method of assembling the battery disconnect unit
JP2014524120A (en) * 2011-07-12 2014-09-18 コーニング インコーポレイテッド Composite protective layer for lithium metal anode and method of manufacturing the same
JP2018056438A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Wound type nonaqueous lithium power storage element
WO2021241028A1 (en) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 Lithium secondary cell and non-aqueous electrolyte used for same

Similar Documents

Publication Publication Date Title
CA2538605C (en) Nonaqueous lithium secondary battery with cyclability and/or high temperature safety improved
JP4836791B2 (en) Nonaqueous electrolyte secondary battery
JP4948025B2 (en) Non-aqueous secondary battery
KR100705262B1 (en) Nonaqueous electrolyte comprising oxyanion and lithium secondary battery using the same
CN103367804B (en) A kind of lithium ion battery nonaqueous electrolytic solution and use the lithium ion battery of this nonaqueous electrolytic solution
JP2003151623A (en) Nonaqueous secondary battery
JP2003203674A (en) Nonaqueous electrolyte secondary cell
JPWO2012153734A1 (en) Non-aqueous electrolyte and lithium ion battery
JP4572602B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery and their production method
JPH10154528A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPH08138735A (en) Lithium secondary battery
CN106785048A (en) A kind of electrolyte containing pyridine ring sulfimide lithium and the battery using the electrolyte
CN105789703A (en) Lithium difluoborate containing sulfonate group and battery employing lithium salt
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP4493197B2 (en) Electrolyte for lithium secondary battery
JP2002110230A (en) Non-acqueous electrolyte lithium secondary battery
JP2003249263A (en) Lithium secondary battery for substrate mounting
CN111313086B (en) Electrolyte and lithium ion battery
JP4326323B2 (en) Non-aqueous electrolyte battery
JP4056278B2 (en) Non-aqueous electrolyte battery
WO2016117399A1 (en) Lithium-ion secondary battery
JP2006127933A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
KR101584356B1 (en) Nonaqueous electrolyte comprising fluoride and electrochimical device using the same
WO2018000493A1 (en) Lithium-iron disulphide battery
JPH11250933A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205