KR20020094526A - System making fresh water from sea water using revertse osmosis - Google Patents

System making fresh water from sea water using revertse osmosis Download PDF

Info

Publication number
KR20020094526A
KR20020094526A KR1020010032795A KR20010032795A KR20020094526A KR 20020094526 A KR20020094526 A KR 20020094526A KR 1020010032795 A KR1020010032795 A KR 1020010032795A KR 20010032795 A KR20010032795 A KR 20010032795A KR 20020094526 A KR20020094526 A KR 20020094526A
Authority
KR
South Korea
Prior art keywords
reverse osmosis
water
seawater
pump
unit
Prior art date
Application number
KR1020010032795A
Other languages
Korean (ko)
Other versions
KR100426724B1 (en
Inventor
김건태
임성균
강문선
최광호
Original Assignee
코오롱건설주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱건설주식회사 filed Critical 코오롱건설주식회사
Priority to KR10-2001-0032795A priority Critical patent/KR100426724B1/en
Publication of KR20020094526A publication Critical patent/KR20020094526A/en
Application granted granted Critical
Publication of KR100426724B1 publication Critical patent/KR100426724B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A seawater desalination system using two step reverse osmosis is provided to promote the reclamation efficiency of disposed water with high pressure and can prevent the performance decline of membrane due to high pressure. CONSTITUTION: The system comprises a pretreatment part(20) which filters suspended solids in sea water by a filter unit(26) using hollow fiber membrane; an equipment protection part(30) in which a first treatment tank(32), a supply pump(34) and a protection filter(36) are installed; an energy recovery part(40) which discharges primarily treated water with high pressure using a high pressure pump(42) and mixes that with sea water using a return pump(44); a reverse osmosis part(50) which mixes main freshwater from a first reverse osmosis unit(52) and sub freshwater and returns sub concentrated water discharged to the energy recovery part; a membrane washing part(60) which takes suspended solids off the surface of hollow fiber membrane by supplying reverse washing water by the reverse washing pump.

Description

에너지 절감을 위한 역삼투법 해수담수화 시스템{SYSTEM MAKING FRESH WATER FROM SEA WATER USING REVERTSE OSMOSIS}Reverse osmosis desalination system for energy savings {SYSTEM MAKING FRESH WATER FROM SEA WATER USING REVERTSE OSMOSIS}

[산업상 이용분야][Industrial use field]

본 발명은 해수로부터 담수 또는 음용수를 생산하는 역삼투공정 시스템에 관한 것으로서, 더욱 상세하게는 역삼투법을 이용하여 해수로부터 담수 또는 음용수를 생산할 때 기존공정과 동등한 수질로 담수 또는 음용수를 생산하면서 에너지소모량을 절감할 수 있는 에너지 절감을 위한 역삼투 해수담수화 시스템에 관한 것이다.The present invention relates to a reverse osmosis process system for producing fresh water or drinking water from sea water, and more particularly, to produce fresh water or drinking water with the same water quality as the existing process when producing fresh water or drinking water from sea water using reverse osmosis. The present invention relates to a reverse osmosis desalination system for energy saving.

[종래기술][Prior art]

일반적으로 해수로부터 담수를 획득하기 위해서는 해수에 용존되어 있거나 부유하는 성분들을 용수 및 음용수 기준에 적합하도록 제거해야 하는 데 해수에 함유되어 있는 성분들은 특정지역을 제외하고는 성상이 거의 일정하다.In general, in order to obtain fresh water from seawater, it is necessary to remove dissolved or suspended components in seawater to meet the water and drinking water standards. The components contained in seawater are almost constant except in certain regions.

해수의 담수화 방법은 크게 증발법과 역삼투법으로 나누어져 있으며, 최근들어 상대적으로 에너지효율이 우수한 역삼투법이 널리 사용되고 있다.The desalination method of seawater is divided into evaporation method and reverse osmosis method. Recently, the reverse osmosis method which is relatively energy efficient has been widely used.

역삼투법은 해수에 함유되어 있는 성분을 고분자 분리막을 이용하여 생산수와 농축수로 분리시키며, 생산수측은 성분농도를 희박하게 하여 용수 및 음용수로 활용하고 농축수는 다시 바다로 배출한다.Reverse osmosis separates the components contained in seawater into produced water and concentrated water using a polymer membrane, and the produced water side makes the concentration of the component thin and utilizes it as drinking water and drinking water and discharges the concentrated water back to the sea.

이러한 과정에서 해수로부터 담수를 생산하기 위해 제거해야할 성분들은 주로 이온성분들로서, 음용수를 기준으로 살펴보면, 1차로 총용존고형물의 양을500ppm 이하로 제거하여야하고, 2차로 총용존고형물의 양을 유발하는 각 이온성분인 Na, Cl, Ca 및 Mg와 같은 경도성분, SO4, B 등을 기준치 이하로 제거해야한다. 기타 음용수기준 등에 포함되어 있는 유기화학물질 및 심미적 영향물질들은 해수에 용존되어 있는 양이 일반적인 용수 및 음용수 기준이하이기 때문에 크게 문제가 되지 않는다.In this process, the components to be removed to produce fresh water from seawater are mainly ionic components. Hardness components such as Na, Cl, Ca, and Mg, SO 4 , B, and the like, which are ionic components, should be removed below the reference value. Organic chemicals and aesthetic influencers included in other drinking water standards are not a problem because the amount of dissolved water in seawater is lower than the standard water and drinking water standards.

이와 같이 해수의 분리 및 정제가 이루어지는 고분자 분리막에서, 해수를 분리하기 위해서는 해수에 용존되어 있는 성분들에 의해 유발되는 삼투압 이상의 압력을 유입되는 해수에 가해주어야 분리가 일어나기 시작한다. 해수의 농도는 일반적으로 3.5% 즉 35,000ppm으로서 이 농도에서 유발되는 삼투압은 약 350psig이다. 즉 해수에서 소량의 담수를 획득하기 위해서는 기본적으로 350psig이상의 압력을 가해주어야 하는 것이다.As described above, in the polymer membrane in which seawater is separated and purified, in order to separate seawater, separation begins to be applied to the incoming seawater by applying a pressure greater than the osmotic pressure caused by the components dissolved in the seawater. The concentration of seawater is typically 3.5% or 35,000 ppm, with an osmotic pressure of about 350 psig. That is, in order to obtain a small amount of fresh water from the sea water, it is necessary to apply a pressure of 350 psig or more.

해수가 가지고 있는 삼투압을 극복하고 담수를 생산하는 데 필요한 구동력으로 모터를 이용하며, 모터의 구동력 크기는 물속에 용존되어 있는 이온성분들과 해수로부터 담수를 획득하는 양, 즉 회수율에 따라 달라진다. 모터의 동력비는 역삼투법으로 생산되는 담수의 비용 중 감가상각비를 제외한 전체 생산비의 60% 이상을 차지하고 있다.The motor is used as a driving force necessary to overcome the osmotic pressure of seawater and produce freshwater, and the magnitude of the driving force of the motor depends on the ionic components dissolved in the water and the amount of freshwater obtained from the seawater, that is, the recovery rate. The power cost of the motor accounts for more than 60% of the total production cost, excluding depreciation, of the freshwater produced by reverse osmosis.

일반적으로 역삼투법을 이용한 해수담수화공정은 도 4에 도시한 바와 같이 바다로부터 취수한 해수(2)를 원수조(4)에 저장하였다가, 해수공급펌프(6)를 이용하여 해수(2)를 모래여과기(8)를 통과시키고, 모래여과기(8)에서 부유물질이 제거된 해수(2)는 역삼투기(10)로 유입되며, 역삼투기(10)는 유입된 해수의 20 ∼ 35%를 담수로 생산한다.In general, in the seawater desalination process using reverse osmosis, seawater (2) taken from the sea is stored in a raw water tank (4), and the seawater (2) is sanded using a seawater supply pump (6). The seawater (2) passed through the filter (8) and the suspended matter is removed from the sand filter (8) flows into the reverse osmosis unit (10), and the reverse osmosis unit (10) receives 20 to 35% of the introduced seawater as fresh water. To produce.

이 때 사용되는 역삼투 해수담수화 시스템의 주공정인 분리막설비는 모듈화된 분리막 6개를 고압의 압력에 견디는 압력용기에 직렬로 장착하여 사용하며, 생산하고자하는 담수량에 따라 분리막을 병렬로 연결하여 생산량을 증가시켜 왔다.The membrane facility, the main process of the reverse osmosis seawater desalination system, is used by mounting six modular separators in series in a pressure vessel that withstands high pressure and connects the membranes in parallel according to the fresh water to be produced. Has been increased.

분리막을 6개 직렬로 연결한 것을 1단이라고 하며, 1단 역삼투공정을 이용하여 해수로부터 1㎥의 담수를 생산하기 위해서는 10kw/㎥ 이상의 에너지를 필요로 한다.The connection of 6 membranes in series is called 1st stage. In order to produce 1m3 of fresh water from seawater using 1st stage reverse osmosis process, energy of 10kw / ㎥ or more is required.

따라서 높은 전력비 부담으로 인하여 국내와 같이 용수 및 음용수의 비용이 낮은 곳에서는 해수 담수화시스템 보급에 어려움이 있다.Therefore, there is a difficulty in spreading the seawater desalination system in places where the cost of water and drinking water is low, such as in Korea, due to the high cost of electricity.

그리고 해수로부터 담수 또는 음용수를 생산하기 위해서는 해수 중에 함유되어 있는 이온성분들을 일정 수준이하로 제거해야 하는 데, 이온제거공정으로 이용되고 있는 역삼투법은 원수에 함유되어 있는 이온농도가 높을수록 투입되는 전력비가 증가되며, 종래 역삼투법을 이용한 해수 담수화시스템의 경우 감각상각비를 제외한 운전비용 2000 ~ 3000원/톤 중 1000 ~ 2000원/톤을 전력비가 차지하여 보급에 어려움이 있다.In order to produce fresh water or drinking water from seawater, the ions contained in seawater must be removed to a certain level or less. The reverse osmosis method used as an ion removal process has a higher power ratio as the concentration of ions contained in raw water increases. In the case of the seawater desalination system using the conventional reverse osmosis method, it is difficult to disseminate the power cost of 1000 ~ 2000 won / ton out of operating costs 2000 ~ 3000 won / ton except the depreciation cost.

본 발명은 상술한 바와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 에너지 절감을 위해 기존보다 높은 압력으로 처리수의 회수율을 높이는 에너지 절감을 위한 역삼투 해수담수화 시스템을 제공하는 데 있다.The present invention is to solve the problems as described above, an object of the present invention is to provide a reverse osmosis desalination system for energy saving to increase the recovery rate of the treated water at a higher pressure than conventional for energy saving.

본 발명의 다른 목적은 역삼투공정을 2단으로 구성하여 고압으로 인한 분리막의 성능저하를 최소화하는 에너지 절감을 위한 역삼투 해수담수화 시스템을 제공하는 데 있다.Another object of the present invention is to provide a reverse osmosis desalination system for energy saving by configuring the reverse osmosis process in two stages to minimize the performance degradation of the separator due to high pressure.

본 발명의 또 다른 목적은 에너지 회수설비를 이용하여 담수를 생산하고 난 후 농축수와 함께 배출되는 압력에너지를 회수하는 공정에서 고압 고회수율로 인한 분리막의 오염을 최소화할 수 있는 에너지 절감을 위한 역삼투 해수담수화 시스템을 제공하는 데 있다.Another object of the present invention is a reverse osmosis for energy saving that can minimize the contamination of the membrane due to high pressure and high recovery rate in the process of recovering the pressure energy discharged with the concentrated water after producing fresh water using the energy recovery facility. To provide a seawater desalination system.

본 발명의 또 다른 목적은 회수율 증가로 인해 동량의 처리수 생산기준 기존시스템 대비 전체 설비규모 축소가 가능하여 투자비의 절감이 가능한 에너지 절감을 위한 역삼투 해수담수화 시스템을 제공하는 데 있다.Still another object of the present invention is to provide a reverse osmosis seawater desalination system for energy saving that can reduce the overall facility size compared to the existing system based on the same amount of treated water due to increased recovery rate.

도 1은 본 발명에 따른 에너지 절감을 위한 역삼투 해수담수화 시스템을 도시한 구성도이고,1 is a block diagram showing a reverse osmosis seawater desalination system for energy saving according to the present invention,

도 2는 본 발명에 따른 해수 담수화시스템과 종래 해수 담수화 장비를 이용한 회수율에 따른 전력량 비교를 도시한 그래프이고,2 is a graph showing a comparison of the amount of power according to the recovery rate using the seawater desalination system and the conventional seawater desalination equipment according to the present invention,

도 3은 본 발명에 따른 해수 담수화시스템과 종래 해수 담수화 장비를 이용한 회수율에 따른 전력량 비교를 백분율로 나타낸 그래프이고,3 is a graph showing the percentage of power comparison according to the recovery rate using the seawater desalination system and the conventional seawater desalination equipment according to the present invention,

도 4는 종래 해수 담수화시스템을 도시한 구성도이다.Figure 4 is a block diagram showing a conventional seawater desalination system.

<< 도면의 주요부분에 대한 부호의 설명 >><< Explanation of symbols for main part of drawing >>

12...해수 20...전처리부12 Seawater 20 Pretreatment

22...원수조 24...해수공급펌프22 ... water tank 24 ... sea water supply pump

26...역세형 여과기 30...설비 보호부26 Backwash filter 30 Equipment protection

32...1차 처리수조 34...공급펌프32 ... Primary treatment tank 34 ... Supply pump

36...보호필터 40...에너지 회수부36.Protective filter 40.Energy recovery unit

42...고압펌프 44...회수펌프42 High pressure pump 44 Recovery pump

50...역삼투부 60...막 세척부50 ... reverse osmosis part 60 ... membrane cleaning part

[과제를 해결하기 위한 수단][Means for solving problem]

상술한 목적을 달성하기 위하여 본 발명은 해수를 유입하여 담수를 생산하는 역삼투 해수담수화 시스템에서, 유입된 해수에 함유된 부유물질을 중공사막이 설치된 역세형 여과기로 걸러내는 전처리부; 역세형 여과기를 통과한 1차 처리수를 1차로 저장하는 1차 처리수조, 공급펌프 및 보호필터가 설치되는 설비 보호부; 설비 보호부를 통과한 1차 처리수를 고압펌프를 이용하여 고압으로 배출시키는 에너지 회수부; 및 고압으로 배출된 1차 처리수가 1단 역삼투기를 통과하여 일부 메인 담수로 전환되고, 배출된 메인 농축수를 2단 역삼투기를 통과시켜 일부 서브 담수로 전환하여 상기 메인 담수와 합류시키며 배출된 서브 농축수를 상기 에너지 회수부로 리턴시키는 역삼투부로 이루어진다.In order to achieve the above object, the present invention is a reverse osmosis desalination system for introducing fresh water into the seawater, the pre-treatment unit for filtering the suspended solids contained in the introduced seawater with a backwash filter equipped with a hollow fiber membrane; A facility protection unit for installing a primary treatment tank, a supply pump, and a protection filter for storing primary treatment water that has passed through the backwash filter first; An energy recovery unit for discharging the primary treated water passing through the facility protection unit at a high pressure using a high pressure pump; And the first treated water discharged at a high pressure passes through a first stage reverse osmosis unit to be converted into some main freshwater, and the discharged main concentrated water is converted into some sub freshwater through a second stage reverse osmosis unit to be combined with the main freshwater and discharged. It is composed of a reverse osmosis unit for returning the sub-concentrated water to the energy recovery unit.

이하 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명한다. 도 1은 본 발명에 따른 에너지 절감을 위한 역삼투 해수담수화 시스템을 도시한 구성도이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 is a block diagram showing a reverse osmosis seawater desalination system for energy saving according to the present invention.

본 발명의 해수 담수화시스템은 역세형 여과기에서 부유물이 걸러진 해수를 1단 역삼투기와 2단 역삼투기로 유입시켜서 담수를 얻고, 2단 역삼투기에서 배출된 농축수로 회수펌프를 회전시켜 그 회전력으로 고압의 1차 처리수를 1단 역삼투기에 유입되도록 하며, 배출된 농축수를 회수하여 역세형 여과기의 중공사막을 세척하게 된다.The seawater desalination system of the present invention obtains fresh water by introducing the seawater filtered by the suspended solids from the backwash filter into the first stage reverse osmosis machine and the second stage reverse osmosis machine, and rotates the recovery pump with the concentrated water discharged from the second stage reverse osmosis machine with the rotational force. The high pressure primary treated water is introduced into the first stage reverse osmosis unit, and the discharged concentrated water is recovered to wash the hollow fiber membrane of the backwash filter.

이와 같은 해수 담수화시스템으로 공급되는 해수(12)는, 먼저 전처리부(20)에서 부유물질이 제거되는데, 전처리부(20)는 운전의 자동화를 위하여 원수조(22)에 저장된 해수를 이송 가압하는 해수공급펌프(24), 및 부유물질을 제거하는 중공사막이 설치된 역세형 여과기(26)로 이루어진다.The seawater 12 supplied to such a seawater desalination system is first removed from the pretreatment unit 20, the pretreatment unit 20 is to transfer and pressurize the seawater stored in the raw water tank 22 for the automation of operation It consists of a seawater supply pump 24 and a backwash filter 26 provided with a hollow fiber membrane for removing suspended matter.

이러한 전처리부(20)에는 유입해수의 압력을 측정하기 위한 압력계, 중공사막을 투과하는 1차 처리수(6)의 유량을 측정하기 위한 유량계, 해수에 함유되어 있는 이온의 양을 전기전도도로 측정하는 전기전도도계, 및 유입해수의 수온을 측정하는 수온계 등과 같은 계측 설비들이 설치된다.The pretreatment unit 20 includes a pressure gauge for measuring the pressure of the inflowing seawater, a flowmeter for measuring the flow rate of the primary treated water 6 passing through the hollow fiber membrane, and an electric conductivity for measuring the amount of ions contained in the seawater. Measurement equipment such as an electrical conductivity meter and a water thermometer for measuring the water temperature of the incoming seawater are installed.

바다의 표면, 심층 또는 해변에 설치한 우물에서 취수된 해수(12)는 먼저 1차로 원수조(22)에 저수된 후 해수공급펌프(24)에 의해 중공사막이 설치된 역세형 여과기(26)로 유입된다.The seawater 12 collected from the wells installed on the surface, deep or beach of the sea is first stored in the raw water tank 22 and then backwashed with a hollow fiber membrane by the seawater supply pump 24. Inflow.

역세형 여과기(26)는 공극크기가 0.001 내지 0.5㎛이고, 폴리설폰(polysulfone), 폴리아크릴로니트릴(polyacrylonitrile), 폴리에틸렌(polyethylene) 및 폴리프로필렌(polypropylene)으로 이루어진 중공사막 군에서 선택되며, 친수성 처리를 한 재질의 막인 것이 바람직하다.The backwash filter 26 has a pore size of 0.001 to 0.5 µm and is selected from the group of hollow fiber membranes consisting of polysulfone, polyacrylonitrile, polyethylene, and polypropylene, and is hydrophilic. It is preferable that it is a film | membrane of the material which processed.

이러한 역세형 여과기(26)에서 걸러진 부유물질은 중공사막 표면에 부착되며 후술하는 막 세척부에 의해 제거된다.The suspended solids filtered in the backwash filter 26 is attached to the surface of the hollow fiber membrane and removed by a membrane washing unit described later.

상술한 바와 같은 전처리부(20)에서 부유물질이 제거된 1차 처리수는 설비 보호부(30)의 구성요소인 1차 처리수조(32)에 1차로 저장된다.The primary treatment water from which the suspended solids are removed from the pretreatment unit 20 as described above is primarily stored in the primary treatment tank 32 which is a component of the facility protection unit 30.

1차 처리수조(32)는 후술하는 역삼투부가 1차 처리수의 유량 부족으로 인하여 가동이 중단됨이 없이 연속 운전이 가능하도록 최소한 30분 이상의 저류 용량을 확보해야 한다.The primary treatment tank 32 should secure a storage capacity of at least 30 minutes so that the reverse osmosis unit to be described later can be continuously operated without stopping the flow due to the insufficient flow rate of the primary treatment water.

그리고 설비 보호부(30)는 1차 처리수를 고압으로 공급하는 후술하는 에너지회수부와 역삼투부의 보호를 위해서 1차 처리수조(32)에 연속해서 연결되는 공급펌프(34)와 보호필터(36)를 포함한다.In addition, the facility protection unit 30 is a supply pump 34 and a protective filter continuously connected to the primary treatment water tank 32 to protect the energy recovery unit and reverse osmosis unit to supply the primary treatment water at a high pressure ( 36).

공급펌프(34)의 가동은 1차 처리수조(32)에 설치된 수위계(32a)와 PLC(32b)에 의하여 조정되며, 공급펌프(34)는 보호필터(36)를 투과한 1차 처리수가 일정한 압력 이상으로 후술하는 에너지 회수부에 유입되도록 한다.The operation of the supply pump 34 is controlled by the water level meter 32a and the PLC 32b installed in the primary treatment tank 32, and the supply pump 34 has a constant number of primary treatments that have passed through the protective filter 36. More than the pressure to be introduced into the energy recovery unit described later.

에너지 회수부(40)는 1차 처리수를 후술하는 역삼투부에 고압으로 이송시키는 고압펌프(42)와, 회수된 서브 농축수를 이용하여 분기(分岐)된 1차 처리수를 고압으로 이송시키는 회수펌프(44)로 이루어진다.The energy recovery unit 40 transfers the primary treated water at high pressure to the high pressure pump 42 for transferring the primary treated water to the reverse osmosis unit, which will be described later, and the recovered sub-condensed water. The recovery pump 44 is made.

고압펌프(42)의 가동은 고압펌프(42)의 전단에 설치된 압력계(42a)가 1차 처리수의 압력을 감지함으로써 기동하며, 만약 전술한 수위계(32a)와 PLC(32b)의 오작동으로 인하여 1차 처리수의 이송없이 공급펌프(34)가 가동되면 압력계(42a)가 이에 해당하는 압력을 감지하여 후술하는 고압펌프의 가동을 중지시킨다.The operation of the high pressure pump 42 is started by the pressure gauge 42a installed at the front of the high pressure pump 42 detecting the pressure of the primary treated water, and if the above-described water level gauge 32a and the PLC 32b are malfunctioning, When the supply pump 34 is operated without the transfer of the first treatment water, the pressure gauge 42a senses the corresponding pressure to stop the operation of the high pressure pump described later.

회수펌프(44)는 고압펌프(42)와 함께 1차 처리수를 고압으로 역삼투부(50)에 공급하게 되는데, 고압펌프(42)가 가동되기 전인 가동초기에는 보호필터(36)를 통과한 1차 처리수가 회수펌프(44)로 1차적으로 유입되어 회수펌프(44)를 가동시키고 후술하는 역삼투부(50)에서 배출된 서브 농축수도 회수펌프(44)의 터빈을 가동시킨다.The recovery pump 44 supplies the first treatment water to the reverse osmosis unit 50 at a high pressure together with the high pressure pump 42, which passes through the protection filter 36 at the beginning of operation before the high pressure pump 42 is operated. The primary treated water is first introduced into the recovery pump 44 to operate the recovery pump 44 and to operate the turbine of the sub-condensed water discharged from the reverse osmosis unit 50 to be described later.

즉, 고압의 서브 농축수가 가진 압력에너지는 회수펌프(44)를 통과하면서 기계적 에너지로 전환되어 공급펌프(34)를 통해 유입되는 1차 처리수를 가압하게 되는 것이다.That is, the pressure energy of the sub-condensate of high pressure is converted into mechanical energy while passing through the recovery pump 44 to pressurize the primary treated water flowing through the supply pump 34.

1차 처리수의 충분한 흐름이 이루어진 후, 본 발명의 특징에 따라 설비 보호부(30)를 통과한 1차 처리수는 고압펌프(42)와 회수펌프(44)로 균등하게 배분된다.After sufficient flow of the primary treated water is made, the primary treated water that has passed through the facility protection unit 30 according to the features of the present invention is evenly distributed to the high pressure pump 42 and the recovery pump 44.

이에 따라 고압펌프(42)와 회수펌프(44)를 통과한 1차 처리수는 합류된 후 후술하는 역삼투부(50)에 고압으로 공급되며, 압력의 증가에 따라 역삼투부(50)에서는 담수가 생산되기 시작한다. 담수의 생산량 및 회수율은 초기 시스템 설계시 결정된 사양을 기준으로 설계된 회수펌프(44)의 서브 농축수의 유입에 의해 결정된다.Accordingly, the first treated water passing through the high pressure pump 42 and the recovery pump 44 is supplied at a high pressure to the reverse osmosis unit 50 to be described later, and the fresh water from the reverse osmosis unit 50 according to the increase in pressure. To be produced. Freshwater production and recovery rates are determined by the inflow of subconcentrated water from the recovery pump 44 designed based on the specifications determined during initial system design.

역삼투부(50)는 1단 역삼투기(52)와 2단 역삼투기(54)로 이루어지며, 1단 역삼투기(52)로 유입된 고압의 1차 처리수는 1단 역삼투기(52)를 통과하면서 메인 담수(56a)로 되고, 나머지는 메인 농축수(56b)로 배출되며, 배출된 메인 농축수(56b)는 다시 2단 역삼투기(54)를 통과하면서 서브 담수(58a)로 전환되고 나머지는 서브 농축수(58b)로 배출되어 전술한 회수펌프(44)로 유입된다.Reverse osmosis unit 50 is composed of a first stage reverse osmosis unit 52 and a second stage reverse osmosis unit 54, the high-pressure primary treatment water introduced into the first stage reverse osmosis unit 52 is a first stage reverse osmosis unit 52 While passing through the main fresh water 56a, the remainder is discharged to the main concentrated water 56b, and the discharged main concentrated water 56b is converted into the sub fresh water 58a while passing through the two-stage reverse osmosis unit 54. The remainder is discharged to the sub-concentrated water 58b and introduced to the above-described recovery pump 44.

그래서 두 역삼투기(52)(54)에서 얻어진 메인 담수(56a)와 서브 담수(58a)는 합류되어 용수(用水) 또는 음용수로 사용된다.Thus, the main fresh water 56a and the sub fresh water 58a obtained from the two reverse osmosis units 52 and 54 are combined and used as drinking water or drinking water.

음용수로 사용시 해수 중에 함유되어 있는 보론(B) 이온은 역삼투 분리막에서 제거율이 낮아 2단 역삼투기(54)에서 얻어진 서브 담수(58a)에서는 음용수의 기준치를 초과할 수 있으므로 이 때에는 2단 역삼투기(54)의 서브 담수(58a)를 1차 처리수조(32)로 순환시켜 1단 역삼투기(52)에서 재처리하여 음용수 수질 기준으로 담수를 생산할 수 있다. 2단 역삼투기(54)의 처리수(58a)를 1차 처리수조(32)로 순환시킬 경우에는 담수의 모든 생산량이 1단 역삼투기(52)에서 생산되어진다.When used as drinking water, boron (B) ions contained in seawater have a low removal rate in the reverse osmosis membrane, so the sub freshwater (58a) obtained in the two-stage reverse osmosis unit (54) may exceed the standard value of drinking water. The sub fresh water 58a of 54 may be circulated to the primary treatment tank 32 and reprocessed in the first stage reverse osmosis machine 52 to produce fresh water based on drinking water quality standards. When the treated water 58a of the two-stage reverse osmosis machine 54 is circulated to the primary treated water tank 32, all of the fresh water is produced by the first-stage reverse osmosis machine 52.

마지막으로 막 세척부(60)에 대해 설명하면, 막 세척부(60)는 회수펌프(44)에서 배출된 역세수(서브 농축수)를 이용하게 되며, 회수펌프(44)를 거친 역세수(66a)를 저장하는 역세수조(62), 역세수를 이송하는 역세펌프(60), 역세수조(62)와 역세펌프(64)를 효과적으로 제어하기 위한 도시 생략된 타이머, PLC 및 인버터로 이루어진다.Finally, the membrane washing unit 60, the membrane washing unit 60 is to use the backwash water (sub-concentrated water) discharged from the recovery pump 44, the backwash water (through the recovery pump 44) A backwash tank 62 storing 66a), a backwash pump 60 transferring backwash water, a timer, a PLC, and an inverter (not shown) for effectively controlling the backwash tank 62 and the backwash pump 64.

역세펌프(64)에 의해 이송된 역세수(66a)는 역세형 여과기(26)의 설치된 중공사막의 중심부로 유입된 후 외측으로 관통되면서 중공사막의 표면에 부착된 부유물질을 세척하게 된다.The backwash water 66a transferred by the backwash pump 64 flows into the center of the hollow fiber membrane installed in the backwash filter 26 and then penetrates to the outside to wash the suspended matter attached to the surface of the hollow fiber membrane.

이와 함께 역세형 여과기(26)의 하부에 설치된 송풍기(70)는 역세형 여과기(26)의 중공사막 외측으로 공기를 폭기하여 2차로 부유물질을 털어낸다.In addition, the blower 70 installed in the lower portion of the backwash filter 26 blows air out of the hollow fiber membrane of the backwash filter 26 to shake off the suspended matter secondarily.

이와 같이 구성되는 본 발명에 따른 에너지 절감을 위한 역삼투 해수담수화 시스템은 다음과 같은 작용을 나타낸다.The reverse osmosis seawater desalination system for energy saving according to the present invention configured as described above has the following effects.

먼저 유입된 해수(12)를 원수조(22)에 저장하고 있다가, 해수공급펌프(24)를 이용하여 역세형 여과기(26)로 해수(12)를 공급시킨다.First, the introduced seawater 12 is stored in the raw water tank 22, and then the seawater 12 is supplied to the backwash filter 26 using the seawater supply pump 24.

해수(12)가 역세형 여과기(26)를 통과하면서 함유된 부유물질이 중공사막에 의해 걸러지고, 걸러진 부유물질은 막 세척부(60)의 역세펌프(64)로부터 공급되는 역세수(66a)에 의해 세척되며, 아울러 송풍기(70)에서 송풍된 공기도 중공사막의 외측을 세척하게 된다.As the seawater 12 passes through the backwash filter 26, the suspended solids are filtered by the hollow fiber membrane, and the filtered suspended matter is supplied from the backwash pump 64 of the membrane washing unit 60. In addition, the air blown by the blower 70 also washes the outside of the hollow fiber membrane.

즉, 해수공급펌프(24)는 0.5 내지 24시간동안 가동시켜 1차 처리수를 생산하고, 30초 내지 2분간 해수공급펌프(24)의 가동을 중단시키며, 이때 역세공급펌프(24)를 이용하여 역세형 여과기(26)의 중공사막 중심부로 역세를 위한 역세수를 주입하여 1차로 막 표면의 부유물질을 제거하고, 2차로 송풍기(70)에 의해 역세형 여과기(26) 내로 유입된 공기는 중공사막 표면을 흔들어 잔류 부유물질을 제거함으로써 중공사막의 투과 성능을 회복시킨다.That is, the seawater supply pump 24 operates for 0.5 to 24 hours to produce primary treated water, and stops the operation of the seawater supply pump 24 for 30 seconds to 2 minutes, at which time the backwash supply pump 24 is used. Injecting the backwash water for backwashing to the center of the hollow fiber membrane of the backwashing filter (26) to remove the floating material on the membrane surface first, and the air introduced into the backwashing filter (26) by the second blower (70) The permeation performance of the hollow fiber membrane is restored by shaking the surface of the hollow fiber membrane to remove residual suspended matter.

역세형 여과기(26)에서 부유물질이 제거된 1차 처리수는 1차 처리수조(32)에 저장되었다가 공급펌프(34)의 가동으로 보호필터(36)를 경유하여 에너지 회수부(40)의 회수펌프(44)로 유입된다.The primary treated water from which the suspended solids are removed from the backwash filter 26 is stored in the primary treated water tank 32, and the energy recovery unit 40 is operated via the protection filter 36 through the operation of the supply pump 34. Flows into the recovery pump (44).

이에 따라 회수펌프(44)의 가동이 이루어지며, 아울러 역삼투부(50)에서 배출된 서브 농축수도 회수펌프(44)의 터빈을 가동시켜 1차 처리수를 가압하게 된다.Accordingly, the recovery pump 44 is operated, and the sub-condensed water discharged from the reverse osmosis unit 50 also operates the turbine of the recovery pump 44 to pressurize the primary treated water.

1차 처리수의 충분한 흐름이 이루어지면, 본 발명의 특징에 따라 설비 보호부(30)를 통과한 1차 처리수는 고압펌프(42)와 회수펌프(44)로 균등하게 배분되고, 고압펌프(42)와 회수펌프(44)를 통과한 1차 처리수는 합류된 후 1단 역삼투기(52)에 고압으로 공급된다.When sufficient flow of the primary treated water is made, the primary treated water passing through the facility protection unit 30 according to the characteristics of the present invention is equally distributed to the high pressure pump 42 and the recovery pump 44, and the high pressure pump The primary treatment water passed through the 42 and the recovery pump 44 is supplied to the first stage reverse osmosis unit 52 at high pressure.

1단 역삼투기(52)에서 압력이 증가됨에 따라 메인 담수(56a)가 생산되기 시작하고, 담수되고 남은 메인 농축수(56b)는 다시 2단 역삼투기(54)로 유입된다.As the pressure is increased in the first stage reverse osmosis unit 52, the main fresh water 56a starts to be produced, and the remaining fresh main water 56b is introduced into the second stage reverse osmosis unit 54.

2단 역삼투기(54)에서도 서브 담수(58a)가 생산되며, 담수되지 않은 남은 서브 농축수(58b)는 회수펌프(44)로 유입되어 터빈을 회전시키고 나서, 역세수조(62)로 유입된다.The sub fresh water 58a is also produced in the two-stage reverse osmosis machine 54, and the remaining sub-condensed water 58b is introduced into the recovery pump 44 to rotate the turbine and then flows into the backwash tank 62. .

이와 같은 해수담수화 과정에서 1단 역삼투기에 공급되는 해수의 압력이 70kg/㎠G 이상의 고압을 가하게 되며, 좀 더 바람직하게는 70 내지 100㎏/㎠G 이하의 압력을 가하게 된다.In the seawater desalination process, the pressure of the seawater supplied to the first stage reverse osmosis unit is applied at a high pressure of 70 kg / cm 2 G or more, and more preferably 70 to 100 kg / cm 2 G or less.

이러한 압력하에서 전체 유입해수에 대한 생산담수의 회수율은 50 내지 65%정도인데, 이는 1단 역삼투기의 회수율이 30 내지 60%이고, 2단 역삼투기의 회수율은 5 내지 20%이기 때문이다.Under these pressures, the recovery of freshwater produced to the entire influent seawater is about 50 to 65%, because the recovery rate of the first stage reverse osmosis machine is 30 to 60% and the recovery rate of the two stage reverse osmosis machine is 5 to 20%.

특히 회수율이 50% 일 때를 예를 들어 설명하면, 1단 회수율이 30%이면 2단 회수율은 20%이고, 1단 회수율이 35%이면 2단 회수율은 15%이고, 1단 회수율이 40%이면 2단 회수율은 10%이고, 1단 회수율이 45%이면 2단 회수율은 5%로 된다.In particular, when the recovery rate is 50%, for example, the first stage recovery rate is 30%, the second stage recovery rate is 20%, and the first stage recovery rate is 35%, the second stage recovery rate is 15%, and the first stage recovery rate is 40%. The second stage recovery rate is 10%, and the second stage recovery rate is 5% when the first stage recovery rate is 45%.

한편, 역세수조(62)에 저장된 역세수는 역세펌프(64)에 의해 역세형여과기(26)로 공급되어 중공사막의 표면에 부착된 부유물질을 세척하게 된다.Meanwhile, the backwash water stored in the backwash tank 62 is supplied to the backwash filter 26 by the backwash pump 64 to wash the suspended matter attached to the surface of the hollow fiber membrane.

이와 같은 과정에서 담수의 생산량 및 회수율은 초기 시스템 설계시 결정된 사양을 기준으로 설계된 회수펌프(44)의 서브 농축수(58b)의 유입에 의해 결정되는 바, 본 발명의 특징에 따라 도 2 및 도 3에 도시한 바와 같은 효과를 나타낸다.In this process, the production and recovery rate of fresh water is determined by the inflow of the sub-concentrated water 58b of the recovery pump 44 designed based on the specifications determined at the time of initial system design. The effect as shown in 3 is shown.

기존 1단 역삼투기가 적용된 경우에는 담수의 35% 회수율에서 12.06kW/톤의 전력소모량이 필요했으나, 본 발명의 특징에 따라 적용된 2단 역삼투기가 적용된 경우에는 50%의 회수율을 얻는 과정에서 5.26kW/톤의 전력소모량으로 낮추게 되어, 도 3에 도시한 바와 같이 백분율로 비교해 보면 에너지 절감율이 50% 이상 절감됨을 확인할 수 있다.In case of applying the conventional single stage reverse osmosis machine, power consumption of 12.06kW / ton was required at 35% recovery rate of fresh water, but 5.26 in the process of obtaining 50% recovery rate when the applied two stage reverse osmosis unit was applied according to the characteristics of the present invention. Lowering the power consumption of kW / ton, as shown in Figure 3 can be seen that the energy saving rate is reduced by more than 50% compared to the percentage.

이상에서 살펴본 바와 같이 본 발명에 의한 에너지 절감을 위한 역삼투 해수담수화 시스템은 역삼투기를 2단으로 적용하여 에너지 소비량을 50% 이상 줄여서 에너지 절감을 실현하였다.As described above, the reverse osmosis seawater desalination system for energy saving according to the present invention realizes energy saving by reducing the energy consumption by 50% or more by applying reverse osmosis in two stages.

즉, 기존의 담수화시스템에서는 해수의 회수율이 50 내지 70㎏/㎠G 이하의 압력에서 20 내지 35% 정도였으나, 본 발명의 담수화시스템에서는 70㎏/㎠G 이상의 고압을 가하여 50% 이상의 회수율을 나타낸다.That is, in the existing desalination system, the recovery rate of seawater was about 20 to 35% at a pressure of 50 to 70 kg / cm 2 G or less, but the desalination system of the present invention shows a recovery rate of 50% or more by applying a high pressure of 70 kg / cm 2 G or more. .

또한 1단 역삼투기의 농축수를 원수로 이용하여 처리수를 생산하는 2단 역삼투방식을 도입하여, 50 내지 70㎏/㎠G 이하의 압력에서 사용하던 분리막이 고압에서 성능이 떨어지는 단점을 보완하게 되었다.In addition, by introducing a two-stage reverse osmosis system that produces treated water using the concentrated water of the first stage reverse osmosis machine, the membrane used at a pressure of 50 to 70 kg / ㎠G or less compensates for the disadvantage that the performance falls at high pressure. Was done.

아울러 계외로 배출되는 고압 농축수의 압력에너지를 에너지 회수부를 적용하여 회수함으로써 전력비용을 300원/톤이하로 절감하는 효과가 있다.In addition, by applying the energy recovery unit to recover the pressure energy of the high-pressure concentrated water discharged to the outside of the system has the effect of reducing the power cost to less than 300 won / ton.

그리고, 회수율 상승으로 인한 전처리 규모의 축소로 같은 생산규모의 기존 1단 역삼투시스템에 비해 투자비를 절감할 수 있다.In addition, by reducing the pretreatment scale due to the increase in the recovery rate, it is possible to reduce the investment cost compared to the existing one-stage reverse osmosis system of the same production scale.

또한, 전처리로 역세형 여과기를 적용하여 분리막의 오염을 감소시켜 시스템의 운전을 원활하게 수행할 수 있다.In addition, it is possible to smoothly operate the system by reducing the contamination of the membrane by applying a backwash filter as a pretreatment.

Claims (8)

해수를 유입하여 담수를 생산하는 역삼투법을 이용한 해수 담수화시스템에 있어서,In the seawater desalination system using a reverse osmosis method to inflow seawater to produce fresh water, 유입된 해수에 함유된 부유물질을 중공사막이 설치된 역세형 여과기로 걸러내는 전처리부;A pretreatment unit for filtering the suspended solids contained in the introduced seawater with a backwash filter provided with a hollow fiber membrane; 상기 역세형 여과기를 통과한 1차 처리수를 1차로 저장하는 1차 처리수조, 공급펌프 및 보호필터가 설치되는 설비 보호부;A facility protection unit for installing a primary treatment tank, a supply pump, and a protection filter for storing primary treatment water that has passed through the backwash filter first; 상기 설비 보호부를 통과한 1차 처리수를 고압펌프를 이용하여 고압으로 배출시키는 에너지 회수부; 및An energy recovery unit for discharging the first treated water passing through the facility protection unit at a high pressure by using a high pressure pump; And 상기 고압으로 배출된 1차 처리수가 1단 역삼투기를 통과하여 일부 메인 담수로 전환되고, 배출된 메인 농축수를 2단 역삼투기를 통과시켜 일부 서브 담수로 전환하여 상기 메인 담수와 합류시키며 배출된 서브 농축수를 상기 에너지 회수부로 리턴시키는 역삼투부The primary treated water discharged at the high pressure passes through the first stage reverse osmosis unit to be converted into some main fresh water, and the discharged main concentrated water is passed through the second stage reverse osmosis unit to be converted into some sub freshwater to join the main fresh water and discharged. Reverse osmosis unit for returning sub-concentrated water to the energy recovery unit 를 포함하는 것을 특징으로 하는 에너지 절감을 위한 역삼투 해수담수화 시스템.Reverse osmosis desalination system for energy savings comprising a. 제 1 항에 있어서, 상기 에너지 회수부는,The method of claim 1, wherein the energy recovery unit, 상기 서브 농축수가 유입되는 압력을 이용하여 상기 보호필터를 통과한 1차 처리수로부터 바이패스된 1차 처리수를 고압으로 전환시킨 후, 상기 고압펌프에서배출된 해수와 합류시키는 회수펌프를 포함하는 것을 특징으로 하는 에너지 절감을 위한 역삼투 해수담수화 시스템.And a recovery pump for converting the primary treated water bypassed from the primary treated water passing through the protective filter to a high pressure by using the pressure of the sub-concentrated water, and then joining the seawater discharged from the high pressure pump. Reverse osmosis desalination system for energy saving, characterized in that. 제 2 항에 있어서,The method of claim 2, 상기 회수펌프를 빠져 나온 역세수를 역세수조에 저장하였다가 역세 펌프를 이용하여 상기 중공사막의 중심부로 공급함으로써 상기 중공사막 표면의 부유물질을 제거하는 막 세척부를 포함하는 것을 특징으로 하는 에너지 절감을 위한 역삼투 해수담수화 시스템.Energy saving characterized in that it comprises a membrane cleaning unit for storing the backwash water exiting the recovery pump in a backwash tank to supply to the center of the hollow fiber membrane by using a backwash pump to remove suspended matter on the surface of the hollow fiber membrane Reverse osmosis desalination system for. 제 3 항에 있어서,The method of claim 3, wherein 상기 중공사막의 외측으로 공기를 송풍하는 송풍기가 상기 역세형 여과기의 하부에 설치되는 것을 특징으로 하는 에너지 절감을 위한 역삼투 해수담수화 시스템.Reverse osmosis desalination system for energy saving, characterized in that the blower for blowing air to the outside of the hollow fiber membrane is installed in the lower portion of the backwash filter. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4, 상기 1단 역삼투기에 공급되는 해수의 압력이 70 내지 100㎏/㎠G 이하에서 전체 유입해수에 대한 생산담수의 회수율이 50 내지 65%인 것을 특징으로 하는 에너지 절감을 위한 역삼투 해수담수화 시스템.The reverse osmosis seawater desalination system for energy saving, characterized in that the recovery rate of the production freshwater for the total inflow of seawater at a pressure of 70 to 100kg / ㎠G or less supplied to the first stage reverse osmosis. 제 5 항에 있어서,The method of claim 5, 상기 1단 역삼투기의 회수율은 30 내지 60%이고, 상기 2단 역삼투기의 회수율은 5 내지 20%인 것을 특징으로 하는 에너지 절감을 위한 역삼투 해수담수화 시스템.Recovery rate of the first stage reverse osmosis is 30 to 60%, recovery rate of the reverse osmosis desalination system for energy savings, characterized in that 5 to 20%. 제 1 항 또는 제 6 항에 있어서,The method according to claim 1 or 6, 상기 중공사막의 공극 크기가 0.001 내지 0.5㎛인 것을 특징으로 하는 에너지 절감을 위한 역삼투 해수담수화 시스템.Reverse osmosis desalination system for energy saving, characterized in that the pore size of the hollow fiber membrane is 0.001 to 0.5㎛. 제 7 항에 있어서,The method of claim 7, wherein 상기 중공사막의 재질은 폴리설폰, 폴리아크릴로니트릴, 폴리에틸렌 및 폴리프로필렌으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 에너지 절감을 위한 역삼투 해수담수화 시스템.The material of the hollow fiber membrane is a reverse osmosis desalination system for energy saving, characterized in that selected from the group consisting of polysulfone, polyacrylonitrile, polyethylene and polypropylene.
KR10-2001-0032795A 2001-06-12 2001-06-12 System making fresh water from sea water using revertse osmosis KR100426724B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0032795A KR100426724B1 (en) 2001-06-12 2001-06-12 System making fresh water from sea water using revertse osmosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0032795A KR100426724B1 (en) 2001-06-12 2001-06-12 System making fresh water from sea water using revertse osmosis

Publications (2)

Publication Number Publication Date
KR20020094526A true KR20020094526A (en) 2002-12-18
KR100426724B1 KR100426724B1 (en) 2004-04-08

Family

ID=27708725

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0032795A KR100426724B1 (en) 2001-06-12 2001-06-12 System making fresh water from sea water using revertse osmosis

Country Status (1)

Country Link
KR (1) KR100426724B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672844B1 (en) * 2005-02-04 2007-01-22 주식회사 그린웰 Energy decreasing type fresh water making system from seawater
KR100740302B1 (en) * 2003-07-14 2007-07-18 주식회사 코오롱 A method of pretreatment for desalinating saltwater
EP2351711A4 (en) * 2008-11-28 2012-05-23 Kobelco Eco Solutions Co Ltd Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
KR200468537Y1 (en) * 2012-05-29 2013-08-19 주식회사 크로시스 Apparatus for continuous closed circuit desalination by reverse osmosis using counter pressure remained in circulated concentrate
WO2016036010A1 (en) * 2014-09-05 2016-03-10 임운영 Seawater preprocessing device for seawater desalination and seawater preprocessing method
CN106517596A (en) * 2016-12-22 2017-03-22 重庆市沃利克环保设备有限公司 Reverse osmosis seawater desalination system and treatment process implemented by same
CN110498479A (en) * 2019-09-21 2019-11-26 佛山市云米电器科技有限公司 A kind of reverse osmosis filter element device of dual-membrane type and a kind of water purifier
CN112694180A (en) * 2020-11-27 2021-04-23 燕山大学 Highly integrated reverse osmosis seawater desalination system
KR20210107214A (en) * 2020-02-21 2021-09-01 국민대학교산학협력단 Reverse osmosis desalination system and method for controlling energy consumption in the same
CN113979512A (en) * 2021-11-12 2022-01-28 浙江天地环保科技股份有限公司 Reverse osmosis concentrated water gradient utilization system
CN114853120A (en) * 2022-05-09 2022-08-05 自然资源部天津海水淡化与综合利用研究所 System for producing water according to qualities and synchronously concentrating reverse osmosis seawater
KR20230086835A (en) 2021-12-08 2023-06-16 한국건설기술연구원 Sea water desalting system for prodeced water of variable treatment type, and variable operation method for the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101111702B1 (en) * 2011-03-23 2012-02-14 최중인 Seawater desalination system control method according to reverse osmosis
KR101471418B1 (en) * 2013-07-05 2014-12-11 재단법인 포항산업과학연구원 Seawater desalinating apparatus and method of the same
KR102075140B1 (en) 2018-12-28 2020-02-10 주식회사 한화건설 Two stage reverse osmosis process design support system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531459A (en) * 1978-08-28 1980-03-05 Futoshi Norimura Sea water desalination apparatus of two-stage permeation system
JPH08108048A (en) * 1994-10-12 1996-04-30 Toray Ind Inc Reverse osmosis separator and reverse osmosis separating method
KR100221225B1 (en) * 1996-10-16 1999-10-01 지은상 Apparatus for brine conversion
JPH10128325A (en) * 1996-10-31 1998-05-19 Kurita Water Ind Ltd Seawater desalination apparatus
JP2000167358A (en) * 1998-12-08 2000-06-20 Nitto Denko Corp Membrane separation system and membrane separation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740302B1 (en) * 2003-07-14 2007-07-18 주식회사 코오롱 A method of pretreatment for desalinating saltwater
KR100672844B1 (en) * 2005-02-04 2007-01-22 주식회사 그린웰 Energy decreasing type fresh water making system from seawater
EP2351711A4 (en) * 2008-11-28 2012-05-23 Kobelco Eco Solutions Co Ltd Fresh water production method, fresh water production apparatus, method for desalinating sea water into fresh water, and apparatus for desalinating sea water into fresh water
KR200468537Y1 (en) * 2012-05-29 2013-08-19 주식회사 크로시스 Apparatus for continuous closed circuit desalination by reverse osmosis using counter pressure remained in circulated concentrate
WO2016036010A1 (en) * 2014-09-05 2016-03-10 임운영 Seawater preprocessing device for seawater desalination and seawater preprocessing method
CN106517596A (en) * 2016-12-22 2017-03-22 重庆市沃利克环保设备有限公司 Reverse osmosis seawater desalination system and treatment process implemented by same
CN110498479A (en) * 2019-09-21 2019-11-26 佛山市云米电器科技有限公司 A kind of reverse osmosis filter element device of dual-membrane type and a kind of water purifier
KR20210107214A (en) * 2020-02-21 2021-09-01 국민대학교산학협력단 Reverse osmosis desalination system and method for controlling energy consumption in the same
CN112694180A (en) * 2020-11-27 2021-04-23 燕山大学 Highly integrated reverse osmosis seawater desalination system
CN113979512A (en) * 2021-11-12 2022-01-28 浙江天地环保科技股份有限公司 Reverse osmosis concentrated water gradient utilization system
KR20230086835A (en) 2021-12-08 2023-06-16 한국건설기술연구원 Sea water desalting system for prodeced water of variable treatment type, and variable operation method for the same
CN114853120A (en) * 2022-05-09 2022-08-05 自然资源部天津海水淡化与综合利用研究所 System for producing water according to qualities and synchronously concentrating reverse osmosis seawater
CN114853120B (en) * 2022-05-09 2023-09-08 自然资源部天津海水淡化与综合利用研究所 System for separating and producing water and synchronously concentrating reverse osmosis seawater

Also Published As

Publication number Publication date
KR100426724B1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
KR100426724B1 (en) System making fresh water from sea water using revertse osmosis
KR100864587B1 (en) Method and apparatus for disposing wastewater in digital textile printing
US20160040522A1 (en) Production of injection water by coupling direct-osmosis methods with other methods of filtration
Durham et al. Membrane pretreatment of reverse osmosis: long-term experience on difficult waters
JPH08108048A (en) Reverse osmosis separator and reverse osmosis separating method
JP2007130523A (en) Membrane washing method for water treatment system
US20110315612A1 (en) Desalination apparatus and method of cleaning the same
CN111573971A (en) System and method for recycling urban reclaimed water by using full-membrane method
KR100672844B1 (en) Energy decreasing type fresh water making system from seawater
JP2876978B2 (en) Water purification method
Ahn et al. Application of microfiltration with a novel fouling control method for reuse of wastewater from a large-scale resort complex
CN100537464C (en) Method for reclaiming and utilizing paper-making industrial waste water
JP2024032980A (en) Operational method of reverse osmosis membrane
Zhang et al. Pilot test of UF pretreatment prior to RO for cooling tower blowdown reuse of power plant
JP2009273973A (en) Seawater desalination system by membrane treatment
Rychlewska et al. The use of polymeric and ceramic ultrafiltration in biologically treated coke oven wastewater polishing
JP2002361054A (en) Method for washing membrane filtration apparatus
JP2002085941A (en) Fresh water making process and fresh water maker
KR101305747B1 (en) Hybrid Seawater Desalination Apparatus and Process without Concentrate Discharge in Reverse Osmosis Process
CN201704157U (en) Integrated field purified water and softened water processing system
CN213416590U (en) System for recycling urban reclaimed water by using full membrane method
KR101806144B1 (en) Desalination system using controlled forward osmosis and reverse osmosis
CN108128848A (en) A kind of novel water purification processing method
Chian et al. Reverse osmosis technology for desalination
JPH09276864A (en) Seawater treatment apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161226

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 17