KR20030000962A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
KR20030000962A
KR20030000962A KR1020010037238A KR20010037238A KR20030000962A KR 20030000962 A KR20030000962 A KR 20030000962A KR 1020010037238 A KR1020010037238 A KR 1020010037238A KR 20010037238 A KR20010037238 A KR 20010037238A KR 20030000962 A KR20030000962 A KR 20030000962A
Authority
KR
South Korea
Prior art keywords
region
conductive layer
insulating film
film
transistor
Prior art date
Application number
KR1020010037238A
Other languages
Korean (ko)
Other versions
KR100386452B1 (en
Inventor
조남홍
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR10-2001-0037238A priority Critical patent/KR100386452B1/en
Publication of KR20030000962A publication Critical patent/KR20030000962A/en
Application granted granted Critical
Publication of KR100386452B1 publication Critical patent/KR100386452B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A fabrication method of a semiconductor device is provided to easily control the line-width of a gate electrode by simultaneously forming a first transistor having a vertical double gate and a second transistor having a horizontal gate. CONSTITUTION: A first conductive layer(12) and an impurity region(14) are formed a first transistor region(A) and a second transistor region(B), respectively. A contact hole is formed in the first transistor region(A), and a channel(24') is formed by filling a conductive layer into the contact hole. A second conductive layer(26) is formed to connect with the first conductive layer(12) via the channel(24'). A vertical double gate electrode(32a) and a first gate insulating layer(30a) are sequentially formed on the first transistor region(A), and a horizontal gate electrode(32b) and a second gate insulating layer(30b) are sequentially formed on the second transistor region(B).

Description

반도체 장치의 제조방법{Method for manufacturing semiconductor device}Method for manufacturing semiconductor device

본 발명은 반도체 장치의 제조방법에 관한 것으로서, 특히 수직형 더블 게이트구조의 트랜지스터 및 수평형 트랜지스터를 갖는 반도체장치의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device having a vertical double gate structure transistor and a horizontal transistor.

반도체장치가 고집적화 됨에 따라 소자의 크기 및 선폭 등의 감소는 필연적인 사항이 되었으며, 이에 따라 미세선폭의 구현 기술은 반도체장치 제작에 핵심 기술이 되고 있다.As semiconductor devices have been highly integrated, reductions in device size and line width have become inevitable. Accordingly, the technology for implementing fine line widths has become a key technology in the fabrication of semiconductor devices.

일반적으로, 10㎚이하의 게이트전극의 길이를 갖는 미세 소자의 제조 공정시 게이트전극을 패터닝하는데 어려움이 있다. 최근에는 반도체 소자의 고집적화에 따라 박막의 두께가 게이트전극의 길이가 되는 수직형 소자가 출현되었다. 이에, 쇼트 채널에서 나타난 DIBL(Drain Induced Barrier Lowering)에 의한 펀치 불량을 줄이고 전류를 2배로 늘릴 수 있는 더블 게이트전극을 갖는 트랜지스터가 많은 주목을 받고 있다. 이는 하나의 트랜지스터에 있는 2개의 게이트전극 아래서 각각의 채널이 형성되기 때문에 실제 트랜지스터 폭의 2배가 되어 2배의 전류가 흐르게 되는 것이다.In general, it is difficult to pattern the gate electrode in the manufacturing process of the micro device having the length of the gate electrode of less than 10nm. In recent years, with the high integration of semiconductor devices, vertical devices in which the thickness of a thin film becomes the length of a gate electrode have emerged. Accordingly, a transistor having a double gate electrode capable of reducing the punch failure caused by the drain induced barrier lowering (DIBL) shown in the short channel and doubling the current has attracted much attention. This is because each channel is formed under two gate electrodes in one transistor, so that the current is twice as large as the actual transistor width.

그러나, 이러한 수직형 더블 게이트 구조의 트랜지스터는 막의 두께가 게이트 전극의 길이 및 채널이 되므로 다양한 소자를 갖는 회로에서 다른 트랜지스터(예를 들면 수평형 트랜지스터)의 게이트 전극을 설계하는데 문제점이 있었다. 또한, 수직 구조를 갖는 게이트전극과 소오스/드레인 영역사이를 절연하기가 매우 어려웠다.However, such a transistor having a vertical double gate structure has a problem in designing a gate electrode of another transistor (for example, a horizontal transistor) in a circuit having various devices because the thickness of the film becomes the length and channel of the gate electrode. In addition, it was very difficult to insulate between the gate electrode having the vertical structure and the source / drain regions.

본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 하나의 반도체 기판에 수직형 더블 게이트구조의 트랜지스터와 수평형 트랜지스터를 동시에 제작할 수 있으며 각각의 트랜지스터에서 설정된 선폭의 게이트전극 길이를 만족시킬 수 있으며 수직형 더블 게이트전극에 캐핑막을 추가하여 소오스/드레인 전극사이를 절연할 수 있는 반도체 장치의 제조방법을 제공하는데 있다.In order to solve the problems of the prior art as described above, a vertical double gate structure transistor and a horizontal transistor can be simultaneously manufactured on a single semiconductor substrate, and the gate electrode length of the line width set in each transistor can be satisfied. The present invention provides a method of manufacturing a semiconductor device capable of insulating the source / drain electrodes by adding a capping film to the vertical double gate electrode.

도 1 내지 도 11은 본 발명의 일 실시예에 따른 수직형 더블 게이트구조의 트랜지스터 및 수평형 트랜지스터를 갖는 반도체장치의 공정 순서도.1 to 11 are process flowcharts of a semiconductor device having a vertical double gate structure transistor and a horizontal transistor according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 반도체 기판 12 : 제 1도전층10 semiconductor substrate 12 first conductive layer

14 : 불순물 영역 16 : 제 1절연막14 impurity region 16 first insulating film

18 : 제 2절연막 20 : 제 3절연막18: second insulating film 20: third insulating film

22 : 콘택홀 24' : 채널22: contact hole 24 ': channel

26 : 제 2도전층 28 : 캐핑막26: second conductive layer 28: capping film

30a, 30b : 게이트절연막 32 : 게이트용 도전체막30a, 30b: gate insulating film 32: gate conductor film

32a : 수직형 더블 게이트전극 32b : 수평형 게이트전극32a: vertical double gate electrode 32b: horizontal gate electrode

34 : 층간 절연막 36 : 콘택전극34 interlayer insulating film 36 contact electrode

A : 수직형 더블 게이트구조의 트랜지스터 영역A: transistor area of vertical double gate structure

B : 수평형 트랜지스터 영역B: horizontal transistor region

상기 목적을 달성하기 위하여 본 발명은 수직형 더블 게이트구조의 트랜지스터 및 수평형 트랜지스터를 포함한 반도체장치의 제조방법에 있어서, 반도체 기판의 제 1영역과 제 2영역내에 각각 제 1도전층과 불순물 영역을 동시에 형성하는 단계와, 기판상부에 제 1절연막/제 2절연막/제 3절연막을 순차 형성하고 이들을 식각하여 제 1영역에 콘택홀을 형성한 후에, 도전체를 매립하여 채널을 형성하는 단계와, 제 3절연막 상부에 도전체막을 형성하고 이를 패터닝하여 제 1영역에 채널을 통해 제 1도전층과 연결되는 제 2도전층을 형성하는 단계와, 제 1영역의 제 3절연막 내지 제 1절연막을 패터닝하고 제 2절연막을 제거하는 단계와, 구조물 전면에 절연 박막을 형성하고 도전체막을 증착하고 이를 패터닝하여 제 1영역에 수직형 더블 게이트전극 및 게이트절연막을 형성함과 동시에 제 2영역에 수평형 게이트전극 및 게이트절연막을 형성하는 단계를 포함한다.In order to achieve the above object, the present invention provides a method of manufacturing a semiconductor device including a transistor having a vertical double gate structure and a horizontal transistor, wherein the first conductive layer and the impurity region are respectively formed in the first region and the second region of the semiconductor substrate. Simultaneously forming, sequentially forming a first insulating film, a second insulating film, and a third insulating film on the substrate and etching the same to form contact holes in the first region, and then filling a conductor to form a channel; Forming and patterning a conductive film on the third insulating film to form a second conductive layer connected to the first conductive layer through a channel in the first region, and patterning the third to first insulating films of the first region. And removing the second insulating film, forming an insulating thin film on the entire surface of the structure, depositing and patterning a conductive film, and forming a vertical double gate electrode and a gate in the first region. And simultaneously forming a smoke screen and forming a horizontal gate electrode and the gate insulating film in the second region.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 11은 본 발명의 일 실시예에 따른 수직형 더블 게이트구조의 트랜지스터 및 수평형 트랜지스터를 갖는 반도체장치의 공정 순서도이다. 이들 도면에서 도면 부호 A는 반도체 기판에서 수직형 더블 게이트구조의 트랜지스터가 형성될 제 1영역이고 B는 수평형 트랜지스터가 형성될 제 2영역이다.1 to 11 are process flowcharts of a semiconductor device having a vertical double gate structure transistor and a horizontal transistor according to an embodiment of the present invention. In these drawings, reference numeral A denotes a first region where a vertical double gate structure transistor is to be formed in a semiconductor substrate, and B denotes a second region where a horizontal transistor is to be formed.

도 1에 도시된 바와 같이, 반도체 기판(10)으로서 실리콘 기판에 소자분리 공정을 실시하여 소자분리막(미도시함)을 형성하고, 도펀트를 이용한 이온 주입공정으로 제 1영역(A)에 제 1도전층(12)과 제 2영역(B)에 불순물 영역(14)을 형성한다. 이때, 제 1도전층(12)은 수직형 트랜지스터의 소오스가 될 영역이므로 별도의 마스크를 이용한 이온 주입공정을 통해 도핑을 높일 수 있다. 그리고, 불순물 영역(14)은 수평형 트랜지스터의 소오스/드레인이 될 부분이다.As shown in FIG. 1, a device isolation process is performed on a silicon substrate as a semiconductor substrate 10 to form a device isolation film (not shown), and an ion implantation process using a dopant is used to form the first region A in the first region A. FIG. The impurity region 14 is formed in the conductive layer 12 and the second region B. In this case, since the first conductive layer 12 is a region to be a source of the vertical transistor, doping may be increased through an ion implantation process using a separate mask. The impurity region 14 is a portion to be a source / drain of the horizontal transistor.

그리고 기판 상부에 제 1절연막(16)/제 2절연막(18)/제 3절연막(20)을 순차 형성한다. 이때, 제 1절연막(16)과 제 3절연막(20)은 제 2절연막(18)에 대해 식각 선택성이 있는 물질로 형성한다. 예를 들면, 제 2절연막(18)이 산화막일 경우 제 1절연막(16)과 제 3절연막(20)은 질화막이다.The first insulating film 16 / the second insulating film 18 / the third insulating film 20 are sequentially formed on the substrate. In this case, the first insulating layer 16 and the third insulating layer 20 are formed of a material having an etching selectivity with respect to the second insulating layer 18. For example, when the second insulating film 18 is an oxide film, the first insulating film 16 and the third insulating film 20 are nitride films.

그 다음 도 2 및 도 3에 도시된 바와 같이, 수직형 더블 게이트구조의 트랜지스터의 채널 영역이 형성될 위치를 정의한 마스크를 이용한 식각 공정을 진행하여 적층된 제 3절연막(20), 제 2절연막(18), 제 1절연막(16)을 식각한다. 이로 인해, 제 1영역(A)의 절연막들(20, 18, 16)에 콘택홀(미도시함)이 형성된다. 그리고 콘택홀이 형성된 절연막들에 도전체막으로서 도프트 폴리실리콘(24)을 증착하여 콘택홀을 매립한다.Next, as shown in FIGS. 2 and 3, an etching process using a mask defining a position at which a channel region of the transistor having a vertical double gate structure is to be formed is performed to stack the third insulating film 20 and the second insulating film ( 18), the first insulating film 16 is etched. As a result, contact holes (not shown) are formed in the insulating layers 20, 18, and 16 of the first region A. FIG. Then, the doped polysilicon 24 is deposited on the insulating layers on which the contact holes are formed to fill the contact holes.

그런 다음 도 4에 도시된 바와 같이, CMP(Chemical Mechanical Polishing)을 진행하여 도프트 폴리실리콘(24)을 연마하되, 제 3절연막(20)이 드러날 때까지 진행한다. 이로 인해, 콘택홀내에 매립된 도프트 폴리실리콘이 수직형 더블 게이트구조의 트랜지스터의 채널(24')이 된다.Then, as shown in FIG. 4, chemical mechanical polishing (CMP) is performed to grind the doped polysilicon 24, but proceeds until the third insulating layer 20 is exposed. As a result, the doped polysilicon embedded in the contact hole becomes the channel 24 'of the transistor of the vertical double gate structure.

본 발명은 채널(24')에 추가 인시튜 도핑 공정을 실시하여 소오스(12)와 이후 형성될 드레인에 인접한 LDD 영역의 폴리실리콘과 그 외 채널 영역의 폴리실리콘의 도핑 농도를 다르게 조절할 수도 있다.The present invention may perform an additional in-situ doping process in the channel 24 'to vary the doping concentrations of polysilicon in the LDD region adjacent to the source 12 and the drain to be subsequently formed and polysilicon in the other channel region.

이어서 도 5에 도시된 바와 같이, 제 3절연막(20) 상부에 도전체막으로서 도프트 폴리실리콘을 형성하고 이를 패터닝하여 제 1영역(A)에 채널(24')을 통해 제 1도전층(12)과 연결되는 제 2도전층(26)을 형성한다. 이때, 제 2도전층(26)은 수직형 더블 게이트 구조의 트랜지스터에서 드레인으로 사용된다.Subsequently, as shown in FIG. 5, a doped polysilicon is formed as a conductor layer on the third insulating layer 20 and patterned to form the first conductive layer 12 through the channel 24 ′ in the first region A. FIG. ) To form a second conductive layer 26. In this case, the second conductive layer 26 is used as a drain in the transistor of the vertical double gate structure.

그 다음 도 6에 도시된 바와 같이, 상기와 같은 구조물 전면에 절연물질(예를 들어 질화막)로 이루어진 캐핑막(28)을 형성한다.6, a capping film 28 made of an insulating material (for example, a nitride film) is formed on the entire structure as described above.

그리고 도 7에 도시된 바와 같이, 수직 더블 게이트구조의 트랜지스터의 드레인 마스크를 이용한 식각 공정을 진행하여 제 1영역(A)의 캐핑막(28) 내지 제 1절연막(16)을 함께 패터닝(28', 20', 18', 16')한다. 이때, 수평형 트랜지스터가 형성될 제 2영역(B)은 기판의 활성 영역이 드러나도록 모든 층을 제거한다. 여기서 패터닝된 캐핑막(28')은 드레인/소오스 영역과 이후 형성될 더블 게이트전극 사이의 절연 특성을 높이기 위해 사용된다.As shown in FIG. 7, the etching process using the drain mask of the transistor having the vertical double gate structure is performed to pattern the capping films 28 to 16 of the first region A together. , 20 ', 18', 16 '). At this time, the second region B in which the horizontal transistor is to be formed removes all layers so that the active region of the substrate is exposed. The patterned capping layer 28 'is used to increase the insulating property between the drain / source region and the double gate electrode to be formed later.

그 다음 도 8에 도시된 바와 같이, 패터닝된 제 2절연막(18')만을 습식 식각을 통해 제거한다.Then, as shown in FIG. 8, only the patterned second insulating layer 18 ′ is removed by wet etching.

이어서 도 9에 도시된 바와 같이, 산화 공정을 진행하여 구조물 전면에 산화막(30)을 형성하고 그 위에 도전체막(32)으로서 도프트 폴리실리콘을 증착한다.Next, as shown in FIG. 9, an oxidation process is performed to form an oxide film 30 on the entire surface of the structure and to deposit doped polysilicon as the conductor film 32 thereon.

그리고 도 10에 도시된 바와 같이, 수직형 및 수평형 게이트 마스크를 이용한 식각 공정을 진행하여 도프트 폴리실리콘(32)과 산화막(30)을 패터닝하여 제 1영역(A)에 수직형 더블 게이트전극(32a) 및 게이트절연막(30a)을 형성한다. 이와 동시에, 제 2영역(B)에 수평형 게이트전극(32b) 및 게이트절연막(30b)을 형성한다. 이때 게이트전극 제조 공정시 수직형 트랜지스터의 드레인측 게이트절연막(30a)이 노출될 때까지 도프트 폴리실리콘막(32)을 식각하여 제 1영역(A)에 있는 구조물 패턴의 좌/우측에 분리된 수직형 더블 게이트전극(32a)을 형성한다.As shown in FIG. 10, the etch process using the vertical and horizontal gate masks is performed to pattern the doped polysilicon 32 and the oxide layer 30 to form a vertical double gate electrode in the first region A. FIG. 32a and the gate insulating film 30a are formed. At the same time, the horizontal gate electrode 32b and the gate insulating film 30b are formed in the second region B. FIG. In this case, the doped polysilicon layer 32 is etched until the drain side gate insulating layer 30a of the vertical transistor is exposed during the gate electrode manufacturing process, and the left and right sides of the structure pattern in the first region A are separated. The vertical double gate electrode 32a is formed.

도 11에 도시된 바와 같이, 상기와 같이 수직형 및 수평형 트랜지스터가 형성된 기판 전면에 층간 절연막(34)을 형성하고 그 표면을 CMP 공정으로 평탄화한 후에, 콘택 마스크를 이용한 식각 공정을 진행하여 층간 절연막(34)에 콘택홀을 형성한다. 그리고 콘택홀에 금속 등의 도전체를 매립하여 게이트전극의 콘택 및 소오스/드레인의 콘택(36)을 형성한다. 여기서, 반도체 장치의 수직 단면에 의해 수직형 더블 게이트 구조의 트랜지스터의 게이트 콘택은 보이지 않는다.As shown in FIG. 11, after the interlayer insulating film 34 is formed on the entire surface of the substrate on which the vertical and horizontal transistors are formed as described above, and the surface thereof is planarized by the CMP process, an etching process using a contact mask is performed to interlayer. Contact holes are formed in the insulating film 34. A contact such as a metal is embedded in the contact hole to form the gate electrode contact and the source / drain contact 36. Here, the gate contact of the transistor of the vertical double gate structure is not seen by the vertical cross section of the semiconductor device.

상기한 바와 같이, 본 발명은 하나의 반도체 기판에 수직형 더블 게이트구조의 트랜지스터와 수평형 트랜지스터를 동시에 제작할 수 있으며 각각의 트랜지스터에서 설정된 선폭의 게이트전극 길이를 만족시킬 수 있으며 수직형 더블 게이트전극에 캐핑막을 추가하여 소오스/드레인 전극사이를 절연할 수 있다.As described above, the present invention can simultaneously manufacture a transistor having a vertical double gate structure and a horizontal transistor on one semiconductor substrate, and satisfy a gate electrode length having a line width set in each transistor. Capping layers may be added to insulate between the source and drain electrodes.

그러므로, 본 발명은 고집적 반도체장치에 있어서, 수직형 더블 게이트 트랜지스터를 수평형 트랜지스터도 동시에 형성함에 따라 수직 더블 게이트 트랜지스터의 장점을 그대로 가지면서도 수직형 트랜지스터가 가지는 한계를 극복할 수 있다.Therefore, the present invention can overcome the limitations of the vertical transistor while maintaining the advantages of the vertical double gate transistor by forming the vertical double gate transistor at the same time as the horizontal transistor.

Claims (4)

수직형 더블 게이트구조의 트랜지스터 및 수평형 트랜지스터를 포함한 반도체장치의 제조방법에 있어서,In the method of manufacturing a semiconductor device including a transistor having a vertical double gate structure and a horizontal transistor, 반도체 기판의 제 1영역과 제 2영역내에 각각 제 1도전층과 불순물 영역을 형성하는 단계;Forming a first conductive layer and an impurity region in the first region and the second region of the semiconductor substrate, respectively; 상기 기판상부에 제 1절연막/제 2절연막/제 3절연막을 순차 형성하고 이들을 식각하여 제 1영역에 콘택홀을 형성한 후에, 도전체를 매립하여 채널을 형성하는 단계;Forming a contact hole in the first region by sequentially forming a first insulating film, a second insulating film, and a third insulating film on the substrate and etching the same to form a contact hole in the first region; 상기 제 3절연막 상부에 도전체막을 형성하고 이를 패터닝하여 상기 제 1영역에 상기 채널을 통해 상기 제 1도전층과 연결되는 제 2도전층을 형성하는 단계;Forming a conductive layer on the third insulating layer and patterning the conductive layer to form a second conductive layer connected to the first conductive layer through the channel in the first region; 상기 제 1영역의 제 3절연막 내지 제 1절연막을 패터닝하고 제 2절연막을 제거하는 단계; 및Patterning the third to first insulating films of the first region and removing the second insulating film; And 상기 구조물 전면에 절연 박막을 형성하고 도전체막을 증착하고 이를 패터닝하여 제 1영역에 수직형 더블 게이트전극 및 게이트절연막을 형성함과 동시에 제 2영역에 수평형 게이트전극 및 게이트절연막을 형성하는 단계를 포함하여 이루어진 것을 특징으로 하는 반도체 장치의 제조방법.Forming an insulating thin film on the entire surface of the structure, depositing and patterning a conductor film to form a vertical double gate electrode and a gate insulating film in a first region, and simultaneously forming a horizontal gate electrode and a gate insulating film in a second region. The manufacturing method of the semiconductor device characterized by including the. 제 1항에 있어서, 상기 제 2도전층을 형성한 후에, 구조물 전면에 절연물질로 이루어진 캐핑막을 적층하는 단계를 더 포함하고 이후 제 1영역의 캐핑막 내지제 1절연막을 함께 패터닝하는 것을 특징으로 하는 반도체 장치의 제조방법.The method of claim 1, further comprising: stacking a capping film made of an insulating material on the entire surface of the structure after forming the second conductive layer, and then patterning the capping film and the first insulating film in the first region together. A method of manufacturing a semiconductor device. 제 1항에 있어서, 상기 채널용 도전체는 도프트 폴리실리콘으로 형성하되, 인시튜 도핑 공정을 실시하여 제 1도전층과 제 2도전층에 인접한 LDD 영역의 폴리실리콘과 그 외 채널 영역의 도핑 농도를 다르게 조절하는 것을 특징으로 하는 반도체 장치의 제조방법.The channel conductor of claim 1, wherein the channel conductor is formed of doped polysilicon, and the polysilicon of the LDD region adjacent to the first conductive layer and the second conductive layer and the other channel region are doped by an in-situ doping process. A method of manufacturing a semiconductor device, characterized in that the concentration is adjusted differently. 제 1항에 있어서, 상기 게이트전극용 도전체막의 패터닝시 제 2도전층의 게이트절연막이 노출될 때까지 도전체막을 식각하여 제 1영역의 구조물 좌우측에 분리된 수직형 더블 게이트전극을 형성하는 것을 특징으로 하는 반도체 장치의 제조방법.The method of claim 1, wherein during the patterning of the gate electrode conductive film, the conductive film is etched until the gate insulating film of the second conductive layer is exposed to form vertical double gate electrodes separated on left and right sides of the structure of the first region. A method for manufacturing a semiconductor device.
KR10-2001-0037238A 2001-06-27 2001-06-27 Method for manufacturing semiconductor device KR100386452B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0037238A KR100386452B1 (en) 2001-06-27 2001-06-27 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0037238A KR100386452B1 (en) 2001-06-27 2001-06-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
KR20030000962A true KR20030000962A (en) 2003-01-06
KR100386452B1 KR100386452B1 (en) 2003-06-02

Family

ID=27711621

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0037238A KR100386452B1 (en) 2001-06-27 2001-06-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR100386452B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787193B1 (en) * 2006-05-23 2007-12-21 한국단자공업 주식회사 Device for separating PCB unit in process of manufacturing PCB module
KR100929335B1 (en) * 2001-09-10 2009-12-03 에이저 시스템즈 가디언 코포레이션 A vertical replacement-gate junction field-effect transistor
US7977736B2 (en) 2006-02-23 2011-07-12 Samsung Electronics Co., Ltd. Vertical channel transistors and memory devices including vertical channel transistors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927400B1 (en) 2007-09-11 2009-11-19 주식회사 하이닉스반도체 Pillar pattern manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929335B1 (en) * 2001-09-10 2009-12-03 에이저 시스템즈 가디언 코포레이션 A vertical replacement-gate junction field-effect transistor
KR100931816B1 (en) * 2001-09-10 2009-12-14 에이저 시스템즈 가디언 코포레이션 Vertical Alternating Gate Junction Field Effect Transistor
US7977736B2 (en) 2006-02-23 2011-07-12 Samsung Electronics Co., Ltd. Vertical channel transistors and memory devices including vertical channel transistors
KR100787193B1 (en) * 2006-05-23 2007-12-21 한국단자공업 주식회사 Device for separating PCB unit in process of manufacturing PCB module

Also Published As

Publication number Publication date
KR100386452B1 (en) 2003-06-02

Similar Documents

Publication Publication Date Title
KR100189966B1 (en) Mos transistor of soi structure and method for manufacturing the same
US7335567B2 (en) Gate electrodes of semiconductor devices and methods of manufacturing the same
KR20020011133A (en) Self-aligned source and drain extensions fabricated in a damascene contact and gate process
KR100223832B1 (en) Method of manufacturing semiconductor device
KR100386452B1 (en) Method for manufacturing semiconductor device
TWI701789B (en) Semiconductor structure and manufacturing method thereof
KR100368971B1 (en) Gate of soi device and method for fabricating the same
KR100213203B1 (en) Semiconductor device with contact hole and process for fabricating the same
KR100477786B1 (en) Method for forming contact in semiconductor device
KR100314810B1 (en) A method for fabricating semiconductor device using to damascene gate
KR100246625B1 (en) Manufacturing process of semiconductor device having capacitor and self-aligned double gate electrode
KR20030000194A (en) Method for fabricating of semiconductor device
KR100192547B1 (en) Semiconductor device and manufacturing method thereof
KR100555623B1 (en) Method for fabricating semiconductor device
KR100501542B1 (en) Method for manufacturing transistor of semiconductor element
KR100678022B1 (en) Fabrication method of semiconductor device
KR100323725B1 (en) Semiconductor device and method for fabricating the same
KR100339418B1 (en) Method for fabricating of semiconductor device
CN114664944A (en) Semiconductor structure and forming method thereof
KR20070002701A (en) Method for fabricating transistor of semiconductor device
KR20040057825A (en) Method for fabricating gate of semiconductor
KR20020017740A (en) A method for forming a transistor of a semiconductor device
KR20000038332A (en) Method of fabricating semiconductor device
KR20010046154A (en) Method for forming gate spacer of semiconductor device utilizing photoresist and selective liquid phase deposition
KR20020032178A (en) Semiconductor Device and Method for Fabricating the Same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee