KR20020094344A - Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent - Google Patents

Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent Download PDF

Info

Publication number
KR20020094344A
KR20020094344A KR1020010032449A KR20010032449A KR20020094344A KR 20020094344 A KR20020094344 A KR 20020094344A KR 1020010032449 A KR1020010032449 A KR 1020010032449A KR 20010032449 A KR20010032449 A KR 20010032449A KR 20020094344 A KR20020094344 A KR 20020094344A
Authority
KR
South Korea
Prior art keywords
desulfurization
regeneration
manganese ore
vol
present
Prior art date
Application number
KR1020010032449A
Other languages
Korean (ko)
Inventor
김성현
윤여일
Original Assignee
학교법인고려중앙학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인고려중앙학원 filed Critical 학교법인고려중앙학원
Priority to KR1020010032449A priority Critical patent/KR20020094344A/en
Publication of KR20020094344A publication Critical patent/KR20020094344A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/865Simultaneous elimination of the components characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Industrial Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE: A desulfurization method using natural manganese ore in coal gasification process and a method for regenerating desulfurizing agent are provided. CONSTITUTION: In a regenerating method of desulfurizing agent using natural manganese ore for removing sulfuretted hydrocarbon from gas stream from coal gasification process at 350 to 550 deg.C, the method is characterized in that a regeneration gas containing H2O 5 to 30 vol.%, O2 2 to 10 vol.%, NH3 0.5 to 1.5 vol.%, and N2 58.5 to 92.5 vol.% is used to regenerate exhausted desulfurizing agent in a flow rate of 1000 ml/min at 1 atm.

Description

천연망간광석을 이용한 탈황 및 재생방법{Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent}Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent}

본 발명은 천연망간광석을 이용한 탈황 및 재생방법에 관한 것이며, 더욱 상세하게는 기존의 아연계 탈황제보다 저렴하며 탈황성능 또한 우수한 천연망간광석 탈황제를 황화반응 후 중저온 영역에서 재생반응을 할 때 금속산화물로 재생되는 반응보다 황화합물 형성반응 속도가 우세한 열역학적 성질을 새로운 재생가스로 산화반응이 더 우세하도록 개선한 천연망간광석을 이용한 탈황 및 재생방법에 관한 것이다.The present invention relates to a desulfurization and regeneration method using a natural manganese ore, and more particularly, when a natural manganese ore desulfurization agent is inexpensive and excellent in desulfurization performance than a conventional zinc-based desulfurization agent when the regeneration reaction is performed in a low-temperature region after sulfidation, The present invention relates to a method for desulfurization and regeneration using natural manganese ores, in which the thermodynamic properties of sulfur compound formation reactions are superior to those of oxides.

대체 에너지 개발 기술 중에 하나인 석탄 이용 기술은 매장량이 풍부하고 세계적으로 광범위하게 분포하고 있으므로 가까운 미래에 유망한 기술이라고 할 수 있다. 석탄을 효율적으로 이용하기 위해서는 환경오염물의 배출을 최소화 할 수 있는 공정기술이 요구되는데 이러한 기술 중 하나가 석탄가스화 복합발전기술이다.Coal-using technology, one of the alternative energy development technologies, is a promising technology in the near future due to its rich reserves and wide distribution worldwide. In order to use coal efficiently, process technology that can minimize the emission of environmental pollutants is required. One of these technologies is coal gasification combined cycle technology.

석탄가스화복합발전 공정은 석탄가스화, 고온가스정제 및 발전부분으로 구성되어 있다. 본 발명에 관련된 고온가스 정제부분의 기술 중 탈황기술은 습식탈황과 건식탈황 방법으로 분류할 수 있다. 이 중 습식탈황기술은 낮은온도로 인한 열손실이 크고 폐수발생이 많으나 고온건식탈황기술은 고온에서 가스를 직접처리함으로써 가스냉각에 따른 타르의 응축방지가 가능하고 열효율이 높은 장점을 가지고 있다.The coal gasification combined cycle process consists of coal gasification, hot gas purification and power generation. Desulfurization technology of the hot gas purification portion technology related to the present invention can be classified into wet desulfurization and dry desulfurization method. Among them, the wet desulfurization technology has a large heat loss due to low temperature and generates a lot of waste water. However, the high temperature dry desulfurization technology has the advantage of preventing tar condensation due to gas cooling and high thermal efficiency by directly treating the gas at a high temperature.

본 발명의 목적은 건식탈황을 위한 탈황제의 재생성능을 향상시키는 방법을 제공하기 위한 것이다. 본 발명의 다른 목적은 중저온 영역에서 재생이 되지 않는 망간계 탈황제의 재생반응을 다른 반응기구(Reaction Mechanism)를 제안하여 재생반응을 원활하게 하기 위한 방법을 제공하기 위한 것이다.An object of the present invention is to provide a method for improving the regeneration performance of the desulfurization agent for dry desulfurization. Another object of the present invention is to provide a method for facilitating the regeneration reaction by suggesting another reaction mechanism (Reaction Mechanism) for the regeneration reaction of the manganese-based desulfurization agent that is not regenerated in the mid-low temperature region.

본 발명의 상기 목적은 석탄가스화 복합발전의 황화수소 제거용 탈황제로서 천연망간광석을 사용하여 경제적 효과를 얻을 수 있도록 하였으며, 사용된 탈황제를 재생가스를 이용하여 재생하여 재사용할 수 있는 천연망간광석 탈황제를 제공함으로써 달성하였다.The object of the present invention was to obtain an economic effect using a natural manganese ore as a desulfurization agent for the removal of hydrogen sulfide in coal gasification combined cycle, a natural manganese ore desulfurization agent that can be reused by reusing the desulfurization agent using a regeneration gas Achieved by providing.

이하, 본 발명의 구성 및 작용을 설명한다.Hereinafter, the configuration and operation of the present invention.

도 1은 본 발명에 따른 천연망간광석 탈황제의 탈황성능 및 재생반응을 위해 제작한 고정층 반응시스템을 나타낸 개략도이다.Figure 1 is a schematic diagram showing a fixed bed reaction system prepared for the desulfurization performance and regeneration of the natural manganese ore desulfurization agent according to the present invention.

도 2는 본 발명에 따른 천연망간광석 탈황제의 재생시 열역학적 특성을 나타낸 그래프이다.Figure 2 is a graph showing the thermodynamic properties during regeneration of natural manganese ore desulfurization agent according to the present invention.

도 3a는 본 발명에 따른 재생가스를 이용하지 않고, 단순히 질소와 산소의 조합으로만 재생시켰을때의 파과곡선을 나타낸 그래프이다.Figure 3a is a graph showing the breakthrough curve when not using a regeneration gas according to the present invention, but simply by a combination of nitrogen and oxygen.

도 3b는 본 발명에 따른 재생가스를 이용하여 재생시킨 후, 20회 탈황 재생반응을 반복하였을때의 파과곡선을 나타낸 그래프이다.Figure 3b is a graph showing the breakthrough curve when regeneration using the regeneration gas according to the present invention, 20 times the desulfurization regeneration reaction.

도 4a는 본 발명에 따른 천연망간광석 탈황제의 1차 황화반응이 끝난후의 망간광석 탈황제의 XRD 분석도를 나타낸 그래프이다.Figure 4a is a graph showing the XRD analysis of the manganese ore desulfurization agent after the first sulfidation of the natural manganese ore desulfurization agent according to the present invention.

도 4b는 본 발명에 따른 재생가스를 이용하여 2차 재생반응이 끝난 직후 망간광석 탈황제의 XRD 분석도를 나타낸 그래프이다.Figure 4b is a graph showing the XRD analysis of the manganese ore desulfurization agent immediately after the second regeneration reaction using the regeneration gas according to the present invention.

도 4c는 본 발명에 따른 재생가스를 이용하여 3차 재생반응이 끝난 직후 망간광석 탈황제의 XRD 분석도이다.Figure 4c is an XRD analysis of the manganese ore desulfurization agent immediately after the end of the third regeneration reaction using the regeneration gas according to the present invention.

도 4d는 본 발명에 따른 재생가스를 이용하여 3차 재생반응시 고정층 반응기 하부로 응축되어 나온 물질에 대한 XRD 분석도이다.Figure 4d is an XRD analysis of the material condensed to the bottom of the fixed bed reactor during the third regeneration reaction using the regeneration gas according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 석영반응기2 : 콜드트랩1: quartz reactor 2: cold trap

3 : 가스 크로마토그래피4 : MFC3: gas chromatography 4: MFC

본 발명은 천연망간광석 탈황제를 이용한 황화수소제거방법 및 중저온의 온도범위에서 이미 황화반응이 끝난 망간계 탈황제의 재생방법에 관한 것이다.The present invention relates to a hydrogen sulfide removal method using a natural manganese ore desulfurization agent and a regeneration method of a manganese-based desulfurization agent which has already been sulfided at a low to medium temperature range.

본 발명에서 사용된 망간광석 탈황제중 주 물질인 망간산화물(Mn Oxide)은 황화수소(H2S)와 중저온 영역(350∼550℃)에서 황화반응이 이루어져 MnS 형태로 전환된다. 상기 MnS를 H2O 5∼30 vol%, O22∼10 vol%, NH30.5∼1.5 vol%, N258.5∼92.5 vol%로 이루어진 재생가스를 1000㎖/min 유량으로 1atm에서 재생반응을 시켰다.Manganese oxide (Mn Oxide), the main material of the manganese ore desulfurization agent used in the present invention, is converted into MnS form by sulfiding in hydrogen sulfide (H 2 S) and a low-temperature region (350 to 550 ° C.). Regeneration reaction of the MnS with H 2 O 5-30 vol%, O 2 2-10 vol%, NH 3 0.5-1.5 vol%, N 2 58.5-92.5 vol% at a flow rate of 1000 ml / min at 1 atm Let.

황화반응을 마친 MnS 형태의 탈황제가 재생가스 중의 산소와 만나 이산화황(SO2)를 생성하며 이산화황은 다시 SO3를 거쳐 NH3와 H2O를 만나 망간광석 표면에서 (NH4)2SO4를 형성한 후 광석표면으로부터 떨어져 나간다. 이로써 망간산화물 형태로 재생이 되며 재생반응 후 생성물인 (NH4)2SO4와 망간산화물은 XRD 결정성상을 통하여 증명되었다. 또한 이 방법을 이용하여 20회 동안 황화반응후 재생반응을 시행한 결과 탈황성능을 유지하고 있음을 알 수 있었다.After the sulfidation, the MnS-type desulfurizer meets oxygen in the regeneration gas to form sulfur dioxide (SO 2 ). Sulfur dioxide passes through SO 3 to meet NH 3 and H 2 O to form (NH 4 ) 2 SO 4 on the surface of manganese ore. After forming, it is separated from the ore surface. As a result, it was regenerated in the form of manganese oxide, and after regeneration, (NH 4 ) 2 SO 4 and manganese oxide were proved through XRD crystal phase. In addition, it was found that desulfurization performance was maintained as a result of regeneration reaction after sulfidation for 20 times using this method.

이하에는 첨부된 도면을 참조하여 본 발명의 천연망간광석 탈황제를 이용한 탈황방법에 대하여 상세히 설명한다.Hereinafter, a desulfurization method using a natural manganese ore desulfurization agent of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 사용한 탈황제의 성능 검증을 위한 반응시스템 도면이다. 혼합기체는 탈황반응과 재생반응시 각기 다른 조합을 사용하였다. 먼저 탈황반응시에는 황화수소 1 %, 암모니아 0.5%, 일산화탄소 16%, 수소 10%, 수증기 15% , 나머지는 질소를 사용하였으며, 재생 반응시에는 암모니아와 수증기, 질소, 산소의 조합으로 하였다. 각 기체는 MFC(Mass Flow Controller)(4)를 통하여 1000 ml/min의 유량으로 조절되어 고정층 상단부분으로 주입이 된다. 고정층은 고온에서 견딜 수 있는 석영반응기(1)를 사용하였으며 반응기 중간 부분에 탈황제를 석영솜을 지지한 후 올려놓았고, 탈황제 주위에 가열기를 설치하여 석탄가스화 복합발전의 탈황온도로 유지하였다. 반응이 완료된 기체는 반응기 아래부분으로 유출되어 콜드트랩(cold trap)(2)을 거쳐 수분이 제거된 후 가스 크로마토그래피(3)를 통하여 유출가스 중 황화수소를 검출하였다.1 is a reaction system diagram for verifying the performance of the desulfurization agent used in the present invention. Different gases were used for the desulfurization and regeneration. First, in the desulfurization reaction, hydrogen sulfide 1%, ammonia 0.5%, carbon monoxide 16%, hydrogen 10%, water vapor 15%, and the rest were nitrogen. In the regeneration reaction, ammonia was combined with water vapor, nitrogen, and oxygen. Each gas is regulated at a flow rate of 1000 ml / min through an MFC (Mass Flow Controller) 4 to be injected into the upper part of the fixed bed. As a fixed bed, a quartz reactor (1) capable of withstanding high temperatures was used, and a desulfurization agent was placed on the middle of the reactor after supporting quartz wool, and a heater was installed around the desulfurization agent to maintain the desulfurization temperature of the coal gasification combined cycle. After completion of the reaction, the gas flowed out to the bottom of the reactor to remove moisture through a cold trap (2), and hydrogen sulfide in the effluent gas was detected through gas chromatography (3).

본 발명에서 사용된 천연망간광석 탈황제의 성분분석을 표 1에 나타내었다. 표 1에 나타난 바와 같이 천연망간광석 탈황제는 망간이 약 52%를 차지하는 광석 산화물이다. 이는 ICP를 통하여 분석한 결과이다. 하기 표 1은 망간을 분쇄하여 만든 가루형태의 산화물에 대한 물리적 분석표이다.Table 1 shows the component analysis of the natural manganese ore desulfurization agent used in the present invention. As shown in Table 1, natural manganese ore desulfurization agents are ore oxides with about 52% manganese. This is the result of analysis through ICP. Table 1 is a physical analysis table for the oxide in the powder form made by grinding manganese.

구성요소Component MgMg CaCa AlAl MnMn FeFe O balanceO balance 중량%weight% 0.0390.039 0.0470.047 1.8811.881 51.9451.94 4.0334.033 42.00942.009

밀도(g/㎤)Density (g / cm 3) 4.1224.122 표면적(㎡/g)Surface area (㎡ / g) 6.2316.231 공극부피(㎤/g)Void volume (cm3 / g) 0.25320.2532 평균입자크기Average particle size 100 이하100 or less

도 2는 본 발명에 사용된 망간의 열역학 상평형도로서 재생에 사용한 산소의 log PO2값이 -1 ∼ -2 인 조건에서 800∼1200℃의 고온 영역에서만 오른쪽의 MnSO4형태에서 MnO로 바뀔 수 있다는 것을 확인할 수 있다. 이로써 중저온 영역인 550℃ 내외에서는 산화물 형태로 망간은 존재하지 않고 반드시 MnSO4형태로만 존재한다는 것을 알 수 있었다.2 is a thermodynamic phase diagram of manganese used in the present invention, in which the log P O 2 value of oxygen used for regeneration is changed from MnSO 4 to MnO on the right side only in a high temperature region of 800 to 1200 ° C. under conditions of -1 to -2. You can see that you can. As a result, it was found that manganese was not present in the form of oxide in the form of oxide but only in the form of MnSO 4 at around 550 ° C.

이하, 본 발명의 구체적인 방법을 실시예를 들어 상세히 설명하고자 하지만 본 발명의 권리범위는 이들 실시예에만 한정되는 것은 아니다.Hereinafter, the specific method of the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited only to these Examples.

실시예 1 : 망간광석 탈황제의 중저온 영역에서 재생 성능 비교Example 1 Comparison of Regeneration Performance in the Low Temperature Region of Manganese Ore Desulfurizer

도 3a는 1차 황화반응을 중저온 영역에서 마친 후, 본 발명에 이용한 재생 가스 조합을 이용하지 않고 단순히 질소와 산소의 조합으로만 재생을 시켰을 때의 그래프이고, 도3b는 본 발명에서 사용한 재생가스 조합을 이용하여 재생시킨 후, 20회 탈황재생반응을 반복하였을 때 나타난 파과곡선이다. 도 3a는 도 2의 열역학 상평형도의 설명처럼 MnSO4형태에서 MnxOy형태의 산화물로 바뀌지 않은 채 유지되어 두 번째 탈황 반응시 전혀 황화수소를 흡수하지 못한 채 황화수소가 유출됨을 관찰할 수 있다. 반면에 도 3b는 본 발명에서 이용한 재생가스의 조합의 효과로 인해 원활하게 재생이 되어 일정한 파과시간을 유지하고 있음을 알 수 있었다.Figure 3a is a graph when the first sulfidation reaction in the medium-low temperature region, after regeneration only by a combination of nitrogen and oxygen, without using the regeneration gas combination used in the present invention, Figure 3b is a regeneration used in the present invention After breakdown using gas combination, the breakthrough curve appears when 20 desulfurization and regeneration reactions were repeated. As shown in the thermodynamic phase diagram of FIG. 2, FIG. 3A remains unchanged from MnS0 4 to Mn x O y type oxides, so that hydrogen sulfide is released without absorbing hydrogen sulfide at all during the second desulfurization reaction. . On the other hand, Figure 3b is due to the effect of the combination of the regeneration gas used in the present invention was found that it is smoothly regenerated to maintain a constant breakthrough time.

실시예 2 : 천연망간광석 탈황제의 재생 반응 후 XRD 분석도Example 2 XRD Analysis after Regeneration of Natural Manganese Ore Desulfurizer

도 4a는 1차 황화반응이 끝난후의 망간광석 탈황제의 XRD 분석도이며,Figure 4a is an XRD analysis of the manganese ore desulfurization agent after the first sulfidation reaction,

도 4b는 2차 재생반응이 끝난 직후 망간광석 탈황제의 XRD 분석도이며, 도 4c는 3차 재생반응이 끝난 직후 망간광석 탈황제의 XRD 분석도이며, 도 4d는 3차 재생반응시 고정층 반응기 하부로 응축되어 나온 물질에 대한 XRD 분석도이다.Figure 4b is an XRD analysis of the manganese ore desulfurization agent immediately after the end of the second regeneration reaction, Figure 4c is an XRD analysis of the manganese ore desulfurization agent immediately after the end of the third regeneration reaction, Figure 4d is a fixed bed reactor during the third regeneration reaction XRD analysis of the condensed material.

도 4b 및 도 4c는 원활하게 Mn Oxide 형태로 재생이 되었다는 것을 알 수 있는 그래프이며, 도 4d는 본 발명에서 사용한 재생가스의 조합으로부터 유추할 수 있는 재생반응 메카니즘이 맞고 있음을 알 수 있는 XRD 분석도이다. 본 발명은 하기 반응식 1과 같은 재생반응 메카니즘을 유추하였다.4b and 4c are graphs showing that the regeneration was smoothly performed in the form of Mn oxide, and FIG. 4d is an XRD analysis showing that the regeneration reaction mechanism inferred from the combination of regeneration gases used in the present invention is correct. It is also. The present invention infers a regenerative reaction mechanism as in Scheme 1 below.

MnS(s) + 3/2O2(g) ⇔ MnO(s) + SO2(g)MnS (s) + 3 / 2O 2 (g) ⇔ MnO (s) + SO 2 (g)

SO2(g)+ 1/2O2(g)⇔ SO3(g)SO 2 (g) + 1 / 2O 2 (g) ⇔ SO 3 (g)

2NH3(g)+ SO3(g)+ H2O(g) ⇔ (NH4)2SO4(g)2 NH 3 (g) + SO 3 (g) + H 2 O (g) ⇔ (NH 4 ) 2 SO 4 (g)

상기에서 설명한 바와 같이, 본 발명은 효율이 미분탄 연소발전보다 우수하며 환경 오염 물질이 적게 발생되는 석탄가스화 복합발전 가스 정제부의 탈황제로 이용할 경우 중저온 영역으로 황화 재생 반응 온도를 맞춤으로써 장치 재질의 선택의 폭이 넓어지는 경제적 효과를 얻을 수 있으며, 본 발명의 가스 조합을 이용할 경우 탈황제의 성능 면에서도 100g의 탈황제당 평균 25g 의 황과 반응하는 기존의아연계 탈황제의 70% 성능을 가지고 있으며 우수한 재생성능을 가지는 탈황제로 대체 이용이 가능하고, 천연망간광석을 탈황제의 원료로 사용하였기 때문에 제조단가가 저렴하다. 이를 탈황제로 이용한다면 발전소에 사용되는 막대한 양의 탈황제 양을 생각할 때 우수한 경제성을 예측할 수 있으므로, 본 발명은 장래에 사용할 석탄가스화 복합 발전 가스 정제부의 탈황제 이용시 열효율면이나 경제성면에서 성능이 아주 우수한 산업상 매우 유용한 발명인 것이다.As described above, the present invention selects the material of the device by adjusting the sulfidation regeneration reaction temperature to the low-temperature region when used as a desulfurization unit of the coal gasification combined cycle gas purification unit which is more efficient than pulverized coal combustion power generation and generates less environmental pollutants. A wider range of economic effects can be obtained, and the gas combination of the present invention has 70% performance of the conventional zinc-based desulfurizer which reacts with 25g of sulfur per 100g of desulfurizer in terms of the performance of the desulfurizer. It can be used as a desulfurization agent having a performance, and the manufacturing cost is low because natural manganese ore is used as the raw material of the desulfurization agent. If it is used as a desulfurization agent, it is possible to predict the excellent economic efficiency considering the enormous amount of desulfurization agent used in the power plant, the present invention is very excellent in terms of thermal efficiency and economic performance in the use of desulfurization of the coal gasification combined cycle gas purification unit to be used in the future It is a very useful invention.

Claims (2)

석탄 가스화 복합발전에 있어서, 중저온 온도(350∼550℃)의 석탄 복합가스 중 황화수소를 제거하기 위하여 천연망간광석 탈황제를 이용하는 것을 특징으로 하는 천연망간광석을 이용한 탈황방법.In the coal gasification combined cycle, a natural manganese ore desulfurization method using a natural manganese ore desulfurization agent to remove hydrogen sulfide in the coal composite gas at a low temperature (350 ~ 550 ℃). 석탄 가스화 복합발전에 있어서, 황화반응이 끝난 망간계 탈황제를 H2O 5∼30 vol%, O22∼10 vol%, NH30.5∼1.5 vol%, 및 N258.5∼92.5 vol%로 이루어진 재생가스를 1000㎖/min 유량으로 1atm에서 재생반응 시키는 것을 특징으로 하는 탈황제 재생방법.In the coal gasification combined cycle, the sulfided manganese-based desulfurization agent is composed of H 2 O 5-30 vol%, O 2 2-10 vol%, NH 3 0.5-1.5 vol%, and N 2 58.5-92.5 vol%. A desulfurizer regeneration method comprising regenerating a regeneration gas at 1 atm at a flow rate of 1000 ml / min.
KR1020010032449A 2001-06-11 2001-06-11 Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent KR20020094344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010032449A KR20020094344A (en) 2001-06-11 2001-06-11 Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010032449A KR20020094344A (en) 2001-06-11 2001-06-11 Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent

Publications (1)

Publication Number Publication Date
KR20020094344A true KR20020094344A (en) 2002-12-18

Family

ID=27708515

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010032449A KR20020094344A (en) 2001-06-11 2001-06-11 Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent

Country Status (1)

Country Link
KR (1) KR20020094344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025599A (en) * 2022-03-11 2022-09-09 华能(浙江)能源开发有限公司玉环分公司 Method for realizing energy conservation and consumption reduction of desulfurization slurry circulating pump by using desulfurization additive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980002809A1 (en) * 1979-06-15 1980-12-24 G Rabinovich Method of regeneration of rhodium-containing catalyst
KR970058770A (en) * 1997-05-17 1997-08-12 홍성창 Removal method of nitrogen oxide using manganese ore
KR100224634B1 (en) * 1997-05-20 1999-10-15 김정자 Manganese ore for oxidizing co and volatile organic compound, and its use as catalyst carrier
KR100302640B1 (en) * 1998-11-04 2001-11-30 조성종 Removal of Sulfur Oxides and Nitrogen Oxides Using Natural Manganese Ore in a Continuous Fluidized Bed Reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980002809A1 (en) * 1979-06-15 1980-12-24 G Rabinovich Method of regeneration of rhodium-containing catalyst
KR970058770A (en) * 1997-05-17 1997-08-12 홍성창 Removal method of nitrogen oxide using manganese ore
KR100224634B1 (en) * 1997-05-20 1999-10-15 김정자 Manganese ore for oxidizing co and volatile organic compound, and its use as catalyst carrier
KR100302640B1 (en) * 1998-11-04 2001-11-30 조성종 Removal of Sulfur Oxides and Nitrogen Oxides Using Natural Manganese Ore in a Continuous Fluidized Bed Reactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
11~12쪽, 대한환경공학회1997년,제19권,제8호 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025599A (en) * 2022-03-11 2022-09-09 华能(浙江)能源开发有限公司玉环分公司 Method for realizing energy conservation and consumption reduction of desulfurization slurry circulating pump by using desulfurization additive

Similar Documents

Publication Publication Date Title
TW201231147A (en) Exhaust gas treatment method and apparatus
JP2002540222A (en) Sulfur and hydrogen recovery system from sour gas
CN105435600B (en) A kind of purification system and purification method of polluted gas
CN101585511A (en) Sulfur recycling technique
Ben-Slimane et al. Desulfurization of hot coal-derived fuel gases with manganese-based regenerable sorbents. 2. Regeneration and multicycle tests
JPH0345118B2 (en)
US6106791A (en) Exhaust gas treating systems
US5252528A (en) Hot gas, regenerative, supported H2 S sorbents
KR100653046B1 (en) Method for removal of hydrogen sulfide by reaction of catalyst
AU633760B2 (en) Process for purifying high-temperature reducing gases
KR101830477B1 (en) Apparatus for removing of nitrogen oxides in exhaust sintering gas and method for removing of nitrogen oxides
CN111375274B (en) Containing SO 2 Gas treatment method and apparatus
US6814948B1 (en) Exhaust gas treating systems
KR20020094344A (en) Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent
US4842843A (en) Removal of water vapor diluent after regeneration of metal oxide absorbent to reduce recycle stream
US4686090A (en) Desulfurizing of reducing gas stream using a recycle calcium oxide system
JPH0394815A (en) Method for desulfurizing and denitrating exhaust gas from sintering apparatus
JPH03238019A (en) Purification of high temperature reductive gas
JP2020127935A (en) Method for removing sulfur oxide in gas containing carbon dioxide as main component
KR101110553B1 (en) Removal method of hydrogen sulfide in coke oven gas
JPS6340128B2 (en)
Pi et al. The study on the selective oxidation of H 2 S over the mixture zeolite NaX-WO 3 catalysts
KR20120074844A (en) Method for removal of hydrogen sulfide by catalysts
JPH0634351Y2 (en) Regenerative desulfurization equipment
JPH0790137B2 (en) Refining method for high temperature reducing gas

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application