KR20030004627A - align method of electron lens using laser - Google Patents

align method of electron lens using laser Download PDF

Info

Publication number
KR20030004627A
KR20030004627A KR1020010040196A KR20010040196A KR20030004627A KR 20030004627 A KR20030004627 A KR 20030004627A KR 1020010040196 A KR1020010040196 A KR 1020010040196A KR 20010040196 A KR20010040196 A KR 20010040196A KR 20030004627 A KR20030004627 A KR 20030004627A
Authority
KR
South Korea
Prior art keywords
pattern
component
positioning device
bonding
aperture
Prior art date
Application number
KR1020010040196A
Other languages
Korean (ko)
Other versions
KR100474141B1 (en
Inventor
김호섭
안승준
김대욱
장원권
Original Assignee
전자빔기술센터 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자빔기술센터 주식회사 filed Critical 전자빔기술센터 주식회사
Priority to KR10-2001-0040196A priority Critical patent/KR100474141B1/en
Publication of KR20030004627A publication Critical patent/KR20030004627A/en
Application granted granted Critical
Publication of KR100474141B1 publication Critical patent/KR100474141B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02061Reduction or prevention of effects of tilts or misalignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • G01B21/24Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes for testing alignment of axes

Abstract

PURPOSE: An electron lens alignment method is provided to align thin film plates having fine holes into plural layers, by using a diffraction pattern and simple equipment including a linear stage. CONSTITUTION: An electron lens alignment method, comprises a first step(step1) of disposing a first component having an aperture onto a spot on a linear stage; a second step(step2) of permitting incidence of laser beam through the aperture and aligning the laser beam in such a manner that an airy pattern is formed on an imaging screen; a third step(step3) of memorizing the airy pattern formed on the imaging screen; a fourth step(step4) of disposing a second component having a fine hole to the center of the airy pattern by using a three-dimensional X-Y-Z position control device attached on the linear stage; a fifth step(step5) of transferring the second component toward the first component by using the linear stage; a sixth step(step6) of adjusting three-dimensional position in such a manner that the center of the pattern passing through the aperture of the second component corresponds to the center of the memorized pattern; and a seventh step(step7) of moving the second component to the desired position, and coupling the first component and the second component through a bonding process.

Description

레이저를 이용한 전자렌즈의 정렬방법{align method of electron lens using laser}Alignment method of electron lens using laser

본 발명은 레이저를 이용한 전자렌즈의 정렬방법에 관한 것으로서, 특히 초소형 전자빔 장치에 있어서 다양하고 매우 작은 핀 홀(pin hole) 형태의 전자렌즈를 정밀하게 일직선으로 정렬하는데 있어 각각의 사각 또는 원형 박막(membrane)의 중앙에 위치한 전자렌즈 주변에 기준으로 사용할 표시구멍을 레이저를 이용하여 발생하는 간섭무늬를 해석하여 정렬하는 레이저를 이용한 미세 홀이 구성된 박막 판들을 여러 층으로 정렬하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of aligning an electron lens using a laser. In particular, in a micro electron beam apparatus, in order to precisely align various and very small pin hole type electron lenses in a straight line, each rectangular or circular thin film ( The present invention relates to a method of arranging thin film plates composed of micro holes using a laser that analyzes and arranges an interference pattern generated by using a laser on a display hole to be used as a reference around an electron lens located at the center of a membrane.

종래 기술에 있어서는 초소형 전자빔 장치에서 전자렌즈(통상 두께 수 ㎛ 정도의 박막 중앙에 수 ~ 수백 ㎛ 정도의 원형 홀이 가운데 뚫려 있는 구조로 되어 있다)를 여러 층으로 정렬할 때에 고배율 광학현미경 또는 얼라이너(aligner) 등의 장비를 활용하여 정렬을 하게 된다.In the prior art, a high magnification optical microscope or aligner is used to align an electron lens (a structure having a circular hole of several to several hundred micrometers in the center of a thin film having a thickness of several micrometers in the center) in an ultra-small electron beam apparatus. (aligner) is used to align.

그러나, 상기의 방법들은 정밀도는 현미경과 얼라이너의 분해능에 의해 결정되며, 고가 장비를 구입해야 활용 가능한 문제점이 있었다.However, the above methods, the precision is determined by the resolution of the microscope and the aligner, there was a problem that can be utilized to purchase expensive equipment.

따라서, 본 발명은 상기 종래 기술의 문제점을 해결하기 위하여 창안한 것으로서, 파동광학에 기초하여 일정한 위상(phase)을 가진 레이저빔이 일정 모양의 구멍(aperture)을 통과할 때에 형성되는 회절패턴(diffraction pattern)과 정밀 선형위치조정장치(linear stage) 등의 상대적으로 간단한 장비를 활용하여 미세한 홀이 구성된 박막 판들을 여러 층으로 정렬할 수 있도록 하는 방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the problems of the prior art, a diffraction pattern formed when a laser beam having a certain phase passes through an aperture of a certain shape based on wave optics. The aim is to provide a method for aligning thin plates consisting of fine holes into multiple layers using relatively simple equipment such as patterns and precise linear stages.

도 1은 본 발명을 적용하기 위한 장치의 구성을 간략하게 보인 예시도.1 is an exemplary view briefly showing a configuration of an apparatus for applying the present invention.

도 2는 도 1에서 전자렌즈의 직경을 파악하는 과정을 보인 예시도.2 is an exemplary view illustrating a process of determining the diameter of an electron lens in FIG. 1.

도 3은 본 발명에 적용되는 프라운호퍼 회절 패턴을 보인 예시도.Figure 3 is an exemplary view showing a Fraunhofer diffraction pattern applied to the present invention.

도 4는 본 발명에 적용되는 원형 구멍과 스크린의 좌표 표현을 보인 예시도.Figure 4 is an exemplary view showing a coordinate representation of the circular hole and the screen applied to the present invention.

도 5는 본 발명에 적용되는 베셀 함수의 해를 그래프로 보인 예시도.Figure 5 is an exemplary diagram showing a solution of the Bessel function applied to the present invention.

도 6은 본 발명의 동작 흐름을 보인 예시도.6 is an exemplary view showing an operation flow of the present invention.

이와 같은 목적을 달성하기 위한 본 발명 레이저를 이용한 전자렌즈의 정렬방법은, 정밀한 선형위치조정장치(linear stage) 위의 한 점에 구경이 수 ~ 수백 ㎛ 정도의 미세 원형 홀 또는 구멍(aperture)이 있는 부품(이하 '제1 부품'이라 함)을 고정하여 놓은 후, 상기 구멍을 통하여 레이저빔을 입사하여 일정한 거리만큼 떨어진 위치에 놓인 스크린 상에 에어리 패턴(Airy pattern)이 나타나도록 레이저빔을 정렬(align)하는 제1 정렬단계와; 상기 정렬단계의 수행이 완료되면영상(imaging) 스크린 상에 형성된 에어리 패턴을 기억시킨 후, 선형위치조정장치 위에 부착된 3차원 정밀 X-Y-Z 위치조정장치를 사용하여 미세 원형 홀이 뚫린 다른 부품(이하 '제2 부품'이라 함)을 에어리 패턴의 정 중앙에 위치시키는 제2 정렬단계와; 상기 제2 정렬단계의 수행이 완료되면 스크린을 고정한 상태로 두고, 3차원 위치조정장치에 고정된 제2 부품을 선형위치조정장치를 사용하여 제1 부품 방향으로 이송하면서, 제2 부품의 구멍(aperture)을 통해 나오는 또 다른 패턴이 원래의 기억된 패턴과 중심이 일치하도록 3차원 위치조정장치를 미세 조정하는 미세조정단계와; 상기 미세조정단계의 수행이 완료된 다음, 원하는 위치까지 제2 부품을 이동한 후, 고정한 다음 상기 제1 부품과 제2 부품을 본딩(bonding) 등의 결합방법을 사용하여 결합시키는 결합단계로 이루어진 것을 특징으로 한다.In order to achieve the above object, the method of aligning an electronic lens using a laser of the present invention includes a fine circular hole or aperture having a diameter of several hundreds of micrometers at a point on a precise linear stage. The part (hereinafter referred to as 'first part') is fixed, and then the laser beam is aligned so that an airy pattern appears on the screen placed at a certain distance from the laser beam through the hole. (aligning) a first alignment step; After the alignment step is completed, the airy pattern formed on the imaging screen is memorized, and then another part having a fine circular hole is drilled using the three-dimensional precision XYZ positioning device attached to the linear positioning device (hereinafter ' A second alignment step of positioning the second component 'in the center of the airy pattern; When the second alignment step is completed, the screen is fixed and the second part fixed to the three-dimensional positioning device is transferred in the direction of the first part by using the linear positioning device. a fine adjustment step of fine-tuning the three-dimensional positioning device such that another pattern coming out through the aperture coincides with the original stored pattern; After the fine adjustment step is completed, the second part is moved to a desired position, and then the fixing step is made of a bonding step of bonding the first part and the second part using a bonding method such as bonding (bonding). It features.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명을 적용하기 위한 장치의 구성을 간략하게 보인 예시도이고, 도 2는 도 1에서 전자렌즈의 직경을 파악하는 과정을 보인 예시도로서, 이에 도시한 바와 같이 본 발명은 간섭의 원리를 이용하는데, 즉 광학 정렬에 사용할 첫 번째 마이크로 홀을 통과한 빛의 간섭무늬에서 발생한 간섭무늬는마다 보강간섭에 의해 밝은 무늬(fringe)가 발생하여 전자결합소자(CCD)를 이용하여 측정하면 모니터의 화면상에서 볼 때 정확한 보강 간섭과 소멸 간섭에 의한 간섭무늬의 위치를 확인할 수 있다.FIG. 1 is an exemplary view briefly showing a configuration of an apparatus for applying the present invention, and FIG. 2 is an exemplary view illustrating a process of determining the diameter of an electron lens in FIG. 1. Using the principle, that is, the interference fringes from the interference fringes of the light passing through the first micro holes to be used for optical alignment Bright fringes are generated due to constructive interference every time, and measured using an electromagnetic coupling device (CCD), it is possible to confirm the exact position of the interference fringes caused by the constructive and destructive interference on the monitor screen.

이와 같은 상태에서 두 번째 박막의 광학정렬용 마이크로 홀을 첫 번째 마이크로 홀과 두 번째 마이크로 홀 사이에 삽입하면 정확한 시준이 이루어지지 않을 경우 m = 0에 해당하는 가장 밝은 부위의 위치에 변화가 발생하게 되고, 이것을 일직선상에 맞춤으로써, 일직선상에 여러 개의 박막을 시준할 수 있다.In such a state, if the optical alignment microhole of the second thin film is inserted between the first microhole and the second microhole, if the correct collimation is not performed, the position of the brightest part corresponding to m = 0 may change. By fitting this in a straight line, several thin films can be collimated in a straight line.

또한, 상기 도 2에 도시한 바와 같이 레이저 파장과 박막 및 CCD 감지기까지의 정확한 거리를 미리 알 수 있으므로, 각각의 박막에 대해 모니터 상에 측정한 간섭무늬의 위치 ym으로부터 전자렌즈의 정확한 직경을 알아낼 수 있다.Also, as shown in FIG. 2, since the laser wavelength and the exact distance to the thin film and the CCD sensor can be known in advance, the exact diameter of the electron lens is determined from the position y m of the interference fringe measured on the monitor for each thin film. I can figure it out.

이상에서와 같이 구성한 본 발명에 따른 일실시예의 동작 과정을 설명하면 다음과 같다.Referring to the operation of the embodiment according to the present invention configured as described above are as follows.

먼저, 파동광학의 이론에 의하면 단색 평행광이 임의의 형태의 미세한 구멍에 입사하면 이 광은 구멍을 통과한 후에 경로가 사방으로 휘게되며, 구멍으로부터 일정한 거리만큼 떨어진 위치에 스크린을 위치시키면 구멍의 모양에 따라 명암의 무늬가 발생하게 되고, 이를 회절 패턴이라고 하는데, 특히 광원, 구멍 및 스크린들이 빛의 파장 크기에 비해 멀리 떨어져 있는 경우에 발생하는 프라운호퍼 회절(Fraunhofer diffraction)이라고 한다.First, according to the theory of wave optics, when monochromatic parallel light enters a fine hole of any shape, the light bends in all directions after passing through the hole, and if the screen is positioned at a certain distance from the hole, The pattern of light and shade occurs according to the shape, which is called a diffraction pattern. In particular, it is called Fraunhofer diffraction, which occurs when light sources, holes, and screens are farther apart than the wavelength of light.

도 3에 도시한 바와 같이 단색광원에서 멀리 떨어져 있는 직경이 D(반경이 a)인 원형 홀 모양의 구멍에 광원을 입사한다고 가정하면 단색광은 구멍을 통과한 후에 역시 멀리 떨어진 스크린 상에 원형의 명암 무늬를 만들어 낸다. 이 원형의 명암 무늬를 수식으로 표현하기 위해 다음과 같은 좌표계를 도입하도록 한다. 즉구멍이 있는 평면을 평면 yz라 하고, 이 평면에 평행하게 놓여진 스크린이 있는 평면을 평면 YZ라 하고, 구멍의 중심에서 yz 평면에 수직하고, 스크린을 향하는 방향을 x축 혹은 X축이라고 하면 이런 좌표계에서 스크린 상의 임의의 한 점은 (X, Y, Z)로 표현된다. 만일 구멍과 스크린까지의 수직거리를 L이라 하면 다시 스크린 상의 한 점의 좌표는 (L, Y, Z)로 표현되며, 여기서 스크린 상의 한 점(L, Y, Z)과 스크린을 내포하고 있는 평면의 원점(L, 0, 0) 사이의 거리(radial distance)를 q라고 하면 도 4에 도시한 바와 같이 스크린 상의 한 점 P(L, Y, Z)에서의 빛의 강도는와 같이 주어진다.Assuming that the light source is incident on a circular hole shaped hole having a diameter D (radius a) far from the monochromatic light source, as shown in FIG. Make a pattern. In order to express this circular contrast pattern, the following coordinate system is introduced. If the plane with the hole is called plane yz, the plane with the screen placed parallel to this plane is called plane YZ, the center of the hole is perpendicular to the yz plane, and the direction toward the screen is called the x-axis or the X-axis. Any point on the screen in the coordinate system is represented by (X, Y, Z). If the vertical distance between the hole and the screen is L, then the coordinate of a point on the screen is expressed as (L, Y, Z), where the plane containing the point (L, Y, Z) on the screen and the screen is included. If the radial distance between the origin (L, 0, 0) of q is q, the intensity of light at one point P (L, Y, Z) on the screen is shown in FIG. Is given by

상기에서 J1(x)는 첫 번째 순위(first-order) 베셀함수(Bessel Function)로서 다음과 같이 급수로 표현될 수 있다.In the above, J 1 (x) is a first-order Bessel function and may be expressed as a series as follows.

또, R은이며, 원형 구멍의 중심에서 스크린 상의 한점 P(L, X, Y)까지 거리이다.R is And the distance from the center of the circular hole to one point P (L, X, Y) on the screen.

여기서,이라는 관계식을 이용하면로도 쓸 수 있는데, 이를 에어리 패턴이라고 한다.here, If you use the relation It can also be used as Airy pattern.

상기 베셀 함수의 해를 그래프로 그리면 도 5에 도시한 바와 같이 주어지며, 첫 번째 어두운 링(ring)이 나타나는 위치는을 만족하는 곳이고, 스크린 상의 원점에서부터 첫 번째 어두운 링까지의 반경을 q1이라고 하면,를 만족하며, 이를 에어리 디스크 반경이라 부른다.The graph of the solution of the Bessel function is given as shown in FIG. 5, where the first dark ring appears. If the radius from the origin on the screen to the first dark ring is q 1 , This is called Airy disk radius.

두 번째와 세 번째 링은 각각인 곳에 나타나게 되며, 이때 전체 광강도의 대략 85% 정도가 에어리 디스크 내에 존재하게 된다.The second and third rings are And Where approximately 85% of the total light intensity is present in the Airy disk.

이러한 원형 구멍에서의 회절 패턴을 이용하면 미세 홀들이 뚫려있는 부품들의 정렬에 활용할 수 있다.The diffraction pattern in the circular hole can be used to align the parts having fine holes.

예를 들어 사용하는 레이저 광원이 He-Ne 레이저의 6,328 A 라인이고, 원형 홀의 직경이 10㎛라 가정하면,For example, assuming that the laser light source used is 6328 A line of the He-Ne laser and the diameter of the circular hole is 10 μm,

,이다. , to be.

따라서, R이 대략 1m인 경우에이며,=1.22×6.328㎝ = 7.72㎝를 만족하게 된다.Thus, if R is about 1m Is, = 1.22 × 6.328 cm = 7.72 cm is satisfied.

마찬가지로 q2는 14.11㎝, q3은 20.50㎝를 만족하며, 만일 R이로 줄어든 20㎝ 정도라면 각각의 링 반경 역시로 줄어들게 되지만 여전히 q1=1.22×0.2×6.328㎝=1.544㎝ 정도로 충분히 큰 반경을 이루고 있다.Similarly q 2 satisfies 14.11 cm and q 3 satisfies 20.50 cm, if R is Each ring radius is reduced to But still q 1 The radius is sufficiently large as = 1.22 × 0.2 × 6.328 cm = 1.544 cm.

따라서, 도 6에 도시한 바와 같이 각 단계(step)를 수행하면 원형 홀이 있는 부품들을 정렬시킬 수 있다.Therefore, as shown in FIG. 6, the steps may be aligned to form parts having circular holes.

즉, 정밀한 선형위치조정장치 위의 한 점에 구멍(aperture)이 있는 부품(이하 '제1 부품'이라 함)을 고정하여 놓은 후(step 1), 상기 구멍을 통하여 레이저빔을 입사하여 일정한 거리만큼 떨어진 위치에 놓인 스크린 상에 에어리 패턴(Airy pattern)이 나타나도록 레이저빔을 정렬(align)한 다음(step 2), 영상(imaging) 스크린 상에 형성된 에어리 패턴을 기억시킨 후(step 3), 선형위치조정장치 위에 부착된 3차원 정밀 X-Y-Z 위치조정장치를 사용하여 미세 원형 홀이 뚫린 또는 다른 부품(이하 '제2 부품'이라 함)을 에어리 패턴의 정 중앙에 위치시킨다(step 4).That is, after a part having an aperture (hereinafter referred to as a 'first part') is fixed to a point on a precise linear positioning device (step 1), a laser beam is incident through the hole to a predetermined distance. After aligning the laser beam so that the airy pattern appears on the screen at a distance apart (step 2), the airy pattern formed on the imaging screen is memorized (step 3). Using a three-dimensional precision XYZ positioning device mounted on the linear positioning device, place a hole or other part (hereinafter referred to as 'second part') in the center of the Airy pattern using a small circular hole (step 4).

이후, 스크린을 고정한 상태로 두고, 3차원 위치에 고정된 제2 부품을 선형위치조정장치를 사용하여 제1 부품 방향으로 이송(step 5)하면서, 제2 부품의 구멍(aperture)을 통해 나오는 또 다른 패턴이 원래의 기억된 패턴과 중심이 일치하도록 3차원 위치를 미세 조정한 다음(step 6), 원하는 위치까지 제2 부품을 이동한 후, 고정한 다음 상기 제1 부품과 제2 부품을 본딩(bonaing) 등의 결합방법을 사용하여 결합시킨다(step 7).Thereafter, while the screen is fixed, the second part fixed in the three-dimensional position is transferred through the aperture of the second part while transferring to the first part direction using the linear positioning device (step 5). Finely adjust the three-dimensional position so that the other pattern is centered with the original memorized pattern (step 6), move the second component to the desired position, then fix and bond the first and second components ( bonaing) or the like (step 7).

위와 같은 과정을 거치면 미세한 원형 홀이 뚫려있는 부품들을 정밀하게 정렬할 수 있으며, 만일 원형 홀이 아닌 부품인 경우에는 유사한 회절 패턴을 활용하면 이를 정렬할 수 있다.Through the above process, the parts with fine circular holes can be precisely aligned. If the parts are not circular holes, they can be aligned by using a similar diffraction pattern.

본 발명이 바람직한 실시예를 참조하여 특별히 도시되고 기술되었지만, 본 발명 분야의 당업자는 본 발명 사상과 범위를 벗어남이 없이 다양한 변경이 가능하다는 것을 이해할 수 있을 것이다. 따라서, 본 발명은 특허청구범위에 의해서만 제한된다.Although the invention has been particularly shown and described with reference to the preferred embodiments, those skilled in the art will appreciate that various modifications are possible without departing from the spirit and scope of the invention. Accordingly, the invention is limited only by the claims.

이상에서 설명한 바와 같이, 본 발명 레이저를 이용한 전자렌즈의 정렬방법은 파동광학에 기초하여 일정한 위상(phase)을 가진 레이저빔이 일정 모양의 구멍(aperture)을 통과할 때에 형성되는 회절패턴(diffraction pattern)과 정밀 선형위치조정장치 등의 상대적으로 간단한 장비를 활용하여 첨단 기술의 습득이 필요 없이 정밀하게 홀이 구성된 박막판들을 여러 층으로 정밀하게 정렬할 수 있도록 하는 등의 효과가 있다.As described above, the alignment method of the electron lens using the laser of the present invention is a diffraction pattern formed when a laser beam having a certain phase passes through an aperture of a certain shape based on wave optics. ) And relatively linear equipment such as a precision linear positioning device can be used to precisely align thin film plates with holes precisely in multiple layers without the need for advanced technology.

Claims (1)

정밀한 선형위치조정장치(linear stage) 위의 한 점에 구경이 수 ~ 수백 ㎛ 정도의 미세 원형 홀 또는 구멍(aperture)이 있는 부품(이하 '제1 부품'이라 함)을 고정하여 놓은 후, 상기 구멍을 통하여 레이저빔을 입사하여 일정한 거리만큼 떨어진 위치에 놓인 스크린 상에 에어리 패턴(Airy pattern)이 나타나도록 레이저빔을 정렬(align)하는 제1 정렬단계와;After fixing a part having a fine circular hole or aperture having a diameter of several hundreds of micrometers (hereinafter referred to as 'first part') at a point on a precise linear stage, A first alignment step of aligning the laser beam such that an Airy pattern appears on a screen placed at a position separated by a predetermined distance by entering the laser beam through the hole; 상기 정렬단계의 수행이 완료되면 영상(imaging) 스크린 상에 형성된 에어리 패턴을 기억시킨 후, 선형위치조정장치 위에 부착된 3차원 정밀 X-Y-Z 위치조정장치를 사용하여 미세 원형 홀이 뚫린 다른 부품(이하 '제2 부품'이라 함)을 에어리 패턴의 정 중앙에 위치시키는 제2 정렬단계와;When the alignment step is completed, the airy pattern formed on the imaging screen is memorized, and then another part having a fine circular hole is drilled using the three-dimensional precision XYZ positioning device attached to the linear positioning device (hereinafter, ' A second alignment step of positioning the second component 'in the center of the airy pattern; 상기 제2 정렬단계의 수행이 완료되면 스크린을 고정한 상태로 두고, 3차원 위치조정장치에 고정된 제2 부품을 선형위치조정장치를 사용하여 제1 부품 방향으로 이송하면서, 제2 부품의 구멍(aperture)을 통해 나오는 또 다른 패턴이 원래의 기억된 패턴과 중심이 일치하도록 3차원 위치조정장치를 미세 조정하는 미세조정단계와;When the second alignment step is completed, the screen is fixed and the second part fixed to the three-dimensional positioning device is transferred in the direction of the first part by using the linear positioning device. a fine adjustment step of fine-tuning the three-dimensional positioning device such that another pattern coming out through the aperture coincides with the original stored pattern; 상기 미세조정단계의 수행이 완료된 다음, 원하는 위치까지 제2 부품을 이동한 후, 고정한 다음 상기 제1 부품과 제2 부품을 본딩(bonding) 등의 결합방법을 사용하여 결합시키는 결합단계로 이루어진 것을 특징으로 하는 레이저를 이용한 전자렌즈의 정렬방법.After the fine adjustment step is completed, the second part is moved to a desired position, and then the fixing step is made of a bonding step of bonding the first part and the second part using a bonding method such as bonding (bonding). An alignment method of an electronic lens using a laser.
KR10-2001-0040196A 2001-07-06 2001-07-06 Method for aligning apertures of parts using laser and method for aligning parts using the same KR100474141B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0040196A KR100474141B1 (en) 2001-07-06 2001-07-06 Method for aligning apertures of parts using laser and method for aligning parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0040196A KR100474141B1 (en) 2001-07-06 2001-07-06 Method for aligning apertures of parts using laser and method for aligning parts using the same

Publications (2)

Publication Number Publication Date
KR20030004627A true KR20030004627A (en) 2003-01-15
KR100474141B1 KR100474141B1 (en) 2005-03-08

Family

ID=27713629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0040196A KR100474141B1 (en) 2001-07-06 2001-07-06 Method for aligning apertures of parts using laser and method for aligning parts using the same

Country Status (1)

Country Link
KR (1) KR100474141B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033544A1 (en) * 2004-09-20 2006-03-30 Cebt Co. Ltd. Method for aligning micro-apertures of parts using laser difflection patern and system using the same
KR20200142830A (en) * 2019-06-13 2020-12-23 (주)아이에스엠아이엔씨 Functional Light Alignment Apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056920B1 (en) * 2017-10-31 2020-01-22 한국생산기술연구원 Diffraction Alignment System for TDLAS of Simultaneous Measurement of Multicomponent Gas
KR102401179B1 (en) 2017-12-12 2022-05-24 삼성전자주식회사 Aperture system of electron beam apparatus, electron beam exposure apparatus, and electron beam exposure apparatus system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106746A (en) * 1981-12-17 1983-06-25 Fujitsu Ltd Axis alignment process of electron lens
JPS6255542A (en) * 1985-09-04 1987-03-11 Mitsubishi Electric Corp Optical system inspecting device
JP2000294485A (en) * 1999-04-02 2000-10-20 Nikon Corp Method for regulating electric charged particle beam projection aligner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033544A1 (en) * 2004-09-20 2006-03-30 Cebt Co. Ltd. Method for aligning micro-apertures of parts using laser difflection patern and system using the same
KR20200142830A (en) * 2019-06-13 2020-12-23 (주)아이에스엠아이엔씨 Functional Light Alignment Apparatus

Also Published As

Publication number Publication date
KR100474141B1 (en) 2005-03-08

Similar Documents

Publication Publication Date Title
TWI459153B (en) Measuring method, measuring apparatus, lithographic apparatus and device manufacturing method
CN100568455C (en) Reticle mask and optical characteristic measurement method
CN101107558B (en) Tracking auto focus system
JP2019533834A (en) Method for manufacturing an optical system and optical system
EP0992855A1 (en) Apparatus for and method of projecting a mask pattern on a substrate
WO2006028183A1 (en) Lens system adjusting device and lens system adjusting method using it, and production device for imaging device and production method for imaging device
KR20090091214A (en) Method for aligning micro-apertures of parts using laser difflection patern and system using the same
KR102262115B1 (en) Imprint apparatus, and article manufacturing method
US6807022B1 (en) Simultaneously achieving circular symmetry and diminishing effects of optical defects and deviations during real time use of optical devices
CN109952538A (en) Measuring system, lithography system and measurement mesh calibration method
JP2007048819A (en) Surface position detector, aligner and process for fabricating microdevice
KR100474141B1 (en) Method for aligning apertures of parts using laser and method for aligning parts using the same
US6911659B1 (en) Method and apparatus for fabricating and trimming optical fiber bragg grating devices
KR100303057B1 (en) Focussing method and system of exposure apparatus
US20220377231A1 (en) Precision non-contact core imaging of fiber optic assemblies
US20240060851A1 (en) Precision non-contact measurement of core-to-ferrule offset vectors for fiber optic assemblies
JPH10339804A (en) Diffraction optical element and optical axis adjusting device therefor
KR102521324B1 (en) Method for aligning off-axis reflection optical system with angle of incidence
KR102456440B1 (en) System for fabricating 3D diffractive optical element on curved surfaces using direct laser lithography
CN102880018A (en) Reference grating space image adjusting device used for alignment system and adjusting method
KR102349633B1 (en) Exposure apparatus and article manufacturing method
Burge et al. Optical test alignment using computer generated holograms
JPH10281739A (en) Shape measuring equipment
Zhang et al. Angle monitor of micromirror array for freeform illumination in lithography systems
JPH10339805A (en) Diffraction optical element and optical axis adjusting device therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130222

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140324

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150223

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170222

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180222

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20200224

Year of fee payment: 16