JP2000294485A - Method for regulating electric charged particle beam projection aligner - Google Patents

Method for regulating electric charged particle beam projection aligner

Info

Publication number
JP2000294485A
JP2000294485A JP11096496A JP9649699A JP2000294485A JP 2000294485 A JP2000294485 A JP 2000294485A JP 11096496 A JP11096496 A JP 11096496A JP 9649699 A JP9649699 A JP 9649699A JP 2000294485 A JP2000294485 A JP 2000294485A
Authority
JP
Japan
Prior art keywords
electron
opening
aperture
current density
density distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11096496A
Other languages
Japanese (ja)
Inventor
Takehisa Yahiro
威久 八尋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11096496A priority Critical patent/JP2000294485A/en
Publication of JP2000294485A publication Critical patent/JP2000294485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly simply regulate the illuminance distribution in an opening of a forming aperture with high precision by a method wherein electron beams are scanned in an exposing opening, and an electron source, an electron lens system, and a deflector system are regulated based on measuring results of this illuminance distribution. SOLUTION: A movable Faraday cup 9 is moved to between a second electronic lens 3 and a mask stage, and is moved on a central axis. A forming aperture 5a and the mask stage have a positional relationship serving in common with a plane electronic source 1. An exposing opening 7 and a current density distribution measuring opening 8 are respectively provided in the forming aperture 5a, and each opening is exchangeable by a revolver type. The aperture 5a is installed so that electron beams pass through the exposing opening 7 at the time of exposure. In order to evaluate uniformity within an illuminance face of the opening in the aperture 5a, when a current density distribution is measured, the aperture 5a is rotated, and a current density distribution measuring opening 8 is switched so as to come to a center through which the electron beams pass. The electron beams are scanned in the current density distribution measuring opening 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、荷電粒子線投影露
光装置の調整方法に関する。
The present invention relates to a method for adjusting a charged particle beam projection exposure apparatus.

【0002】[0002]

【従来技術】近年、半導体集積回路素子の微細化に伴
い、光の回折限界によって制限される光学系の解像度を
向上させるために、X線、電子線やイオンビーム等の荷
電粒子線(以下、単に荷電粒子線という)を使用した露
光方式(リソグラフィー技術)が開発されている。その
中でも、電子線を利用してパターンを形成する電子線露
光は、電子線自体を数Å(オングストローム)にまで絞
ることが出来るため、1μm又はそれ以下の微細パター
ンを形成できる点に大きな特徴がある。
2. Description of the Related Art In recent years, with the miniaturization of semiconductor integrated circuit elements, charged particle beams (hereinafter, referred to as X-rays, electron beams, ion beams, etc.) have been developed in order to improve the resolution of an optical system limited by the diffraction limit of light. An exposure method (lithography technique) using a charged particle beam (hereinafter simply referred to as a charged particle beam) has been developed. Among them, electron beam exposure, in which a pattern is formed using an electron beam, is characterized in that a fine pattern of 1 μm or less can be formed because the electron beam itself can be reduced to several Å (angstrom). is there.

【0003】しかし、従来の電子線露光方式は、一筆書
きの方式であったため、微細パターンになればなるほ
ど、絞った電子線で描画せねばならず、描画時間が長
く、デバイス生産コストの観点から量産用ウエハの露光
には用いられなかった。そこで、所定のパターンを有す
る転写マスクに電子線を照射し、その照射範囲にあるパ
ターンを投影レンズによりウエハに縮小転写する荷電粒
子線縮小転写装置が提案されている。
However, since the conventional electron beam exposure method is a one-stroke writing method, the finer the pattern, the more the electron beam must be drawn with a narrower electron beam, the longer the drawing time, and the cost of device production. It was not used for exposure of mass-produced wafers. Therefore, there has been proposed a charged particle beam reduction transfer apparatus which irradiates a transfer mask having a predetermined pattern with an electron beam and reduces and transfers a pattern in the irradiation range to a wafer by a projection lens.

【0004】図4(a)(b)は、電子線縮小転写装置
における電子源及び照明系等の概略図である。回路パタ
ーンを投影するためにはその回路パターンが描かれた転
写マスクが必要である。転写マスクとして、図5(a)
に示すように、貫通孔が存在せず、メンブレン12上に
散乱体パターン14が形成された散乱透過マスク11
と、図5(b)に示すように、電子線を散乱する程度の
厚さを有するメンブレン22に貫通孔パターン24が形
成された散乱ステンシルマスク21が知られている。
FIGS. 4A and 4B are schematic diagrams of an electron source, an illumination system, and the like in an electron beam reduction transfer apparatus. In order to project a circuit pattern, a transfer mask on which the circuit pattern is drawn is required. As a transfer mask, FIG.
As shown in FIG. 7, a scattered transmission mask 11 having no through holes and a scatterer pattern 14 formed on a membrane 12
As shown in FIG. 5B, a scattering stencil mask 21 in which a through-hole pattern 24 is formed on a membrane 22 having a thickness enough to scatter an electron beam is known.

【0005】これらは、感応基板に転写すべきパターン
をメンブレン12、22上にそれぞれ備えた多数の小領
域12a、22aがパターンが存在しない境界領域によ
り区分され、境界領域に対応する部分に支柱13、23
が設けられている。かかる小領域は、約1mm角であ
り、従来に比べて照明する領域が広く、電子源として円
錐形の先端を持つチップを用いて成形アパーチャで照度
分布が不均一な部分を除いて均一な電子線を用いるとい
う方法では対応できず、この小領域内の電流密度分布を
均一、即ち照明を均一にするために平面電子源を用い、
マスク上にこの電子源像を結像させることにより面内均
一性を担保する方法が考えられている。
[0005] In these, a large number of small regions 12a and 22a provided with patterns to be transferred to the sensitive substrate on the membranes 12 and 22 are divided by a boundary region where no pattern exists, and a support 13 is provided at a portion corresponding to the boundary region. , 23
Is provided. Such a small area is about 1 mm square, and the area to be illuminated is wider than in the related art, and a uniform aperture is formed by using a tip having a conical tip as an electron source, except for a part having a non-uniform illuminance distribution by a shaping aperture. It is not possible to cope with the method of using a line, the current density distribution in this small area is uniform, that is, using a planar electron source to make the illumination uniform,
A method has been considered in which the in-plane uniformity is ensured by forming the electron source image on a mask.

【0006】[0006]

【発明が解決しようとする課題】しかし、この方法で
は、電子源や照明系の電子レンズの状態が直接、面内の
照明均一性に反映されてしまうという問題が生じる。そ
れを補正するために電子源と共役な位置関係にある成形
アパーチャ、マスク上のそれぞれの面内(小領域内)の
電流密度分布の測定を行い、その結果に基づいて成形ア
パーチャより上側に配置された電子レンズ、偏向器、電
子源等の調整と、成形アパーチャとマスクとの間に配置
された電子レンズ、偏向器等の調整とをそれぞれ行うこ
とが必要である。
However, this method has a problem that the state of the electron source or the electron lens of the illumination system is directly reflected on the in-plane illumination uniformity. In order to compensate for this, the current density distribution in each plane (within a small area) on the mask and the shaping aperture which is in a conjugate positional relationship with the electron source is measured, and based on the result, it is arranged above the shaping aperture. It is necessary to adjust the adjusted electron lens, deflector, electron source, and the like, and adjust the electron lens, deflector, and the like disposed between the shaping aperture and the mask.

【0007】即ち、照明系全体における照度分布を測定
し、照明系全体でまとめて調整しようとすると、収差な
どが複雑に絡み合っていて、調整すべき電子レンズ、偏
向器系、電子源を特定するのが困難であり、適切な調整
ができないから、各部分に分割して調整を行う必要があ
る。成形アパーチャの照度の面内均一性は、電子源と共
役な位置関係に配置されている成形アパーチャの開口上
を電子線で走査して電流密度分布を測定することによっ
ては、成形アパーチャの開口が約1mm角であるのに対
して、電子線の径は約数mmであるので、ブロードなプ
ロファイルしか得られず、判断が困難である。
That is, when the illuminance distribution in the entire illumination system is measured and the whole illumination system is to be adjusted collectively, aberrations and the like are complicatedly intertwined, and the electron lens, deflector system, and electron source to be adjusted are specified. Since it is difficult to perform appropriate adjustment, it is necessary to perform adjustment by dividing each part. The in-plane uniformity of the illuminance of the shaping aperture is determined by measuring the current density distribution by scanning an electron beam over the shaping aperture located in a conjugate positional relationship with the electron source. Since the diameter of the electron beam is about several millimeters, while it is about 1 mm square, only a broad profile can be obtained, and it is difficult to determine.

【0008】また、成形アパーチャの照度の面内均一性
の判断が困難であるが故に、電子源、電子レンズ系の調
整を行うことができない。そこで、本発明は従来のこの
ような問題点に鑑みてなされたものであり、簡易に精度
良く、成形アパーチャの開口における照度分布を均一に
調整するための荷電粒子線投影露光装置の調整方法を提
供することを目的とする。
Further, since it is difficult to determine the in-plane uniformity of the illuminance of the shaping aperture, it is impossible to adjust the electron source and the electron lens system. Therefore, the present invention has been made in view of such a conventional problem, and provides a method of adjusting a charged particle beam projection exposure apparatus for simply and accurately adjusting an illuminance distribution at an opening of a forming aperture. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】本発明は「電子源、電子
レンズ系、偏向器系を有し、前記電子源と共役な位置関
係に成形アパーチャ、マスクステージが配置された電子
光学系を備えた荷電粒子線投影露光装置の調整方法にお
いて、前記成形アパーチャが露光用の開口以外に電子線
の径に対して極めて小さい径の開口を有し、前記電子線
を前記開口上を走査させることにより電子線の照度分布
(電流密度分布)を測定し、その測定結果に基づいて前
記電子源、前記電子レンズ系、前記偏向器系を調整する
ことにより行う荷電粒子線投影露光装置の調整方法(請
求項1)」を提供する。
According to the present invention, there is provided an electron optical system having an electron source, an electron lens system, and a deflector system, and having a shaping aperture and a mask stage arranged in a conjugate relationship with the electron source. In the adjusting method of the charged particle beam projection exposure apparatus, the shaping aperture has an opening having an extremely small diameter with respect to the diameter of the electron beam other than the opening for exposure, and the electron beam is scanned over the opening. An adjustment method for a charged particle beam projection exposure apparatus that measures an illuminance distribution (current density distribution) of an electron beam and adjusts the electron source, the electron lens system, and the deflector system based on the measurement result (claim Item 1) ”is provided.

【0010】また、本発明は「電子源、電子レンズ系、
偏向器系を有し、前記電子源と共役な位置関係に成形ア
パーチャ、マスクステージが配置された電子光学系を備
えた荷電粒子線投影露光装置の調整方法において、前記
マスクステージが電子線の径に対して極めて小さい径の
開口を有し、前記電子線を前記開口上を走査させること
により電子線の照度分布(電流密度分布)を測定し、そ
の測定結果に基づいて前記電子源、前記電子レンズ系、
前記偏向器系を調整することにより行う荷電粒子線投影
露光装置の調整方法(請求項2)」を提供する。
Further, the present invention provides an electron source, an electron lens system,
A method for adjusting a charged particle beam projection exposure apparatus having a deflector system, a shaping aperture in a positional relationship conjugate with the electron source, and an electron optical system in which a mask stage is disposed, wherein the mask stage has a diameter of an electron beam. The electron beam is scanned over the opening to measure the illuminance distribution (current density distribution) of the electron beam, and based on the measurement result, the electron source and the electron Lens system,
A method for adjusting a charged particle beam projection exposure apparatus by adjusting the deflector system (claim 2) "is provided.

【0011】[0011]

【発明の実施形態】以下、本発明にかかる実施形態の成
形アパーチャの開口上の照度分布(電流密度分布)の測
定の様子を図面を参照しながら説明する。図1は、本発
明の第一の実施形態の成形アパーチャの開口上の照度分
布(電流密度分布)の測定の様子を示した概略図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A measurement of an illuminance distribution (current density distribution) on an opening of a shaping aperture according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a state of measuring an illuminance distribution (current density distribution) on an opening of a forming aperture according to the first embodiment of the present invention.

【0012】第一の実施形態の照明系等は、平面電子源
1と、第一電子レンズ2と、偏向器系(軸合わせ用偏向
器4a、4c、成形アパーチャ上偏向器4b、マスク上
偏向器4d)4と、成形アパーチャ5aと、第二電子レ
ンズ3とから構成されている。第二電子レンズ3とマス
クステージ6の間には、移動可能なファラデーカップ9
が設置されており、露光時には、軸外に待機させてお
き、電流密度分布測定時には、ファラデーカップ9を移
動させて中心軸上にもってくる。
The illumination system and the like according to the first embodiment include a plane electron source 1, a first electron lens 2, a deflector system (axis deflectors 4a and 4c, a shaping aperture deflector 4b, a mask deflector 4b). 4 d), a shaping aperture 5 a, and a second electron lens 3. A movable Faraday cup 9 is provided between the second electron lens 3 and the mask stage 6.
The Faraday cup 9 is moved and brought to the center axis by moving the Faraday cup 9 at the off-axis standby at the time of exposure and at the time of measuring the current density distribution.

【0013】成形アパーチャ5a及びマスクステージ6
は、平面電子源1と共役な位置関係にある。成形アパー
チャ5aには、露光用の開口7と、電流密度分布測定用
の開口8が各々設けられており、各開口はリボルバー式
で交換可能である。露光用の開口7は、電子線の径が約
直径数mm程度であることから約1mm角程度であり、
電流密度分布測定用の開口8は、約Ф10μm程度であ
る。
Forming aperture 5a and mask stage 6
Has a conjugate positional relationship with the plane electron source 1. The shaping aperture 5a is provided with an opening 7 for exposure and an opening 8 for measuring current density distribution, and each opening is replaceable by a revolver method. The opening 7 for exposure is about 1 mm square because the diameter of the electron beam is about several mm.
The opening 8 for measuring the current density distribution is about $ 10 μm.

【0014】露光時は露光用開口7を電子線が通過する
ように成形アパーチャ5aを設置しておき、成形アパー
チャの開口の照度の面内の均一性を評価するために電流
密度分布を測定する場合には、成形アパーチャ5aを回
転により、電流密度分布測定用開口8が電子線が通る中
心にくるように切り換え、電子線を電流密度分布測定用
開口8上で走査させる。
At the time of exposure, a shaping aperture 5a is provided so that an electron beam passes through the exposure opening 7, and a current density distribution is measured to evaluate the in-plane uniformity of the illuminance of the opening of the shaping aperture. In this case, by rotating the forming aperture 5a, the current density distribution measuring opening 8 is switched to the center through which the electron beam passes, and the electron beam is scanned on the current density distribution measuring opening 8.

【0015】電流密度分布測定用の開口8は電子線の径
に比べて十分小さいので、電子線の電流密度分布を精度
よく測定することができ、図1に示すようなプロファイ
ルが得られる。ファラデーカップ9は、CRTに接続さ
れており、そのCRTは不図示のコンピュータに接続さ
れており、そのコンピュータは、平面電子源1、第一電
子レンズ2、第二電子レンズ3、偏向器系4にそれぞれ
接続されている。
Since the aperture 8 for measuring the current density distribution is sufficiently smaller than the diameter of the electron beam, the current density distribution of the electron beam can be accurately measured, and the profile shown in FIG. 1 is obtained. The Faraday cup 9 is connected to a CRT, and the CRT is connected to a computer (not shown). The computer includes a plane electron source 1, a first electron lens 2, a second electron lens 3, and a deflector system 4. Connected to each other.

【0016】CRTの画像を画像処理して処理結果から
算出された内容を直接コンピュータに送り込み、前述し
た平面電子源1、第一電子レンズ2等を制御する。な
お、マスク及び成形アパーチャ上の面内均一性を悪化さ
せる要因としては主に(1)照明系の電子レンズの中心
軸合わせの調整が不十分であることにより像面湾曲収
差、球面収差が発生して平面電子源像がマスク及び成形
アパーチャ上に結像しないこと(2)平面電子源の表面
状態の面内不均一性によりその影響が直接マスク及び成
形アパーチャ上に反映させること等が挙げられる。電流
密度分布のプロファイルを解析して、その情報に基づい
て電子レンズ2、偏向器系4、電子源1を調整する。
The image of the CRT image is processed and the contents calculated from the processing result are sent directly to the computer to control the above-mentioned flat electron source 1, first electron lens 2 and the like. The factors that deteriorate the in-plane uniformity on the mask and the shaping aperture are mainly caused by (1) insufficient curvature adjustment of the center axis of the electron lens of the illumination system, which causes curvature of field and spherical aberration. That the plane electron source image does not form an image on the mask and the shaping aperture. (2) The influence of the in-plane non-uniformity of the surface state of the flat electron source is directly reflected on the mask and the shaping aperture. . The profile of the current density distribution is analyzed, and the electron lens 2, the deflector system 4, and the electron source 1 are adjusted based on the information.

【0017】所定の成形アパーチャの開口の照度の面内
均一性が得られるまで、この操作を繰り返して行う。図
2は、本発明の第二の実施形態の成形アパーチャの開口
上の照度分布(電流密度分布)の測定の様子を示した概
略図である。第二の実施形態の電子線源及び照明系等の
構成は、第一の実施形態で説明したものと同じである。
This operation is repeated until the in-plane uniformity of the illuminance of the opening of the predetermined forming aperture is obtained. FIG. 2 is a schematic diagram showing a state of measurement of the illuminance distribution (current density distribution) on the opening of the forming aperture according to the second embodiment of the present invention. The configurations of the electron beam source, the illumination system, and the like according to the second embodiment are the same as those described in the first embodiment.

【0018】但し、成形アパーチャ5bには、回転する
機構は設けられていないので、マスク面内の均一性を評
価するために電流密度分布を測定する場合には、電子線
を成形アパーチャ5b上に設けられた成形アパーチャ上
偏向器4bを用いて偏向し、電流密度分布測定用開口8
上で走査させる。第一の実施形態と同様にして得られた
電流密度分布のプロファイルを解析して、その情報に基
づいて電子レンズ2、偏向器系4、電子源1を調整す
る。
However, since the forming aperture 5b is not provided with a rotating mechanism, when measuring the current density distribution in order to evaluate the uniformity within the mask surface, an electron beam is placed on the forming aperture 5b. It is deflected by using the formed aperture-on-aperture deflector 4b, and the current density distribution measurement opening 8 is deflected.
Scan on top. The profile of the current density distribution obtained in the same manner as in the first embodiment is analyzed, and the electron lens 2, the deflector system 4, and the electron source 1 are adjusted based on the information.

【0019】図3は、本発明の第三の実施形態の成形ア
パーチャの開口上の照度分布(電流密度分布)の測定の
様子を示した概略図である。第三の実施形態の電子線源
及び照明系等の構成は、成形アパーチャ5cに電流密度
分布測定用の開口がない点と、ファラデーカップ9がマ
スクステージ6の下に配置され、マスクステージ6には
電流密度分布測定用開口10が形成されている点以外
は、第一の実施形態の電子線源及び照明系等と同じ構成
である。
FIG. 3 is a schematic diagram showing a state of measurement of an illuminance distribution (current density distribution) on an opening of a forming aperture according to a third embodiment of the present invention. The configuration of the electron beam source, the illumination system, and the like of the third embodiment is such that the shaping aperture 5c has no opening for measuring the current density distribution, the Faraday cup 9 is arranged below the mask stage 6, and the mask stage 6 has Has the same configuration as the electron beam source, the illumination system, and the like of the first embodiment except that a current density distribution measurement opening 10 is formed.

【0020】成形アパーチャ上偏向器4bにより電子線
を成形アパーチャ5cの露光用開口7上を走査すること
により、成形アパーチャ5cと共役な位置関係にあるマ
スクステージ6上の電子線は自動的にマスクステージ6
上に形成された電流密度分布測定用開口10上を走査さ
せることができる。マスクステージ6上では電子線の径
は約1mm角程度であるので、電流密度分布測定用の開
口10を約Φ10μmにすることにより、精度のよい電
子線の電流密度分布のプロファイルを得ることができ、
第一の実施形態と同様にして得られた電流密度分布のプ
ロファイルを解析して、その情報に基づいて電子レンズ
2、偏向器系4、電子源1を調整する。
When the electron beam is scanned over the exposure opening 7 of the shaping aperture 5c by the shaping aperture deflector 4b, the electron beam on the mask stage 6 having a conjugate positional relationship with the shaping aperture 5c is automatically masked. Stage 6
It is possible to scan over the current density distribution measurement opening 10 formed thereon. Since the diameter of the electron beam on the mask stage 6 is about 1 mm square, an accurate current density distribution profile of the electron beam can be obtained by setting the aperture 10 for current density distribution measurement to about Φ10 μm. ,
The profile of the current density distribution obtained in the same manner as in the first embodiment is analyzed, and the electron lens 2, the deflector system 4, and the electron source 1 are adjusted based on the information.

【0021】[0021]

【発明の効果】以上説明した通り、本発明の荷電粒子線
投影露光装置の調整方法によれば、成形アパーチャの開
口上の照度分布、即ち電流密度分布が、高精度に測定で
き、その測定プロファイルに基づいて成形アパーチャよ
り上側に配置された電子レンズ、偏向器系、電子源を調
整することができ、成形アパーチャの開口上の面内均一
性を確保することができる。
As described above, according to the method for adjusting the charged particle beam projection exposure apparatus of the present invention, the illuminance distribution on the opening of the shaping aperture, that is, the current density distribution, can be measured with high accuracy, and the measurement profile is obtained. The electron lens, the deflector system, and the electron source disposed above the shaping aperture can be adjusted based on the above, and in-plane uniformity over the opening of the shaping aperture can be ensured.

【0022】さらに、成形アパーチャとマスクとの間の
電子レンズ、偏向器系を調整することにより、マスク上
の照度の面内均一性を向上させた場合、線幅制御(解像
度)が向上するため、高集積度デバイスを歩留まりよく
生産することができる。
Further, when the in-plane uniformity of the illuminance on the mask is improved by adjusting the electron lens and the deflector system between the shaping aperture and the mask, the line width control (resolution) is improved. Thus, highly integrated devices can be produced with high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態の成形アパーチャの開
口上の照度分布(電流密度分布)の測定の様子を示した
概略図である。
FIG. 1 is a schematic diagram showing a state of measuring an illuminance distribution (current density distribution) on an opening of a forming aperture according to a first embodiment of the present invention.

【図2】本発明の第二の実施形態の成形アパーチャの開
口上の照度分布(電流密度分布)の測定の様子を示した
概略図である。
FIG. 2 is a schematic diagram showing a state of measuring an illuminance distribution (current density distribution) on an opening of a forming aperture according to a second embodiment of the present invention.

【図3】本発明の第三の実施形態の成形アパーチャの開
口上の照度分布(電流密度分布)の測定の様子を示した
概略図である。
FIG. 3 is a schematic diagram showing a state of measuring an illuminance distribution (current density distribution) on an opening of a forming aperture according to a third embodiment of the present invention.

【図4】(a)(b)電子線縮小転写装置における電子
線源及び照明系等の概略図である。
4A and 4B are schematic diagrams of an electron beam source, an illumination system, and the like in the electron beam reduction transfer device.

【図5】電子線縮小転写装置で用いられる転写マスクの
うち(a)は散乱透過マスク、(b)は散乱ステンシル
マスクの概略図であり、(c)は電子線を用いたパター
ン転写方法を示す概略斜視図である。
FIGS. 5A and 5B are schematic diagrams of a scattering transmission mask, a scattering stencil mask, and a pattern transfer method using an electron beam, respectively. It is a schematic perspective view shown.

【符号の説明】[Explanation of symbols]

1・・・電子源 2・・・第一電子レンズ 3・・・第二電子レンズ 4・・・偏向器系 5・・・成形アパーチャ 6・・・マスクステージ 7・・・露光用開口 8、10・・・電子線電流密度分布測定用開口 9・・・ファラデーカップ 11・・・散乱透過マスク 12、22・・・メンブレン 13、23・・・支柱 14・・・散乱体パターン 17・・・感光基板 21・・・散乱ステンシルマスク 24・・・貫通孔パターン DESCRIPTION OF SYMBOLS 1 ... Electron source 2 ... 1st electron lens 3 ... 2nd electron lens 4 ... Deflector system 5 ... Molding aperture 6 ... Mask stage 7 ... Exposure opening 8, DESCRIPTION OF SYMBOLS 10 ... Aperture for electron beam current density distribution measurement 9 ... Faraday cup 11 ... Scattering transmission mask 12,22 ... Membrane 13,23 ... Post 14 ... Scatterer pattern 17 ... Photosensitive substrate 21: scattering stencil mask 24: through-hole pattern

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電子源、電子レンズ系、偏向器系を有し、
前記電子源と共役な位置関係に成形アパーチャ、マスク
ステージが配置された電子光学系を備えた荷電粒子線投
影露光装置の調整方法において、 前記成形アパーチャが露光用の開口以外に電子線の径に
対して極めて小さい径の開口を有し、 前記電子線を前記開口上を走査させることにより電子線
の照度分布(電流密度分布)を測定し、その測定結果に
基づいて前記電子源、前記電子レンズ系、前記偏向器系
を調整することにより行う荷電粒子線投影露光装置の調
整方法。
An electron source, an electron lens system, and a deflector system;
In the method of adjusting a charged particle beam projection exposure apparatus including an electron optical system in which a shaping aperture and a mask stage are arranged in a conjugate positional relationship with the electron source, the shaping aperture may have a diameter corresponding to an electron beam diameter other than an exposure opening. An aperture having an extremely small diameter with respect to the electron beam, an illuminance distribution (current density distribution) of the electron beam is measured by scanning the electron beam over the aperture, and based on the measurement result, the electron source and the electron lens And a method of adjusting a charged particle beam projection exposure apparatus by adjusting the deflector system.
【請求項2】電子源、電子レンズ系、偏向器系を有し、
前記電子源と共役な位置関係に成形アパーチャ、マスク
ステージが配置された電子光学系を備えた荷電粒子線投
影露光装置の調整方法において、 前記マスクステージが電子線の径に対して極めて小さい
径の開口を有し、 前記電子線を前記開口上を走査させることにより電子線
の照度分布(電流密度分布)を測定し、その測定結果に
基づいて前記電子源、前記電子レンズ系、前記偏向器系
を調整することにより行う荷電粒子線投影露光装置の調
整方法。
2. An electron source, an electron lens system, and a deflector system,
A method for adjusting a charged particle beam projection exposure apparatus including an electron optical system in which a shaping aperture and a mask stage are arranged in a conjugate positional relationship with the electron source, wherein the mask stage has an extremely small diameter with respect to the diameter of the electron beam. An aperture is provided, the illuminance distribution (current density distribution) of the electron beam is measured by scanning the electron beam over the opening, and based on the measurement result, the electron source, the electron lens system, and the deflector system Of adjusting the charged particle beam projection exposure apparatus by adjusting the distance.
JP11096496A 1999-04-02 1999-04-02 Method for regulating electric charged particle beam projection aligner Pending JP2000294485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11096496A JP2000294485A (en) 1999-04-02 1999-04-02 Method for regulating electric charged particle beam projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11096496A JP2000294485A (en) 1999-04-02 1999-04-02 Method for regulating electric charged particle beam projection aligner

Publications (1)

Publication Number Publication Date
JP2000294485A true JP2000294485A (en) 2000-10-20

Family

ID=14166713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11096496A Pending JP2000294485A (en) 1999-04-02 1999-04-02 Method for regulating electric charged particle beam projection aligner

Country Status (1)

Country Link
JP (1) JP2000294485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474141B1 (en) * 2001-07-06 2005-03-08 전자빔기술센터 주식회사 Method for aligning apertures of parts using laser and method for aligning parts using the same
WO2006033544A1 (en) * 2004-09-20 2006-03-30 Cebt Co. Ltd. Method for aligning micro-apertures of parts using laser difflection patern and system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474141B1 (en) * 2001-07-06 2005-03-08 전자빔기술센터 주식회사 Method for aligning apertures of parts using laser and method for aligning parts using the same
WO2006033544A1 (en) * 2004-09-20 2006-03-30 Cebt Co. Ltd. Method for aligning micro-apertures of parts using laser difflection patern and system using the same

Similar Documents

Publication Publication Date Title
US5981954A (en) Electron beam exposure apparatus
JP4167050B2 (en) Charged particle beam exposure apparatus, control method therefor, and device manufacturing method
US6145438A (en) Method and apparatus for direct writing of semiconductor die using microcolumn array
JP2702183B2 (en) Semiconductor manufacturing equipment
US6258511B1 (en) Charged particle beam exposure method utilizing partial exposure stitch area
US6194732B1 (en) Charged-particle-beam exposure methods with beam parallelism detection and correction
JP2001189257A (en) Adjustment method for charged particle illumination optical system
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
JP2000100715A (en) Adjusting method of electron beam exposure system
US6831282B2 (en) Methods and devices for evaluating beam blur in a charged-particle-beam microlithography apparatus
JP2000294485A (en) Method for regulating electric charged particle beam projection aligner
JP2002222750A (en) Electron beam transfer mask
JPH11176720A (en) Electron ream exposure device
JP3282324B2 (en) Charged particle beam exposure method
JP2001244165A (en) Method for correcting proximity effect, reticle, and method of manufacturing device
JP3080006B2 (en) Electron beam exposure correction method
JP2003077798A (en) Proximity effect correcting method and device manufacturing method
US6476400B1 (en) Method of adjusting a lithography system to enhance image quality
JPH0750248A (en) Electron beam lithograph evaluating method
JP2000124116A (en) Method and system for charged particle beam exposure
JPH1126372A (en) Method and mask for reduction transfer
JP3330644B2 (en) Charged particle beam exposure method
JP2004241611A (en) Method for controlling projecting optical system in charged particle ray exposure device
JP2004158617A (en) Charged particle beam exposure method and charged particle beam exposure system
JP2003173959A (en) Method and device for exposing charged beam

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801