JP2020127935A - Method for removing sulfur oxide in gas containing carbon dioxide as main component - Google Patents

Method for removing sulfur oxide in gas containing carbon dioxide as main component Download PDF

Info

Publication number
JP2020127935A
JP2020127935A JP2020006949A JP2020006949A JP2020127935A JP 2020127935 A JP2020127935 A JP 2020127935A JP 2020006949 A JP2020006949 A JP 2020006949A JP 2020006949 A JP2020006949 A JP 2020006949A JP 2020127935 A JP2020127935 A JP 2020127935A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
carbon dioxide
sulfur
desulfurizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020006949A
Other languages
Japanese (ja)
Other versions
JP7423320B2 (en
Inventor
大塚 浩文
Hirofumi Otsuka
浩文 大塚
平野 竹徳
Taketoku Hirano
竹徳 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Publication of JP2020127935A publication Critical patent/JP2020127935A/en
Application granted granted Critical
Publication of JP7423320B2 publication Critical patent/JP7423320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To establish technique to economically remove sulfur dioxide included in combustion exhaust gas, and becoming a catalytic poison of methanation catalyst or a methanol synthesis catalyst, when obtaining methane or methanol by reacting with hydrogen using carbon dioxide contained in the combustion exhaust gas.SOLUTION: A method for removing sulfur oxide in gas to be treated containing the sulfur oxide including carbon dioxide as main component comprises: adding hydrogen to the gas to be treated to obtain a hydrogen-added gas to be treated; and then, causing the hydrogen-added gas to contact with a desulfurization agent containing copper to fix sulfur to the desulfurization agent as sulfide and remove the sulfide.SELECTED DRAWING: Figure 1

Description

本発明は、二酸化炭素を主成分とするガス中の硫黄酸化物の除去方法に関する。 The present invention relates to a method for removing sulfur oxides in a gas containing carbon dioxide as a main component.

近年、地球温暖化対策の観点から二酸化炭素の排出を抑制することが求められている。
火力発電や工業プロセスで発生する燃焼排ガスから二酸化炭素を回収する技術は、アミン吸収法や物理吸収法など既に工業的に確立されているものが存在する。回収した二酸化炭素は、地中に圧入して貯留する検討が進められており、回収から貯留に至る一連のプロセスは二酸化炭素回収・貯留(CCS)技術と呼ばれる。CCSは一定の前提条件下においては、低炭素技術としてのコスト競争力を有することが期待されるものの、二酸化炭素の長距離輸送や貯留の適地確保など、なお課題もあるとされる。
In recent years, it has been required to suppress carbon dioxide emission from the viewpoint of measures against global warming.
As a technology for recovering carbon dioxide from combustion exhaust gas generated in thermal power generation and industrial processes, there are already established industrial methods such as amine absorption method and physical absorption method. Consideration is underway to pressurize the collected carbon dioxide into the ground and store it. The series of processes from collection to storage is called carbon dioxide capture and storage (CCS) technology. Under certain preconditions, CCS is expected to have cost competitiveness as a low-carbon technology, but there are still problems such as long-distance transportation of carbon dioxide and securing suitable sites for storage.

回収した二酸化炭素を貯留するのではなく、有価物の製造に用いることも検討されており、二酸化炭素回収・利用(CCU)技術の開発も進められている。有価物の例として、メタンやメタノールが考えられる。これらは、燃料などとして大きな市場が形成されているため、回収した二酸化炭素の利用先として有望といえる。燃焼排ガスから二酸化炭素を回収し、再生可能エネルギーである太陽光発電や風力発電の電力を用いる電気分解により得られた水素と反応させれば、メタンやメタノールが得られる。この方法によって得られたメタンやメタノールは、燃焼利用しても追加的な二酸化炭素の発生がないことから、地球温暖化に影響しない燃料と考えることができる。 Instead of storing the recovered carbon dioxide, it is also considered to be used for the production of valuables, and the development of carbon dioxide recovery and utilization (CCU) technology is also in progress. Methane and methanol can be considered as examples of valuable materials. Since these have formed a large market for fuel, etc., they can be said to be promising as a destination for utilizing the recovered carbon dioxide. Methane and methanol can be obtained by recovering carbon dioxide from flue gas and reacting it with hydrogen obtained by electrolysis using renewable energy such as solar power generation and wind power generation. Methane and methanol obtained by this method do not generate additional carbon dioxide even when used by combustion, and thus can be considered as fuels that do not affect global warming.

二酸化炭素及び水素からメタンを得る反応(式1)は公知である。
CO+4H → CH+2HO (式1)
The reaction of obtaining methane from carbon dioxide and hydrogen (Equation 1) is known.
CO 2 +4H 2 → CH 4 +2H 2 O (Formula 1)

特許文献1には、CO及びHを含むガスをメタン化するに際し、上流側にCu−Zn系低温シフト触媒を配し且つ下流側にメタン化触媒を配置したメタン化反応器を使用することを特徴とするCO及びHを含むガスのメタン化方法が開示されている。上流側の低温シフト反応器ではCOシフト反応(式2)が進行するので、低温シフト触媒により一酸化炭素の大部分は水蒸気と反応して二酸化炭素に転換され、メタン化触媒上では二酸化炭素のメタン化反応が進行しているものと考えられる。
CO+HO → CO+H (式2)
Patent Document 1, upon methanation gas containing CO and H 2, the use of methanation reactors arranged methanation catalyst and downstream arranged Cu-Zn-based low temperature shift catalyst on the upstream side A method for methanating a gas containing CO and H 2 is disclosed. Since the CO shift reaction (Equation 2) proceeds in the low temperature shift reactor on the upstream side, most of the carbon monoxide reacts with steam to be converted into carbon dioxide by the low temperature shift catalyst, and the carbon dioxide of the carbon dioxide is converted on the methanation catalyst. It is considered that the methanation reaction is in progress.
CO+H 2 O → CO 2 +H 2 (Formula 2)

メタン化反応はアンモニア合成用の水素から一酸化炭素及び二酸化炭素を除去する目的で古くから使用されており、NiやRuを担持した触媒が高活性を示すことが知られている(非特許文献1、2)。 The methanation reaction has long been used for the purpose of removing carbon monoxide and carbon dioxide from hydrogen for ammonia synthesis, and it is known that a catalyst supporting Ni or Ru exhibits high activity (Non-Patent Document 1). 1, 2).

また、燃焼排ガスから回収した二酸化炭素と水素との反応によりメタンを得るプロセスも公知である。 Also known is a process for obtaining methane by reacting carbon dioxide recovered from combustion exhaust gas with hydrogen.

特許文献2には、付属の水/蒸気回路を有する、炭素燃料を燃焼させる電力ステーションの、より詳細には炭素ガスを燃焼させる電力ステーションの、電力ステーション煙道ガスから生じる、より詳細には流用されるまたは得られる二酸化炭素、より詳細には二酸化炭素ガスの、メタネーションプラントでのメタンへの変換を含むメタネーションプロセスにおいて、前記メタネーションプラントでの二酸化炭素のメタンへの変換で廃熱として生じる熱エネルギーが少なくとも1つの材料流及び/または熱エネルギー流の中に少なくとも部分的に取り出され、この少なくとも1つの材料流及び/または熱エネルギー流が、バーナ側の前記電力ステーションの蒸気発生装置の燃焼チャンバに流れ込む少なくとも1つの媒体に、前記電力ステーションの前記水/蒸気回路に、プロセスエンジニアリングの観点で前記メタネーションプラントの上流に接続された二酸化炭素排ガス処理または二酸化炭素処理、より詳細には、電力ステーション煙道ガス処理プラントに、及び/または付属の工業プラントの1つ以上の運転ステージに、少なくとも部分的に供給されることを特徴とするメタネーションプロセスが開示されている。 US Pat. No. 6,037,898 to a power station for burning carbon fuels, more particularly a power station for burning carbon gas, with a water/steam circuit attached to the power station, more particularly diversion from power station flue gas. Or resulting carbon dioxide, and more particularly carbon dioxide gas, in a methanation process involving the conversion of methane in a methanation plant as waste heat in the conversion of carbon dioxide to methane in said methanation plant. The resulting heat energy is at least partially withdrawn into at least one material stream and/or heat energy stream, which at least one material stream and/or heat energy stream of the steam generator of the power station on the burner side. Carbon dioxide flue gas treatment or carbon dioxide treatment connected to at least one medium flowing into the combustion chamber, to the water/steam circuit of the power station, upstream of the methanation plant from a process engineering point of view, and more particularly: Disclosed is a methanation process characterized in that it is at least partially fed to a power station flue gas treatment plant and/or to one or more operating stages of an attached industrial plant.

特許文献3には、CO及びHを含むガスからメタネーション触媒を用いてメタンを製造する第一メタネーション反応工程と、前記第一メタネーション反応工程で残留した物質からメタンを製造する第二メタネーション反応工程と、前記第一反応工程に流入する反応ガスの変動に応じて前記第一メタネーション反応工程が化学平衡状態に近づくように前記第一メタネーション反応工程に流入する反応ガスの一部をバイパスして前記第二メタネーション反応工程に流入させるバイパス工程と、を有するメタン製造方法が開示されている。 Patent Document 3 discloses a first methanation reaction step of producing methane from a gas containing CO 2 and H 2 using a methanation catalyst, and a step of producing methane from a substance remaining in the first methanation reaction step. Two methanation reaction steps, of the reaction gas flowing into the first methanation reaction step such that the first methanation reaction step approaches a chemical equilibrium state in response to fluctuations in the reaction gas flowing into the first reaction step. A bypass process of partially bypassing the second methanation reaction process and flowing into the second methanation reaction process is disclosed.

これらは、燃焼排ガスから回収した二酸化炭素と水素との反応によりメタンを得るプロセスにおけるエネルギー効率の向上や制御性の改善を図る試みといえる。 It can be said that these are attempts to improve energy efficiency and controllability in the process of obtaining methane by reacting carbon dioxide recovered from combustion exhaust gas with hydrogen.

メタノールは、一般的には一酸化炭素と水素との反応(式3)によって製造されるが、CCUの観点から二酸化炭素と水素との反応で得る試みもなされており、いくつかの触媒がこの反応に高活性であることが示されている(特許文献4、5)。
CO+2H → CHOH (式3)
CO+3H → CHOH+HO (式4)
Methanol is generally produced by the reaction of carbon monoxide and hydrogen (Equation 3), but attempts have been made to obtain it by the reaction of carbon dioxide and hydrogen from the viewpoint of CCU, and some catalysts It has been shown to be highly active in the reaction (Patent Documents 4 and 5).
CO+2H 2 → CH 3 OH (Formula 3)
CO 2 +3H 2 →CH 3 OH+H 2 O (Formula 4)

以上のように、二酸化炭素と水素との反応によりメタンやメタノールを合成するための触媒や反応条件は公知である。一方で、燃焼排ガスから回収された二酸化炭素に含まれる微量成分の影響及びその回避方法については明らかにはされていない。 As described above, catalysts and reaction conditions for synthesizing methane and methanol by the reaction of carbon dioxide and hydrogen are known. On the other hand, the influence of trace components contained in carbon dioxide recovered from combustion exhaust gas and its avoidance method have not been clarified.

石炭やバイオマスなど含炭素燃料は通常硫黄分を含んでいる。この硫黄分は燃焼に伴い硫黄酸化物(二酸化硫黄及び三酸化硫黄)に変化する。化学吸収法及び固体吸収法では、硫黄酸化物も吸収液ないし吸収剤に吸収されるが、二酸化炭素を吸収液ないし吸収剤から放出させる際にその一部が放出される。従って、分離された二酸化炭素には微量の硫黄酸化物が含まれることになる。非特許文献3では、石炭火力発電所排ガスからの二酸化炭素の分離において、排ガス脱硫を行って二酸化硫黄濃度を10ppmまで低減したあとの排ガスからアミンを用いた化学吸収法により二酸化炭素を分離した場合、分離された二酸化炭素に含まれる二酸化硫黄濃度は34〜135ppmになると見積もられている。 Carbon-containing fuels such as coal and biomass usually contain sulfur. This sulfur content changes into sulfur oxides (sulfur dioxide and sulfur trioxide) with combustion. In the chemical absorption method and the solid absorption method, sulfur oxides are also absorbed by the absorbent or absorbent, but when carbon dioxide is released from the absorbent or absorbent, a part thereof is released. Therefore, the separated carbon dioxide contains a very small amount of sulfur oxide. In Non-Patent Document 3, in the case of separating carbon dioxide from the exhaust gas of a coal-fired power plant, when the carbon dioxide is separated from the exhaust gas by a chemical absorption method using amine after performing exhaust gas desulfurization to reduce the sulfur dioxide concentration to 10 ppm. The concentration of sulfur dioxide contained in the separated carbon dioxide is estimated to be 34 to 135 ppm.

前述のようにメタン化触媒にはNiやRuを活性成分とする触媒が用いられるが、これらは非常に硫黄による被毒を受けやすいという問題がある。メタノール合成触媒には主に銅を主活性成分とする触媒が用いられるが、これも硫黄による被毒を強く受ける。 As described above, as the methanation catalyst, a catalyst containing Ni or Ru as an active component is used, but these have a problem that they are very easily poisoned by sulfur. A catalyst containing copper as a main active component is mainly used as a methanol synthesis catalyst, and this is also strongly poisoned by sulfur.

NiやRuを活性成分とする触媒はメタン化だけでなく、メタン化の逆反応である水蒸気改質反応にも広く用いられている。水蒸気改質反応でも硫黄被毒は深刻な問題であり、そのため種々の炭化水素の脱硫方法が検討されている。 A catalyst containing Ni or Ru as an active ingredient is widely used not only for methanation but also for a steam reforming reaction which is a reverse reaction of methanation. Sulfur poisoning is a serious problem even in the steam reforming reaction, so various desulfurization methods of hydrocarbons have been studied.

例えば、特許文献6には、銅化合物、亜鉛化合物、及びアルミニウム化合物を原料として、共沈法により調製した酸化銅−酸化亜鉛−酸化アルミニウム混合物を水素還元して得た高次脱硫剤を使用することにより、炭化水素中の硫黄含有量を5ppb以下とすることができると示されている。 For example, Patent Document 6 uses a high-order desulfurizing agent obtained by hydrogen-reducing a copper oxide-zinc oxide-aluminum oxide mixture prepared by a coprecipitation method using copper compounds, zinc compounds, and aluminum compounds as raw materials. This indicates that the sulfur content in the hydrocarbon can be 5 ppb or less.

炭化水素に含まれる硫黄成分は、硫化水素及びチオール、サルファイドなどの有機硫黄化合物であって、二酸化硫黄は通常含まれない。メタン発酵ガスや石炭やバイオマスのガス化ガスから二酸化炭素を分離する場合もあるが、このようなガスに含まれる硫黄化合物は、やはり硫化水素、COS、及び有機硫黄化合物であって、二酸化硫黄は通常含まれない。 The sulfur component contained in the hydrocarbon is hydrogen sulfide and an organic sulfur compound such as thiol and sulfide, and sulfur dioxide is not usually contained. Although carbon dioxide may be separated from methane fermentation gas or gasification gas of coal or biomass, the sulfur compounds contained in such gas are also hydrogen sulfide, COS, and organic sulfur compounds, and sulfur dioxide is Usually not included.

被処理ガスからの二酸化硫黄の除去方法としては、石炭火力発電所などで利用されている石灰石膏法による湿式脱硫方法があるが、一般的に二酸化硫黄の除去率が95%程度にとどまる(非特許文献3)ので、メタン化触媒あるいはメタノール合成触媒を保護するには十分ではない。 As a method for removing sulfur dioxide from the gas to be treated, there is a wet desulfurization method by the limestone gypsum method used in coal-fired power plants, etc., but generally the removal rate of sulfur dioxide is about 95% (non- Since it is Patent Document 3), it is not sufficient to protect the methanation catalyst or the methanol synthesis catalyst.

一酸化炭素を還元剤として、鉄あるいは銅系の触媒を用いて二酸化硫黄を硫黄に還元する方法も知られている(非特許文献4,5)が、反応に500℃以上という高い温度が必要であること、加えて単体の硫黄もメタン化触媒あるいはメタノール合成触媒を被毒するので、硫黄の蒸気圧が無視しうる程度まで被処理ガスを深冷して、生成した硫黄を分離する必要があることから、メタン化あるいはメタノール合成触媒を硫黄被毒から保護するための前処理としては経済的に優れた方法とは言い難い。 A method of reducing sulfur dioxide to sulfur by using an iron or copper catalyst using carbon monoxide as a reducing agent is also known (Non-Patent Documents 4 and 5), but the reaction requires a high temperature of 500° C. or higher. In addition, since elemental sulfur also poisons the methanation catalyst or the methanol synthesis catalyst, it is necessary to deeply cool the gas to be treated to such an extent that the vapor pressure of sulfur can be ignored and separate the generated sulfur. Therefore, it cannot be said that the method is economically excellent as a pretreatment for protecting the methanation or methanol synthesis catalyst from sulfur poisoning.

石油の水素化脱硫に用いられるコバルト−モリブデン/アルミナ触媒を用いて、二酸化硫黄を水素で還元して硫黄を得た結果も報告されている(非特許文献6)。300℃程度という比較的低い温度で硫黄酸化物を硫黄及び硫化水素に還元できることは示されているが、被処理ガスからの硫黄成分を除去するにはさらに硫黄及び硫化水素の除去手段を別途設ける必要がある。また、二酸化炭素を主成分とするガス中での硫黄酸化物の還元性能も明らかではない。 A result of reducing sulfur dioxide with hydrogen to obtain sulfur using a cobalt-molybdenum/alumina catalyst used for hydrodesulfurization of petroleum has also been reported (Non-Patent Document 6). Although it has been shown that sulfur oxides can be reduced to sulfur and hydrogen sulfide at a relatively low temperature of about 300° C., a sulfur and hydrogen sulfide removing means is additionally provided in order to remove sulfur components from the gas to be treated. There is a need. Moreover, the reduction performance of sulfur oxides in a gas containing carbon dioxide as a main component is not clear.

コバルト及び鉄は、炭素酸化物(一酸化炭素及び二酸化炭素)の水素化に比較的高い活性を有するので、被処理ガスに水素を添加して二酸化硫黄の除去を行う際に、被処理ガスに二酸化炭素が多く含まれる場合、二酸化炭素の水素化が急激に進行する懸念もある。 Cobalt and iron have relatively high activity for hydrogenating carbon oxides (carbon monoxide and carbon dioxide), so when hydrogen is added to the gas to be treated to remove sulfur dioxide, the gas to be treated is When a large amount of carbon dioxide is contained, there is a concern that carbon dioxide hydrogenation will proceed rapidly.

二酸化炭素の精製方法も知られている。特許文献7には、二酸化炭素ガス流を精製するための方法であって、処理すべき二酸化炭素ガス流を、乾燥剤、ゼオライト、またはイオン交換形であるゼオライト、及び活性炭からなる群より選択される少なくとも2つの吸着剤層が入っている少なくとも1つの吸着剤床に通すことを含む方法が開示されている。この方法によれば、水分、硫黄種及び他の不純物が二酸化炭素から除去されるとされる。 A method for purifying carbon dioxide is also known. Patent Document 7 discloses a method for purifying a carbon dioxide gas stream, wherein the carbon dioxide gas stream to be treated is selected from the group consisting of a desiccant, a zeolite, or a zeolite in an ion exchange form, and activated carbon. A method is disclosed that includes passing through at least one adsorbent bed containing at least two adsorbent layers. According to this method, water, sulfur species and other impurities are said to be removed from carbon dioxide.

特許文献8には、燃焼排ガスなどの二酸化炭素含有供給流れが処理され、SOxとNOxを活性炭で除去するステップ、大気温度以下での処理を行って生成物流れ及び排気流れを製造するステップ、圧力スイング吸着または物理的若しくは化学的吸収により排気流れを処理し供給流れに再循環される生成物流れを製造するステップを含む一連のステップによって、高純度二酸化炭素流れを製造する方法が開示されている。 In Patent Document 8, a carbon dioxide-containing supply stream such as a combustion exhaust gas is treated, SOx and NOx are removed by activated carbon, a step of producing a product stream and an exhaust stream by performing a treatment at an atmospheric temperature or lower, a pressure. Disclosed is a method of producing a high purity carbon dioxide stream by a series of steps including treating an exhaust stream by swing adsorption or physical or chemical absorption to produce a product stream that is recycled to a feed stream. ..

これらの方法では、高純度な二酸化炭素が得られるものの、精製コストが非常に高くなるという問題がある。アミン吸収剤から放出された二酸化炭素を主成分とするガスには、水蒸気が含まれるが、水蒸気はメタン化反応を強く阻害することはなく、むしろ炭素析出を抑制する効果もあるので、大きなコストをかけて除去する必要もない。 Although high-purity carbon dioxide can be obtained by these methods, there is a problem that the purification cost becomes very high. The gas containing carbon dioxide as the main component released from the amine absorbent contains water vapor, but the water vapor does not strongly inhibit the methanation reaction, but rather has the effect of suppressing carbon precipitation. It is not necessary to remove it by applying.

特開昭60−235893号公報JP-A-60-235893 特表2016−531973号公報Japanese Patent Publication No. 2016-531973 特開2018−135283号公報JP, 2008-135283, A 特開平3−258738号公報JP-A-3-258738 特開平7−39755号公報JP-A-7-39755 特開平1−123628号公報JP-A-1-123628 特表2009−504383号公報Japanese Patent Publication No. 2009-504383 特表2012−503543号公報Special table 2012-503543 gazette

社団法人化学工学協会編、化学プロセス集成、1970年、p.153Japan Chemical Engineering Association, edited by Chemical Process, 1970, p. 153 触媒学会編、触媒便覧、2008年、p.535Catalyst Society, edited by Catalyst Handbook, 2008, p. 535 Lee、Keener及びYang、Journal of Air & Waste Management Association、 59巻、2009年、p.725−732Lee, Keener and Yang, Journal of Air & Waste Management Association, Volume 59, 2009, p. 725-732 Khalafalla、Foerster及びHaas、Industrial and Engineering Chemistry Product Research and Development、10巻、1971年、p.133−137Khalafalla, Foerster and Haas, Industrial and Engineering Chemistry Product Research and Development, Vol. 10, 1971, p. 133-137 Liu、Sarofim及びFlytzani-Stephanopoulos、Applied Catalysis B: Environmental、4巻、1994年、p.167−186Liu, Sarofim and Flytzani-Stephanopoulos, Applied Catalysis B: Environmental, Vol. 4, 1994, p. 167-186 Paik及びChung、Applied Catalysis B: Environmental、5巻、1995年、p.233−243Paik and Chung, Applied Catalysis B: Environmental, Volume 5, 1995, p. 233-243

本発明が解決しようとする課題は、以上の問題に鑑み、燃焼排ガス中に含まれる二酸化炭素を用い、水素と反応させることによりメタンやメタノールを得るに際して、燃焼排ガスから回収された二酸化炭素に含まれ、メタン化あるいはメタノール合成触媒の触媒毒となる硫黄酸化物を経済的に除去する技術を確立することである。 In view of the above problems, the problem to be solved by the present invention is to use the carbon dioxide contained in the combustion exhaust gas, to obtain methane or methanol by reacting with hydrogen, and to be included in the carbon dioxide recovered from the combustion exhaust gas. Therefore, it is necessary to establish a technology for economically removing sulfur oxides which are poisons of methanation or methanol synthesis catalysts.

上記課題を解決するために、本発明は、二酸化炭素を主成分とし硫黄酸化物を含む被処理ガス中の、前記硫黄酸化物を除去する方法であって、前記被処理ガスに水素を添加して水素添加被処理ガスを得る水素添加工程と、前記水素添加被処理ガスを、銅を含む脱硫剤と接触させる脱硫工程と、を含む方法を提供する。 In order to solve the above problems, the present invention is a method of removing the sulfur oxides in a gas to be treated containing carbon dioxide as a main component and containing sulfur oxides, wherein hydrogen is added to the gas to be treated. And a desulfurization step of contacting the hydrogenated gas to be treated with a desulfurizing agent containing copper.

この構成によれば、燃焼排ガスから分離された二酸化炭素を主成分とし硫黄酸化物を含むガス中の硫黄酸化物は脱硫剤で処理され、硫黄化合物を実質的に含まない二酸化炭素が得られるため、メタン化触媒の硫黄被毒が防止されやすい。脱硫反応へのエネルギーの投入は実質的に不要であるため、効率の点でも経済的にも優れたメタン化が可能となる。 According to this configuration, the sulfur oxides in the gas containing carbon dioxide separated from the combustion exhaust gas and containing sulfur oxides are treated with the desulfurizing agent to obtain carbon dioxide substantially free of sulfur compounds. , It is easy to prevent sulfur poisoning of methanation catalyst. Since it is substantially unnecessary to input energy into the desulfurization reaction, methanation which is excellent in efficiency and economically can be performed.

上記の発明において、前記水素添加被処理ガス中の水素濃度が0.5体積%以上2体積%以下であると、十分な脱硫性能が確保できるとともに、副反応であるメタン化が抑制できるので好ましい。 In the above invention, it is preferable that the hydrogen concentration in the hydrogenation-treated gas is 0.5% by volume or more and 2% by volume or less because sufficient desulfurization performance can be secured and methanation, which is a side reaction, can be suppressed. ..

また、上記の発明において、前記脱硫工程において、前記脱硫剤の温度が250℃以上350℃以下であると、十分な脱硫性能が確保できるとともに、副反応であるメタン化が抑制できるので好ましい。なお、前記の温度領域は、メタン化やメタノール合成反応の入口温度として好適な温度領域と一致しているから、処理後のガスを加熱あるいは冷却することなくそのままメタン化やメタノール合成反応に供することができる。 In the above invention, it is preferable that in the desulfurization step, the temperature of the desulfurizing agent is 250° C. or higher and 350° C. or lower because sufficient desulfurization performance can be secured and methanation, which is a side reaction, can be suppressed. Since the above temperature range matches the temperature range suitable for the inlet temperature of the methanation or methanol synthesis reaction, the gas after the treatment should be directly subjected to the methanation or methanol synthesis reaction without heating or cooling. You can

以上の構成によれば、燃焼排ガス中に含まれる二酸化炭素を用い、水素と反応させることによりメタンやメタノールを得るに際して、燃焼排ガス中に含まれ、メタン化あるいはメタノール合成触媒の触媒毒となる硫黄酸化物を経済的に除去することができる。 According to the above configuration, when carbon dioxide contained in the combustion exhaust gas is used to obtain methane or methanol by reacting with hydrogen, sulfur contained in the combustion exhaust gas and becoming a catalyst poison of the methanation or methanol synthesis catalyst is used. The oxide can be removed economically.

本発明にかかる、被処理ガス中の硫黄酸化物を除去する方法を用いて、燃焼排ガスから回収した二酸化炭素を用いてメタンを製造するフローの一例An example of a flow for producing methane using carbon dioxide recovered from a combustion exhaust gas by using the method for removing sulfur oxides in a gas to be treated according to the present invention

以下、本発明にかかる、二酸化炭素を主成分とし硫黄酸化物を含む被処理ガス中の、硫黄酸化物を除去する方法(脱硫方法)の実施形態について説明する。なお、本願に係る明細書、特許請求の範囲、および要約書において「主成分」とは、混合ガス中において最も体積濃度が大きい成分のことをいい、特に、混合ガス中に50体積%以上含まれる成分のことをいう。 Hereinafter, an embodiment of a method (desulfurization method) for removing sulfur oxide in a gas to be treated containing carbon dioxide as a main component and containing sulfur oxide according to the present invention will be described. In the specification, claims, and abstract of the present application, the term "main component" refers to a component having the highest volume concentration in the mixed gas, and particularly 50% by volume or more contained in the mixed gas. Refers to the ingredients that are stored.

本発明が対象とする、二酸化炭素を主成分とし硫黄酸化物を含む被処理ガスは、これに限定されるものではないが、公知の二酸化炭素分離方法であるアミンなどの溶剤を用いる化学吸収法、固体吸収法、あるいは物理吸収法を用いて燃焼排ガスから分離された二酸化炭素を主成分とするガスである。このほか、燃料を空気ではなく酸素で燃焼させる酸素燃焼法によって得られた燃焼排ガスを冷却して水蒸気の少なくとも一部を凝縮分離した後のガスであってもよい。これらの二酸化炭素主成分ガス中には、燃焼させた燃料や二酸化炭素分離方法により程度は異なるものの、0.1以上100ppm以下(体積基準、以下も同じ)の硫黄酸化物が含まれる。硫黄酸化物は大部分が二酸化硫黄であり、三酸化硫黄も含まれることがある。 The target gas to be treated by the present invention, which contains carbon dioxide as a main component and contains sulfur oxides, is not limited to this, but is a known carbon dioxide separation method such as a chemical absorption method using a solvent such as amine. , A gas containing carbon dioxide as a main component, which is separated from the combustion exhaust gas by using the solid absorption method or the physical absorption method. Alternatively, the gas may be a gas obtained by cooling a flue gas obtained by an oxygen combustion method in which a fuel is burned with oxygen instead of air, and condensing and separating at least a part of water vapor. These carbon dioxide main component gases contain sulfur oxides of 0.1 or more and 100 ppm or less (volume basis, the same applies below), though the degree varies depending on the burned fuel and the carbon dioxide separation method. Sulfur oxides are mostly sulfur dioxide and may also include sulfur trioxide.

二酸化炭素主成分ガス中には、このほかに窒素、酸素、水蒸気及び窒素酸化物も含まれる可能性がある。このうち窒素については、本発明の脱硫方法には影響を及ぼすことはない。酸素及び窒素酸化物については、脱硫剤上で水素と反応して水蒸気及び窒素を生成するが、あまりに濃度が高いと脱硫剤を酸化して不活性化すること、脱硫剤上で反応に伴い大きな発熱を生じることから、好ましくは1%以下、より好ましくは0.1%以下になるように二酸化炭素分離設備を運転することが好ましい。水蒸気は、あまりに濃度が高いと脱硫剤を酸化して不活性化することから、好ましくは20%以下、より好ましくは10%以下になるように二酸化炭素分離設備を運転することが好ましい。一方、水蒸気濃度が低いと、逆シフト反応(式5)によって、水素が消費されて一酸化炭素を生成することから、脱硫性能が低下する可能性がある。
CO+H → CO+HO (式5)
The carbon dioxide main component gas may also contain nitrogen, oxygen, water vapor and nitrogen oxides. Of these, nitrogen does not affect the desulfurization method of the present invention. Oxygen and nitrogen oxides react with hydrogen on the desulfurizing agent to produce water vapor and nitrogen, but if the concentration is too high, the desulfurizing agent will be oxidized and inactivated. Since heat is generated, it is preferable to operate the carbon dioxide separation facility so as to be preferably 1% or less, more preferably 0.1% or less. If the water vapor concentration is too high, it will oxidize and inactivate the desulfurizing agent, so it is preferable to operate the carbon dioxide separation facility so that the water vapor content is preferably 20% or less, more preferably 10% or less. On the other hand, when the water vapor concentration is low, hydrogen is consumed and carbon monoxide is generated by the reverse shift reaction (Equation 5), so that the desulfurization performance may decrease.
CO 2 +H 2 →CO+H 2 O (Equation 5)

水蒸気濃度は、1%以上であれば好ましく、3%以上であればより好ましい。通常の二酸化炭素分離方法で得られた二酸化炭素主成分ガスは、深冷分離しない限り数%の水蒸気を含むが、本発明の脱硫方法は、そのようなガスを好適に処理することができる。 The water vapor concentration is preferably 1% or more, more preferably 3% or more. The carbon dioxide main component gas obtained by the usual carbon dioxide separation method contains a few% of steam unless deep-separated, but the desulfurization method of the present invention can suitably treat such gas.

本発明の脱硫方法では、前記の被処理ガスに水素を添加する。本発明の脱硫方法における硫黄の除去の機構は明らかではないが、次の機構によるものと推定される。
SO+3H → HS+2HO (式6)
2Cu+HS → CuS+H (式7)
In the desulfurization method of the present invention, hydrogen is added to the gas to be treated. Although the mechanism of sulfur removal in the desulfurization method of the present invention is not clear, it is presumed to be due to the following mechanism.
SO 2 +3H 2 → H 2 S+2H 2 O (Formula 6)
2Cu+H 2 S → Cu 2 S+H 2 (Formula 7)

まず、触媒活性点となる金属Cu上で、二酸化硫黄が硫化水素に還元される(式6)。
ついで、生成した硫化水素は金属Cuと反応して硫化銅を形成して硫黄は硫化銅として脱硫剤に固定される(式7)。硫黄酸化物が三酸化硫黄の場合、より多くの水素が必要となるが、基本的に同様の機構が推定される。
First, sulfur dioxide is reduced to hydrogen sulfide on Cu, which is a catalytically active site (Equation 6).
Then, the generated hydrogen sulfide reacts with the metal Cu to form copper sulfide, and sulfur is fixed to the desulfurizing agent as copper sulfide (equation 7). When the sulfur oxide is sulfur trioxide, more hydrogen is required, but basically a similar mechanism is estimated.

以上から、水素は硫黄酸化物に対するモル比で少なくとも2倍必要となるが、現実的には反応速度や、好ましい銅の還元状態を維持するために、化学量論量よりは大過剰が必要である。一方、脱硫剤に接触させる被処理ガス中の水素濃度が高い場合には、脱硫剤上でメタン化やメタノール合成反応が急速に進行する恐れがある。いずれの反応も大きな発熱を伴うことから、脱硫剤の温度が急激に上昇して、脱硫剤や容器を破損したり、脱硫剤から硫黄分が飛散したりする恐れがある。以上の観点から、脱硫剤に接触させる被処理ガス中の水素濃度は0.1体積%以上5体積%以下とするのが好ましく、0.5体積%以上2体積%以下とするのがより好ましい。脱硫剤に接触させる水素添加被処理ガス中の水素濃度が前記の範囲となるように、二酸化炭素を主成分とし、硫黄酸化物を含む被処理ガスに対して水素を添加する。なお、処理後のガス中には、過剰の水素が残存することになるが、メタン化及びメタノール合成反応を行う場合は、いずれも脱硫後のガスに水素をさらに添加してこれらの反応を行うため、後段で添加する水素量を調整すればよく、水素の残存は問題とはならない。 From the above, hydrogen is required to be at least twice the molar ratio with respect to sulfur oxides, but in reality, in order to maintain the reaction rate and the preferable reduced state of copper, a large excess of stoichiometric amount is required. is there. On the other hand, when the concentration of hydrogen in the gas to be treated brought into contact with the desulfurization agent is high, the methanation or methanol synthesis reaction may proceed rapidly on the desulfurization agent. Since all the reactions are accompanied by large heat generation, the temperature of the desulfurizing agent may rise rapidly, which may damage the desulfurizing agent or the container, or the sulfur content may scatter from the desulfurizing agent. From the above viewpoints, the hydrogen concentration in the gas to be treated brought into contact with the desulfurizing agent is preferably 0.1% by volume or more and 5% by volume or less, and more preferably 0.5% by volume or more and 2% by volume or less. .. Hydrogen is added to the target gas containing carbon dioxide as a main component and containing sulfur oxides so that the hydrogen concentration in the target gas to be hydrogenated to be brought into contact with the desulfurizing agent falls within the above range. Although excess hydrogen will remain in the gas after the treatment, in the case of methanation and methanol synthesis reaction, hydrogen is further added to the gas after desulfurization to carry out these reactions. Therefore, it suffices to adjust the amount of hydrogen added in the latter stage, and remaining hydrogen does not pose a problem.

本発明の脱硫方法では、前記のように水素を添加した被処理ガスを、銅を含む脱硫剤と接触させる。 In the desulfurization method of the present invention, the gas to be treated to which hydrogen has been added as described above is brought into contact with a desulfurizing agent containing copper.

銅を含む脱硫剤としては、アルミナ、シリカ、チタニア、ジルコニアなどの耐火性無機酸化物担体に銅を担持した触媒を用いることができる。これらの担体の中では、アルミナが特に好ましい。無機酸化物担体に銅を担持する方法としては、含浸法、共沈法などの公知の触媒調製法を採用することができる。 As the desulfurizing agent containing copper, a catalyst obtained by supporting copper on a refractory inorganic oxide carrier such as alumina, silica, titania or zirconia can be used. Of these carriers, alumina is particularly preferred. As a method of supporting copper on the inorganic oxide carrier, a known catalyst preparation method such as an impregnation method or a coprecipitation method can be adopted.

脱硫剤は、さらに酸化亜鉛を含んでいてもよい。酸化亜鉛は硫黄酸化物の還元により生成した硫化水素を以下の反応(式8)によって硫化亜鉛として強固に固定するので、安価でより吸着容量の大きい高性能な脱硫剤となる。
ZnO+HS → ZnS+HO (式8)
The desulfurizing agent may further contain zinc oxide. Zinc oxide firmly fixes hydrogen sulfide generated by reduction of sulfur oxides as zinc sulfide by the following reaction (Equation 8), and thus is a high-performance desulfurizing agent that is inexpensive and has a large adsorption capacity.
ZnO+H 2 S → ZnS+H 2 O (Formula 8)

銅、アルミナ、及び酸化亜鉛を含む脱硫剤は、例えば特許文献6に記載されるような共沈法で調製することができる。 The desulfurizing agent containing copper, alumina, and zinc oxide can be prepared by a coprecipitation method as described in Patent Document 6, for example.

上記の方法で調製した銅を含む脱硫剤において、調製された段階では銅は通常酸化銅(CuOまたはCuO)として存在している。本発明の脱硫方法において、銅を含む脱硫剤がその性能を発揮するためには、銅は金属の状態にある必要がある。従って、脱硫剤は使用前に還元する必要がある。銅の還元は、脱硫剤を好ましくは200℃以上400℃以下、より好ましくは250℃以上350℃以下に保って水素を含むガスを流通することで行う。前記の水素を含むガス中の水素濃度は、高すぎると大きな発熱を伴って銅が還元されることにより、銅の凝集が進行する恐れがある一方で、低すぎると還元に時間を要するので、1体積%以上10体積%以下程度とするのが良い。還元時間は、銅を還元するのに最低限必要な水素量との見合いで決定すればよいが、好ましくは最低限必要な水素量の1.5倍以上、好ましくは3倍以上流通される条件で、1時間以上3時間以下程度かけて行うのが良い。 In the desulfurizing agent containing copper prepared by the above method, copper is usually present as copper oxide (CuO or Cu 2 O) when prepared. In the desulfurization method of the present invention, copper must be in a metallic state in order for the desulfurization agent containing copper to exert its performance. Therefore, the desulfurizing agent needs to be reduced before use. The reduction of copper is carried out by maintaining the desulfurizing agent at 200° C. or higher and 400° C. or lower, more preferably 250° C. or higher and 350° C. or lower and passing a gas containing hydrogen. The hydrogen concentration in the gas containing hydrogen is reduced because copper is accompanied by a large amount of heat generation when it is too high, while aggregation of copper may progress, while when it is too low, it takes time to reduce. It is preferable that the content is 1% by volume or more and 10% by volume or less. The reduction time may be determined in consideration of the minimum amount of hydrogen required to reduce copper, but is preferably a condition in which the minimum required amount of hydrogen is 1.5 times or more, preferably 3 times or more. Therefore, it is better to perform the operation for 1 hour or more and 3 hours or less.

(本発明の適用例)
本発明にかかる方法を適用したメタン製造フローの例(図1)について説明する。
(Application example of the present invention)
An example of a methane production flow (FIG. 1) to which the method according to the present invention is applied will be described.

図1に示したメタン製造フローでは、火力発電設備1から排出される、炭素燃料を含む燃焼排ガス101を原料としてメタンを製造する。火力発電設備1から排出された燃焼排ガス101は、二酸化炭素分離設備2に導入され、二酸化炭素が除去された燃焼排ガス201と、二酸化炭素を主成分とするガス202とに分離される。分離された二酸化炭素を主成分とするガス202は、脱硫設備3に導入される。 In the methane production flow shown in FIG. 1, methane is produced using combustion exhaust gas 101 containing carbon fuel, which is discharged from the thermal power generation facility 1, as a raw material. The combustion exhaust gas 101 discharged from the thermal power generation facility 1 is introduced into the carbon dioxide separation facility 2 and separated into a combustion exhaust gas 201 from which carbon dioxide has been removed and a gas 202 containing carbon dioxide as a main component. The separated gas 202 containing carbon dioxide as a main component is introduced into the desulfurization facility 3.

脱硫設備3においては、まず、二酸化炭素を主成分とするガス202(被処理ガスの例)に対して水素301が添加され、水素を添加した二酸化炭素を主成分とするガス302(水素添加被処理ガスの例)が得られる(水素添加工程の例)。水素を添加した二酸化炭素を主成分とするガス302は、予熱器32で予熱された後、脱硫剤を充填した脱硫器33に導入される。脱硫器33において、水素を添加した二酸化炭素を主成分とするガス302は、銅を含む脱硫剤と接触し、前述の機構により硫黄は硫化銅として脱硫剤に固定される(脱硫工程の例)。従って、脱硫器33から、硫黄酸化物が除去された二酸化炭素を主成分とするガス303が排出される。当該ガス303はメタン化設備4に導入され、メタン化反応に供される。 In the desulfurization facility 3, first, hydrogen 301 is added to a gas 202 containing carbon dioxide as a main component (an example of a gas to be processed), and a gas 302 containing hydrogen added carbon dioxide as a main component (hydrogenation target gas). Example of process gas) is obtained (example of hydrogenation step). The gas 302 containing hydrogen-added carbon dioxide as a main component is preheated by the preheater 32 and then introduced into the desulfurizer 33 filled with the desulfurizing agent. In the desulfurizer 33, the gas 302 containing hydrogenated carbon dioxide as a main component comes into contact with a desulfurizing agent containing copper, and sulfur is fixed to the desulfurizing agent as copper sulfide by the mechanism described above (example of desulfurizing step). .. Therefore, the gas 303 containing carbon dioxide from which sulfur oxides are removed as the main component is discharged from the desulfurizer 33. The gas 303 is introduced into the methanation facility 4 and used for the methanation reaction.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(実施例1)
活性アルミナ(住友化学製KHO−24、3mm球状)40.08gに、硝酸銅3水和物(Cu(NO・3HO、16.91g)を純水(32g)に溶解した溶液を滴下し、適宜かき混ぜながら3時間含浸させた。これを約80℃の水浴上で蒸発乾固し、さらに110℃の恒温乾燥器で乾燥させ、マッフル炉を用いて空気中300℃で1時間焼成することで、Cu/アルミナ脱硫剤(脱硫剤A)を得た。この脱硫剤は担持された銅を還元した状態において、質量基準で10%の銅を含むものであった。
(Example 1)
Activated alumina (Sumitomo Chemical Co. KHO-24,3mm spherical) 40.08g, was dissolved copper nitrate trihydrate (Cu (NO 3) 3 · 3H 2 O, 16.91g) and pure water (32 g) solution Was added dropwise, and the mixture was impregnated for 3 hours with appropriate stirring. This is evaporated to dryness in a water bath at about 80° C., further dried in a constant temperature drier at 110° C., and calcined in air at 300° C. for 1 hour in a muffle furnace to obtain a Cu/alumina desulfurizing agent (desulfurizing agent). A) was obtained. This desulfurizing agent contained 10% of copper on a mass basis in a state where supported copper was reduced.

脱硫剤A(10g)を内径14mmのガラス管に充填し、250℃に保って、水素2%を含む水素−窒素混合ガスを毎時60Lの流量で1.5時間流通させて還元を行った。次いで、表1(入口)に示す組成のガスを毎時20Lの流量で流通して1時間後の脱硫剤出口ガスを分析した。分析はガスクロマトグラフを用いて行い、硫化水素、二酸化硫黄、硫化カルボニル(COS)、メタンチオール(CHSH)についてはFPD検出器、メタンについてはFID検出器、水素、一酸化炭素及び二酸化炭素についてはTCD検出器で検出した。その結果、二酸化硫黄、硫化水素、硫化カルボニル、メタンチオールのいずれも検出されなかった。水素は0.39%、一酸化炭素は0.11%となった。逆シフト反応により、水素の一部が二酸化炭素と反応して、水及び一酸化炭素を生成したと推測される。また、水素と一酸化炭素との合計濃度は、入口の水素濃度と比較して0.04%(400ppm)低下しており、二酸化硫黄の還元に水素が消費されたものと考えられる。次いで、脱硫剤温度を300℃として1時間後の脱硫剤出口ガスの分析を行ったが、同様に二酸化硫黄、硫化水素、硫化カルボニル、メタンチオールのいずれも検出されなかった。さらに、脱硫剤温度を350℃として、1時間後、21.5時間後、及び22時間後の脱硫剤出口ガスの分析を行ったが、同様に二酸化硫黄、硫化水素、硫化カルボニル、メタンチオールのいずれも検出されず、長時間にわたり安定した脱硫性能が確認された。脱硫剤温度の上昇とともに、脱硫剤出口ガスの一酸化炭素濃度が上昇したが、これは逆シフト反応が温度の上昇とともに平衡的に有利となるためと考えられる。また、いずれの条件でも、脱硫剤出口ガス中にメタンは検出されなかった。
なお、実施例1から実施例3および比較例1から3において、入口および脱硫後のガスの分析結果は、水分を除去した後のドライベースの分析値を、水分を除去する前のウェットベースに換算した値である。
A desulfurizing agent A (10 g) was filled in a glass tube having an inner diameter of 14 mm, kept at 250° C., and a hydrogen-nitrogen mixed gas containing 2% of hydrogen was passed through at a flow rate of 60 L/hour for 1.5 hours for reduction. Then, the gas having the composition shown in Table 1 (inlet) was passed at a flow rate of 20 L/h, and the desulfurizing agent outlet gas after 1 hour was analyzed. The analysis is performed using a gas chromatograph, and hydrogen sulfide, sulfur dioxide, carbonyl sulfide (COS) and methanethiol (CH 3 SH) are FPD detectors, methane is an FID detector, hydrogen, carbon monoxide and carbon dioxide. Was detected with a TCD detector. As a result, none of sulfur dioxide, hydrogen sulfide, carbonyl sulfide and methanethiol was detected. Hydrogen was 0.39% and carbon monoxide was 0.11%. It is speculated that a part of hydrogen reacted with carbon dioxide to produce water and carbon monoxide by the reverse shift reaction. Further, the total concentration of hydrogen and carbon monoxide was reduced by 0.04% (400 ppm) compared with the hydrogen concentration at the inlet, and it is considered that hydrogen was consumed for the reduction of sulfur dioxide. Next, the desulfurizing agent outlet gas was analyzed after 1 hour with the desulfurizing agent temperature set to 300° C., but similarly, none of sulfur dioxide, hydrogen sulfide, carbonyl sulfide and methanethiol was detected. Furthermore, the desulfurizing agent temperature was set to 350° C., and the desulfurizing agent outlet gas was analyzed after 1 hour, 21.5 hours, and 22 hours. The same results were obtained for sulfur dioxide, hydrogen sulfide, carbonyl sulfide, and methanethiol. Neither was detected, confirming stable desulfurization performance over a long period of time. The concentration of carbon monoxide in the desulfurization agent outlet gas increased as the temperature of the desulfurization agent increased, which is considered to be because the reverse shift reaction became equilibrium advantageous as the temperature increased. Further, under any of the conditions, methane was not detected in the desulfurizing agent outlet gas.
In addition, in Examples 1 to 3 and Comparative Examples 1 to 3, the analysis results of the gas after the inlet and desulfurization are the analysis values of the dry base after removing the moisture to the wet base before removing the moisture. It is the converted value.

Figure 2020127935
注:水蒸気はいずれも4%
−:検出されず(検出下限:SO 0.3ppb、CH 2ppm)
Figure 2020127935
Note: Water vapor is 4%
-: not detected (detection lower limit: SO 2 0.3 ppb, CH 4 2 ppm)

(実施例2)
脱硫剤A(10g)を内径14mmのガラス管に充填し、250℃に保って、水素2%を含む水素−窒素混合ガスを毎時60Lの流量で1.5時間流通させて還元を行った。次いで、二酸化硫黄143ppm、水素2.04%、二酸化炭素76.1%、水蒸気4.0%、残部窒素のガスを毎時20Lの流量で流通した。脱硫剤温度を250℃として1時間後、脱硫剤温度を300℃として1時間後、ならびに、脱硫剤温度を350℃として1時間後、21時間後、及び22時間後の脱硫剤出口ガスの分析を行った。脱硫剤温度250℃では、0.02ppmの二酸化硫黄が検出され、除去率は99.99%となったが、それ以外の条件では二酸化硫黄、硫化水素、硫化カルボニル、メタンチオールのいずれも検出されなかった。一酸化炭素濃度は、脱硫剤温度250℃、300℃、及び350℃のそれぞれの場合について、それぞれ0.34%、0.60%、及び0.97%となった。実施例1と比較すると、水素濃度の上昇に応じて生成する一酸化炭素濃度も上昇したものと推測される。
(Example 2)
A desulfurizing agent A (10 g) was filled in a glass tube having an inner diameter of 14 mm, kept at 250° C., and a hydrogen-nitrogen mixed gas containing 2% of hydrogen was passed through at a flow rate of 60 L/hour for 1.5 hours for reduction. Then, a gas of 143 ppm of sulfur dioxide, 2.04% of hydrogen, 76.1% of carbon dioxide, 4.0% of steam, and the balance of nitrogen was passed at a flow rate of 20 L per hour. Analysis of desulfurizing agent outlet gas after desulfurizing agent temperature of 250° C. for 1 hour, desulfurizing agent temperature of 300° C. for 1 hour, and desulfurizing agent temperature of 350° C. for 1 hour, 21 hours, and 22 hours I went. At a desulfurization agent temperature of 250°C, 0.02 ppm of sulfur dioxide was detected, and the removal rate was 99.99%, but under other conditions, sulfur dioxide, hydrogen sulfide, carbonyl sulfide, and methanethiol were all detected. There wasn't. The carbon monoxide concentrations were 0.34%, 0.60%, and 0.97% for the desulfurizing agent temperatures of 250° C., 300° C., and 350° C., respectively. As compared with Example 1, it is presumed that the concentration of carbon monoxide produced increases with the increase of the hydrogen concentration.

(比較例1)
脱硫剤A(10g)を内径14mmのガラス管に充填し、250℃に保って、水素2%を含む水素−窒素混合ガスを毎時60Lの流量で1.5時間流通させて還元を行った。次いで、二酸化硫黄156ppm、二酸化炭素76.3%、水蒸気4.0%、残部窒素のガスを毎時20Lの流量で流通した。脱硫剤温度を250℃として1時間後、脱硫剤温度を300℃として1時間後、ならびに、脱硫剤温度を350℃として1時間後、20時間後、及び21時間後の脱硫剤出口ガスの分析を行った。脱硫剤温度250℃では、0.01ppmの二酸化硫黄が検出されたが、300℃及び350℃(1時間後)では、二酸化硫黄は検出されず、またいずれの条件でも硫化水素、硫化カルボニル、メタンチオールのいずれも検出されなかった。しかし、脱硫剤温度350℃で20時間後には66ppm、21時間後には74ppmの二酸化硫黄が検出された。この試験では、脱硫剤に接触させるガスに水素は含まれていないので、硫黄酸化物の還元は起こらず、金属銅上への硫黄化合物の吸着のみが進行したと推測される。その吸着が破過することにより、短時間で二酸化硫黄が検出されるに至ったと考えられる。
(Comparative Example 1)
A desulfurizing agent A (10 g) was filled in a glass tube having an inner diameter of 14 mm, kept at 250° C., and a hydrogen-nitrogen mixed gas containing 2% of hydrogen was passed through at a flow rate of 60 L/hour for 1.5 hours for reduction. Then, a gas of 156 ppm of sulfur dioxide, 76.3% of carbon dioxide, 4.0% of steam, and the balance of nitrogen was circulated at a flow rate of 20 L per hour. Analysis of desulfurizing agent outlet gas after desulfurizing agent temperature of 250° C. for 1 hour, desulfurizing agent temperature of 300° C. for 1 hour, and desulfurizing agent temperature of 350° C. for 1 hour, 20 hours, and 21 hours I went. At a desulfurizing agent temperature of 250° C., 0.01 ppm of sulfur dioxide was detected, but at 300° C. and 350° C. (after 1 hour), sulfur dioxide was not detected, and under all conditions, hydrogen sulfide, carbonyl sulfide, methane were detected. None of the thiols were detected. However, at a desulfurization agent temperature of 350° C., 66 ppm of sulfur dioxide was detected after 20 hours and 74 ppm after 21 hours. In this test, since the gas to be contacted with the desulfurizing agent does not contain hydrogen, it is presumed that the reduction of sulfur oxide did not occur and only the adsorption of the sulfur compound on the metallic copper proceeded. It is considered that sulfur dioxide was detected in a short time due to the breakthrough of the adsorption.

(比較例2)
市販のNi−Mo/Al水素化脱硫触媒(日揮触媒化成CDS−LX70N、NiO 4.3%、MoO 18%、10g)を内径14mmのガラス管に充填し、実施例2と同様にして脱硫性能を評価した。脱硫剤温度が250℃、300℃及び350℃(1時間後)のいずれの場合においても、脱硫剤出口ガスに135〜138ppmの二酸化硫黄が検出された。すなわち、二酸化硫黄の除去率は10〜12%であった。
(Comparative example 2)
Commercial Ni-Mo / Al 2 O 3 hydrodesulfurization catalyst (JGC Catalysts and Chemicals CDS-LX70N, NiO 4.3%, MoO 3 18%, 10g) was charged into a glass tube having an inner diameter of 14 mm, as in Example 2 Then, the desulfurization performance was evaluated. In all cases where the desulfurizing agent temperature was 250° C., 300° C. and 350° C. (after 1 hour), 135 to 138 ppm of sulfur dioxide was detected in the desulfurizing agent outlet gas. That is, the removal rate of sulfur dioxide was 10 to 12%.

(比較例3)
市販のCo−Mo/Al水素化脱硫触媒(日揮触媒化成CDS−LX70、CoO 4.3%、MoO 18%、10g)を内径14mmのガラス管に充填し、実施例2と同様にして脱硫性能を評価した。脱硫剤温度が250℃、300℃及び350℃(1時間後)のいずれの場合においても、有意の二酸化硫黄の除去率は観測されなかった。
(Comparative example 3)
A commercially available Co-Mo/Al 2 O 3 hydrodesulfurization catalyst (JGC Catalysts and Chemicals CDS-LX70, CoO 4.3%, MoO 3 18%, 10 g) was filled in a glass tube having an inner diameter of 14 mm, and the same as Example 2. Then, the desulfurization performance was evaluated. No significant removal rate of sulfur dioxide was observed at any of the desulfurizing agent temperatures of 250° C., 300° C. and 350° C. (after 1 hour).

(実施例3)
市販の酸化銅−酸化亜鉛−酸化アルミニウム混合物成型体(ズードケミー触媒社製、MDC−7、3mmタブレット、CuO:45質量%、ZnO:45質量%、Al:6質量%、10g)を内径14mmのガラス管に充填し、実施例2と同様にして脱硫性能を評価した。脱硫剤温度が250℃、300℃及び350℃(1,21,22時間後)のいずれの場合においても、脱硫剤出口ガスに二酸化硫黄、硫化水素、硫化カルボニル、メタンチオールのいずれも検出されず、長時間にわたり安定した脱硫性能が確認された。なお、いずれの条件でも20〜30ppmのメタンが検出され、メタン化反応が進行することが確認されたが、ごくわずかで、安定した脱硫反応の進行に問題となるものではなかった。
(Example 3)
Commercially available copper oxide - zinc oxide - aluminum oxide mixture molded (Sud-Chemie catalysts Co., MDC-7,3mm tablets, CuO: 45 wt%, ZnO: 45 wt%, Al 2 O 3: 6 wt%, 10 g) and The glass tube having an inner diameter of 14 mm was filled and the desulfurization performance was evaluated in the same manner as in Example 2. Sulfur dioxide, hydrogen sulfide, carbonyl sulfide, and methanethiol were not detected in the desulfurizing agent outlet gas at any of the desulfurizing agent temperatures of 250° C., 300° C., and 350° C. (after 1, 21, 22 hours). A stable desulfurization performance was confirmed over a long period of time. It was confirmed that 20 to 30 ppm of methane was detected under any of the conditions and that the methanation reaction proceeded, but it was very small and did not pose a problem for the stable progress of the desulfurization reaction.

(実施例4)
実施例1と同じ手順で調製した脱硫剤A(10g)を内径14mmのガラス管に充填し、250℃に保って、水素2%を含む水素−窒素混合ガスを毎時60Lの流量で1.5時間流通させて還元を行い、さらに当該水素−窒素混合ガスを流通させながら300℃に昇温した。次いで、脱硫剤を300℃に保って、二酸化硫黄151ppm、水素0.56%、二酸化炭素約76%、水蒸気4.0%、残部窒素のガス(ウェットベース)を毎時20Lの流量で流通させ、2時間おきに脱硫剤出口(脱硫後)ガスを分析した。分析は実施例1と同様にガスクロマトグラフを用いて行った。
入口および脱硫後のガスの分析結果(氷冷トラップで水分を除去した後のドライベースでの分析値)を表2に示す。
脱硫試験開始(二酸化硫黄含有ガスの流通開始)から22時間までは、出口ガスに硫黄化合物は検出されなかった。さらに脱硫試験を継続したところ、24時間後に0.04ppmの硫化水素が検出され、26時間後には0.47ppmの硫化水素が検出され、28時間後には1.58ppmの硫化水素に加えて0.03ppmの硫化カルボニルが検出された。
出口ガス中の一酸化炭素濃度は、脱硫試験開始から28時間後まで約0.2%で推移し明確な変化は観察されなかった。
(Example 4)
A desulfurizing agent A (10 g) prepared by the same procedure as in Example 1 was filled in a glass tube having an inner diameter of 14 mm, kept at 250° C., and a hydrogen-nitrogen mixed gas containing 2% of hydrogen was supplied at a flow rate of 60 L/hr for 1.5 hours. The mixture was allowed to flow for a time for reduction, and the temperature was raised to 300° C. while circulating the hydrogen-nitrogen mixed gas. Then, the desulfurizing agent was kept at 300° C., and 151 ppm of sulfur dioxide, 0.56% of hydrogen, about 76% of carbon dioxide, 4.0% of water vapor, and the balance nitrogen gas (wet base) were circulated at a flow rate of 20 L/hour, The desulfurizing agent outlet (after desulfurizing) gas was analyzed every 2 hours. The analysis was performed using a gas chromatograph as in Example 1.
Table 2 shows the results of analysis of the gas at the inlet and after desulfurization (analysis values on a dry base after removing water with an ice-cooled trap).
From the start of the desulfurization test (start of circulation of the sulfur dioxide-containing gas) until 22 hours, no sulfur compound was detected in the outlet gas. Further, when the desulfurization test was continued, 0.04 ppm of hydrogen sulfide was detected after 24 hours, 0.47 ppm of hydrogen sulfide was detected after 26 hours, and after addition of 1.58 ppm of hydrogen sulfide after 28 hours, 0.1. 03 ppm of carbonyl sulfide was detected.
The carbon monoxide concentration in the outlet gas remained at about 0.2% from the start of the desulfurization test until 28 hours later, and no clear change was observed.

Figure 2020127935
−:検出されず(検出下限:硫黄化合物 0.3ppb、CH 2ppm)
Figure 2020127935
-: not detected (lower limit of detection: sulfur compound 0.3 ppb, CH 4 2 ppm)

(実施例5)
実施例1と同じ手順で調製した脱硫剤A(10g)を内径14mmのガラス管に充填し、250℃に保って、水素2%を含む水素−窒素混合ガスを毎時60Lの流量で1.5時間流通させて還元を行い、さらに当該水素−窒素混合ガスを流通させながら300℃に昇温した。次いで、脱硫剤を300℃に保って、二酸化硫黄148ppm、水素0.55%、二酸化炭素約76%、残部窒素のガス(水蒸気は0%)を毎時20Lの流量で流通し、2時間おきに脱硫剤出口(脱硫後)ガスを分析した。分析は実施例1と同様にガスクロマトグラフを用いて行った。
入口および脱硫後のガスの分析結果(氷冷トラップで水分を除去した後のドライベースでの分析値)を表3に示す。
脱硫試験開始(二酸化硫黄含有ガスの流通開始)から20時間までは、出口ガスに硫黄化合物は検出されなかった。さらに脱硫試験を継続したところ、22時間後に0.60ppmの硫化水素と0.47ppmの硫化カルボニルが検出され、24時間後には1.16ppmの硫化水素と0.70ppmの硫化カルボニルが検出された。
出口ガス中の一酸化炭素濃度は、脱硫試験開始から28時間後まで約0.4%で推移し明確な変化は観察されなかった。
実施例4の結果と比較すると、実施例5では二酸化硫黄を含む被処理ガスに水蒸気が含まれていないため、逆シフト反応が促進され、水素が大きく減少するとともに、一酸化炭素が多く生成したものと推測される。また、硫黄化合物を検出するまでの時間(破過時間)は、実施例4と比較して短くなった。単純な吸着除去であれば、水蒸気は一般的に阻害となると考えられるが、本発明の方法では、水蒸気濃度が低下すると、逆シフト反応が促進され、二酸化硫黄の還元に必要な水素の濃度が低下したことで、破過時間が短くなったと推測される。
(Example 5)
A desulfurizing agent A (10 g) prepared by the same procedure as in Example 1 was filled in a glass tube having an inner diameter of 14 mm, kept at 250° C., and a hydrogen-nitrogen mixed gas containing 2% of hydrogen was supplied at a flow rate of 60 L/hr for 1.5 hours. The mixture was allowed to flow for a time for reduction, and the temperature was raised to 300° C. while circulating the hydrogen-nitrogen mixed gas. Next, the desulfurizing agent was kept at 300° C., and 148 ppm of sulfur dioxide, 0.55% of hydrogen, about 76% of carbon dioxide, and the balance nitrogen gas (water vapor was 0%) were flowed at a flow rate of 20 L/h, and every 2 hours. The desulfurization agent outlet (after desulfurization) gas was analyzed. The analysis was performed using a gas chromatograph as in Example 1.
Table 3 shows the analysis results of the gas at the inlet and after desulfurization (analysis values on a dry base after removing water with an ice-cooled trap).
From the start of the desulfurization test (start of circulation of the sulfur dioxide-containing gas), no sulfur compound was detected in the outlet gas for 20 hours. When the desulfurization test was further continued, 0.60 ppm of hydrogen sulfide and 0.47 ppm of carbonyl sulfide were detected after 22 hours, and 1.16 ppm of hydrogen sulfide and 0.70 ppm of carbonyl sulfide were detected after 24 hours.
The carbon monoxide concentration in the outlet gas remained at about 0.4% from the start of the desulfurization test for 28 hours, and no clear change was observed.
Compared with the results of Example 4, in Example 5, the gas to be treated containing sulfur dioxide did not contain water vapor, so the reverse shift reaction was promoted, hydrogen was greatly reduced, and a large amount of carbon monoxide was produced. It is supposed to be. Further, the time until the sulfur compound was detected (breakthrough time) was shorter than that in Example 4. If it is a simple adsorption removal, water vapor is generally considered to be an obstacle, but in the method of the present invention, when the water vapor concentration decreases, the reverse shift reaction is promoted and the concentration of hydrogen necessary for the reduction of sulfur dioxide is reduced. It is speculated that the breakthrough time was shortened due to the decrease.

Figure 2020127935
−:検出されず(検出下限:硫黄化合物 0.3ppb、CH 2ppm)
Figure 2020127935
-: not detected (lower limit of detection: sulfur compound 0.3 ppb, CH 4 2 ppm)

(実施例6)
実施例3と同じ酸化銅−酸化亜鉛−酸化アルミニウム混合物成型体(10g)を内径14mmのガラス管に充填し、250℃に保って、水素2%を含む水素−窒素混合ガスを毎時60Lの流量で1.5時間流通させて還元を行い、さらに当該水素−窒素混合ガスを流通させながら300℃に昇温した。次いで、脱硫剤を300℃に保って、二酸化硫黄146ppm、水素0.56%、二酸化炭素約76%、水蒸気4.0%、残部窒素のガス(ウェットベース)を毎時20Lの流量で流通させ、2時間おきに脱硫剤出口(脱硫後)ガスを分析した。分析は実施例1と同様にガスクロマトグラフを用いて行った。
入口および脱硫後のガスの分析結果(氷冷トラップで水分を除去した後のドライベースでの分析値)を表4に示す。
脱硫試験開始(二酸化硫黄含有ガスの流通開始)から14時間までは、出口ガスに硫黄化合物は検出されなかった。さらに脱硫試験を継続したところ、16時間後に二酸化硫黄が0.04ppm検出され、18時間後には0.16ppm、20時間後には0.40ppmと二酸化硫黄濃度は増加した。硫化水素および硫化カルボニルのいずれについても、脱硫試験開始から20時間後まで検出されなかった。
実施例4の結果と比較すると、破過までの時間は実施例6のほうがやや短くなった。
(Example 6)
The same copper oxide-zinc oxide-aluminum oxide mixture molded body (10 g) as in Example 3 was filled in a glass tube having an inner diameter of 14 mm, kept at 250° C., and a hydrogen-nitrogen mixed gas containing 2% hydrogen at a flow rate of 60 L/hour. For 1.5 hours to carry out reduction, and the temperature was raised to 300° C. while circulating the hydrogen-nitrogen mixed gas. Then, the desulfurization agent was kept at 300° C., and 146 ppm of sulfur dioxide, 0.56% of hydrogen, about 76% of carbon dioxide, 4.0% of steam, and a balance nitrogen gas (wet base) were circulated at a flow rate of 20 L/hour, The desulfurizing agent outlet (after desulfurizing) gas was analyzed every 2 hours. The analysis was performed using a gas chromatograph as in Example 1.
Table 4 shows the analysis results of the gas at the inlet and after desulfurization (analysis values on a dry base after removing water with an ice-cooled trap).
No sulfur compounds were detected in the outlet gas until 14 hours after the start of the desulfurization test (the start of circulation of the sulfur dioxide-containing gas). When the desulfurization test was further continued, 0.04 ppm of sulfur dioxide was detected after 16 hours, 0.16 ppm after 18 hours, and 0.40 ppm after 20 hours, increasing the sulfur dioxide concentration. Neither hydrogen sulfide nor carbonyl sulfide was detected until 20 hours after the start of the desulfurization test.
Compared with the results of Example 4, the time to breakthrough was slightly shorter in Example 6.

Figure 2020127935
−:検出されず(検出下限:硫黄化合物 0.3ppb、CH 2ppm)
Figure 2020127935
-: not detected (lower limit of detection: sulfur compound 0.3 ppb, CH 4 2 ppm)

(実施例7)
実施例3と同じ酸化銅−酸化亜鉛−酸化アルミニウム混合物成型体(10g)を脱硫剤として用い、水蒸気濃度を4.0%から1.0%に変更し、二酸化硫黄濃度を152ppmに変更(ウェットベース)し、水素濃度を0.55%に変更(ウェットベース)したほかは、実施例6と同様にして脱硫性能を評価した。
入口および脱硫後のガスの分析結果(氷冷トラップで水分を除去した後のドライベースでの分析値)を表5に示す。
脱硫試験開始(二酸化硫黄含有ガスの流通開始)から12時間までは、出口ガスに硫黄化合物は検出されなかった。さらに脱硫試験を継続したところ、14時間後に二酸化硫黄が0.05ppm検出され、18時間後には0.32ppmに達した。硫化水素および硫化カルボニルのいずれについても、脱硫試験開始から18時間後まで検出されなかった。実施例6の結果と比較すると、破過までの時間は実施例7のほうがやや短くなった。
(Example 7)
The same copper oxide-zinc oxide-aluminum oxide mixture molded body (10 g) as in Example 3 was used as a desulfurizing agent, the water vapor concentration was changed from 4.0% to 1.0%, and the sulfur dioxide concentration was changed to 152 ppm (wet). The desulfurization performance was evaluated in the same manner as in Example 6 except that the hydrogen concentration was changed to 0.55% (wet base).
Table 5 shows the results of analysis of the gas at the inlet and after desulfurization (analysis values on a dry base after removing water with an ice-cooled trap).
No sulfur compounds were detected in the outlet gas from the start of the desulfurization test (the start of circulation of the sulfur dioxide-containing gas) until 12 hours. Further, when the desulfurization test was continued, 0.05 ppm of sulfur dioxide was detected after 14 hours and reached 0.32 ppm after 18 hours. Neither hydrogen sulfide nor carbonyl sulfide was detected until 18 hours after the start of the desulfurization test. Compared with the results of Example 6, the time to breakthrough was slightly shorter in Example 7.

Figure 2020127935
−:検出されず(検出下限:硫黄化合物 0.3ppb、CH 2ppm)
Figure 2020127935
-: not detected (lower limit of detection: sulfur compound 0.3 ppb, CH 4 2 ppm)

実施例6の結果と比較すると、実施例7では二酸化硫黄を含む被処理ガスに含まれる水蒸気が相対的に少ないため、逆シフト反応が促進され、水素が大きく減少するとともに、一酸化炭素が多く生成したものと推測される。また、実施例7では、硫黄化合物を検出するまでの時間(破過時間)は、実施例6と比較して短くなった。水蒸気濃度が低下すると、逆シフト反応が促進され、二酸化硫黄の還元に必要な水素の濃度が低下したことで、破過時間が短くなったと推測される。 Compared with the results of Example 6, in Example 7, the amount of water vapor contained in the gas to be treated containing sulfur dioxide was relatively small, so the reverse shift reaction was promoted, hydrogen was greatly reduced, and carbon monoxide was large. It is presumed that it was generated. In addition, in Example 7, the time until the sulfur compound was detected (breakthrough time) was shorter than that in Example 6. It is presumed that the reverse shift reaction was promoted when the water vapor concentration was lowered, and the hydrogen concentration required for the reduction of sulfur dioxide was lowered, so that the breakthrough time was shortened.

なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 Note that the configurations disclosed in the above-described embodiments (including other embodiments, the same applies below) can be applied in combination with the configurations disclosed in other embodiments, as long as no contradiction occurs, and The embodiments disclosed in the present specification are exemplifications, and the embodiments of the present invention are not limited thereto, and can be appropriately modified within a range not departing from the object of the present invention.

1:火力発電設備
2:二酸化炭素分離設備
3:脱硫設備
4:メタン化設備
31:流量制御弁
32:予熱器
33:脱硫剤を充填した脱硫器
101:含炭素燃料の燃焼排ガス
201:二酸化炭素が除去された燃焼排ガス
202:燃焼排ガスから分離された二酸化炭素を主成分とするガス
301:水素
302:水素を添加した二酸化炭素を主成分とするガス
303:硫黄酸化物が除去された二酸化炭素を主成分とするガス
1: Thermal power generation facility 2: Carbon dioxide separation facility 3: Desulfurization facility 4: Methanation facility 31: Flow control valve 32: Preheater 33: Desulfurizer filled with desulfurizing agent 101: Carbon-containing fuel combustion exhaust gas 201: Carbon dioxide 202: Gas containing carbon dioxide as a main component separated from combustion exhaust gas 301: Hydrogen 302: Gas containing hydrogen-added carbon dioxide as a main component 303: Carbon dioxide from which sulfur oxides have been removed Gas containing as a main component

Claims (3)

二酸化炭素を主成分とし硫黄酸化物を含む被処理ガス中の、前記硫黄酸化物を除去する方法であって、
前記被処理ガスに水素を添加して水素添加被処理ガスを得る水素添加工程と、
前記水素添加被処理ガスを、銅を含む脱硫剤と接触させる脱硫工程と、を含む方法。
A method for removing the sulfur oxides in a gas to be treated containing carbon dioxide as a main component and containing sulfur oxides,
A hydrogenation step of adding hydrogen to the gas to be treated to obtain a hydrogenated gas to be treated,
A desulfurization step of bringing the gas to be hydrogenated into contact with a desulfurizing agent containing copper.
前記水素添加被処理ガス中の水素濃度は0.5体積%以上2体積%以下である請求項1に記載の方法。 The method according to claim 1, wherein the hydrogen concentration in the hydrogenation-treated gas is 0.5% by volume or more and 2% by volume or less. 前記脱硫工程において、前記脱硫剤の温度は250℃以上350℃以下である請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein in the desulfurization step, the temperature of the desulfurizing agent is 250°C or higher and 350°C or lower.
JP2020006949A 2019-02-08 2020-01-20 Method for removing sulfur oxides from gas containing carbon dioxide as the main component Active JP7423320B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021658 2019-02-08
JP2019021658 2019-02-08

Publications (2)

Publication Number Publication Date
JP2020127935A true JP2020127935A (en) 2020-08-27
JP7423320B2 JP7423320B2 (en) 2024-01-29

Family

ID=72173994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020006949A Active JP7423320B2 (en) 2019-02-08 2020-01-20 Method for removing sulfur oxides from gas containing carbon dioxide as the main component

Country Status (1)

Country Link
JP (1) JP7423320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935610A (en) * 2022-04-05 2022-08-23 陕西长青能源化工有限公司 Method and system for simultaneously measuring contents of sulfur-containing and alcohol-containing components in acid gas by gas chromatography

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524600A (en) * 1978-08-08 1980-02-21 Inst Francais Du Petrole Method of purifying gas containing hydrogen sulfide
JPS596688B2 (en) * 1972-09-28 1984-02-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for desulfurizing flue gas containing sulfur dioxide using a solid sulfur dioxide receptor
JPH01123628A (en) * 1987-11-05 1989-05-16 Osaka Gas Co Ltd Production of high temperature-resistant high-order desulfurizing agent
JPH01320212A (en) * 1987-06-17 1989-12-26 Imperial Chem Ind Plc <Ici> Removal of sulfur compound
JPH02293044A (en) * 1989-05-01 1990-12-04 Osaka Gas Co Ltd Production of desulfurizing agent
JPH07157305A (en) * 1993-12-03 1995-06-20 Mitsui Touatsu Liquid Kaabonitsuku Kk Refining method of crude carbon dioxide gas
JPH07509437A (en) * 1993-03-16 1995-10-19 エルフ・エクスプロラシオン・プロデユクシオン A method for removing sulfur compounds present in the residual gas of the Claus type sulfur plant residual gas type and recovering the compounds in sulfur form.
JPH11507875A (en) * 1996-04-03 1999-07-13 ローヌプーラン シミ Direct oxidation of sulfur compounds to sulfur using copper-based catalysts
US6916696B1 (en) * 2003-11-20 2005-07-12 Advanced Micro Devices, Inc. Method for manufacturing a memory element
JP2006502957A (en) * 2002-10-17 2006-01-26 マイクロリス・コーポレイシヨン A method for purifying carbon dioxide.
US20130217944A1 (en) * 2012-02-17 2013-08-22 Archon Technologies Ltd. Removal of sulfur compounds from a gas stream
JP2013538880A (en) * 2010-07-15 2013-10-17 クアドロジェン・パワー・システムズ・インコーポレイテッド Integrated biogas purification system to remove water, siloxane, sulfur, oxygen, chloride and volatile organic compounds
JP2018199126A (en) * 2017-05-25 2018-12-20 大阪瓦斯株式会社 Gas desulfurizing agent and desulfurizing method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596688B2 (en) * 1972-09-28 1984-02-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for desulfurizing flue gas containing sulfur dioxide using a solid sulfur dioxide receptor
JPS5524600A (en) * 1978-08-08 1980-02-21 Inst Francais Du Petrole Method of purifying gas containing hydrogen sulfide
JPH01320212A (en) * 1987-06-17 1989-12-26 Imperial Chem Ind Plc <Ici> Removal of sulfur compound
JPH01123628A (en) * 1987-11-05 1989-05-16 Osaka Gas Co Ltd Production of high temperature-resistant high-order desulfurizing agent
JPH02293044A (en) * 1989-05-01 1990-12-04 Osaka Gas Co Ltd Production of desulfurizing agent
JPH07509437A (en) * 1993-03-16 1995-10-19 エルフ・エクスプロラシオン・プロデユクシオン A method for removing sulfur compounds present in the residual gas of the Claus type sulfur plant residual gas type and recovering the compounds in sulfur form.
JPH07157305A (en) * 1993-12-03 1995-06-20 Mitsui Touatsu Liquid Kaabonitsuku Kk Refining method of crude carbon dioxide gas
JPH11507875A (en) * 1996-04-03 1999-07-13 ローヌプーラン シミ Direct oxidation of sulfur compounds to sulfur using copper-based catalysts
JP2006502957A (en) * 2002-10-17 2006-01-26 マイクロリス・コーポレイシヨン A method for purifying carbon dioxide.
US6916696B1 (en) * 2003-11-20 2005-07-12 Advanced Micro Devices, Inc. Method for manufacturing a memory element
JP2013538880A (en) * 2010-07-15 2013-10-17 クアドロジェン・パワー・システムズ・インコーポレイテッド Integrated biogas purification system to remove water, siloxane, sulfur, oxygen, chloride and volatile organic compounds
US20130217944A1 (en) * 2012-02-17 2013-08-22 Archon Technologies Ltd. Removal of sulfur compounds from a gas stream
JP2018199126A (en) * 2017-05-25 2018-12-20 大阪瓦斯株式会社 Gas desulfurizing agent and desulfurizing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935610A (en) * 2022-04-05 2022-08-23 陕西长青能源化工有限公司 Method and system for simultaneously measuring contents of sulfur-containing and alcohol-containing components in acid gas by gas chromatography
CN114935610B (en) * 2022-04-05 2023-12-22 陕西长青能源化工有限公司 Method and system for simultaneously measuring content of sulfur-containing alcohol-containing component in acid gas by gas chromatography

Also Published As

Publication number Publication date
JP7423320B2 (en) 2024-01-29

Similar Documents

Publication Publication Date Title
JP6956665B2 (en) Method of methaneization of carbon dioxide in combustion exhaust gas and methane production equipment
TWI523687B (en) Conversion catalyst, gas purification plant gas refining methods and gas refining equipment
JP6263029B2 (en) Methane production method, methane production apparatus, and gasification system using the same
US7910077B2 (en) Configurations and methods for SOx removal in oxygen-containing gases
EP2804692B1 (en) Method for removing sulfur containing compounds from fluid fuel streams
WO2002032810A1 (en) Method and apparatus for removing sulfur compound in gas containing hydrogen sulfide, mercaptan, carbon dioxide and aromatic hydrocarbon
JPWO2011105501A1 (en) CO shift catalyst, CO shift reaction apparatus, and purification method of gasification gas
FI56320C (en) FOERFARANDE FOER ATT REDUCERA DEN TOTALA SVAVELHALTEN I AVGASER VID EN CLAUSPROCESS
RU2515967C2 (en) Method of obtaining hydrogen-rich gas mixture
JP4330846B2 (en) Process for preparing low sulfur reformate gas for use in fuel cell systems
WO2011000792A2 (en) Process to prepare a hydrogen rich gas mixture
US6297189B1 (en) Sulfide catalysts for reducing SO2 to elemental sulfur
JP2024518240A (en) A process for purifying and converting carbon dioxide using renewable energy
JP7423320B2 (en) Method for removing sulfur oxides from gas containing carbon dioxide as the main component
US4842843A (en) Removal of water vapor diluent after regeneration of metal oxide absorbent to reduce recycle stream
JP2017048087A (en) Method and apparatus for producing hydrogen from fossil fuel
JP2022140290A (en) Removal method of sulfur oxide in gas with carbon dioxide as main component
JP2004075712A (en) Cos treatment apparatus for gasified gas and cos treatment method
AU2014222437B2 (en) Method for removing sulphur dioxide from gas streams, using titanium dioxide as catalyst
JPS6153104B2 (en)
KR20120074844A (en) Method for removal of hydrogen sulfide by catalysts
KR100487944B1 (en) Catalyst for reducing sulfur dioxide and the method for eliminating sulfur dioxide thereby
CN114955992A (en) Production process for producing hydrogen by blast furnace gas
JPS59184291A (en) Refining of high-temperature reducing gas
BR112019018450B1 (en) UREA PRODUCTION PROCESS WITH CONTROLLED EXCESS OF CO2 AND/OR NH3

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240117

R150 Certificate of patent or registration of utility model

Ref document number: 7423320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150