JPH02293044A - Production of desulfurizing agent - Google Patents

Production of desulfurizing agent

Info

Publication number
JPH02293044A
JPH02293044A JP11264089A JP11264089A JPH02293044A JP H02293044 A JPH02293044 A JP H02293044A JP 11264089 A JP11264089 A JP 11264089A JP 11264089 A JP11264089 A JP 11264089A JP H02293044 A JPH02293044 A JP H02293044A
Authority
JP
Japan
Prior art keywords
copper
water
desulfurization
hydrogen
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11264089A
Other languages
Japanese (ja)
Inventor
Osamu Okada
治 岡田
Takeshi Tabata
健 田畑
Masataka Masuda
正孝 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP11264089A priority Critical patent/JPH02293044A/en
Publication of JPH02293044A publication Critical patent/JPH02293044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a desulfurizing agent having superior desulfurizing performance by forming a metal oxide mixture by coprecipitation from an aq. soln. contg. water soluble salts of Cu and a specified metal and by reducing the metal oxide mixture with hydrogen. CONSTITUTION:An aq. soln. contg. water soluble salts of Cu and a metal such as Cr, Mn or Co is prepd. A water soluble Zn salt is preferably added to the soln., a water soluble Al salt is further added and a metal oxide mixture contg. copper oxide is formed by coprecipitation from the soln. The metal oxide mixture has a uniform compsn., consists of fine grains and contains copper oxide kept in a highly dispersed state. The mixture is then reduced with hydrogen under mild conditions, e.g. in the presence of a gaseous mixture of <=6vol.% hydrogen with an inert gas. The resulting desulfurizing agent has such desulfurizing performance that the amt. of sulfur is reduced to <=0.1ppb.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は脱硫剤の製造方法に関する。さらに詳細には、
各種のガス類及び油類の脱硫に使用される脱硫剤の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a desulfurizing agent. In more detail,
This invention relates to a method for producing a desulfurizing agent used for desulfurizing various gases and oils.

く従来の技術及び発明が解決しようとする課題〉従来、
工業ガス、天然ガス、石浦留分等の各種のガス類及び油
類は、それらに含まれる硫黄分の悪影響を除去するする
ため、脱硫剤を用いた脱硫工程に付され、硫黄分を脱離
・除去したのち使用される。脱硫剤としては、銅が優れ
た脱硫性能を有することが知られており、通常、銅を活
性炭、アルミナ、酸化亜鉛等の担体に保持した状態で使
用されている。
Problems to be solved by conventional techniques and inventions
Various gases and oils, such as industrial gas, natural gas, and Ishiura distillate, are subjected to a desulfurization process using a desulfurization agent to remove the sulfur content in order to remove the negative effects of the sulfur contained in them.・Used after removal. As a desulfurization agent, copper is known to have excellent desulfurization performance, and is usually used in a state where copper is supported on a carrier such as activated carbon, alumina, or zinc oxide.

しかしながら、公知の銅系脱硫剤は、硫黄の吸着能力(
飽和吸着能)が低いので、脱硫を長時間にわたり継続す
るためには大量に使用する必要があるのみならず、lp
pb (硫黄として、以下同じ)以下の低レベルまでの
脱硫を安定して行うことは困難であった。
However, known copper-based desulfurization agents have a sulfur adsorption capacity (
Since the saturated adsorption capacity is low, it is not only necessary to use a large amount in order to continue desulfurization for a long time, but also the lp
It has been difficult to stably perform desulfurization to levels as low as pb (sulfur, hereinafter the same) or lower.

本発明は、本発明者らが、上記のごとき従来の銅系脱硫
剤のおける問題点に鑑みて、種々研究を重ねた結果、銅
の水溶性塩と特定の金属の水溶性塩から共沈法により調
製した酸化銅を含有する金L酸化物混合物を水素還元す
ることにより得られた脱硫剤を用いることにより、各種
のガス類及び油類中の硫黄含有量を0.1ppb又はそ
れ以下のレベルにまで低下させることができることを見
出して完成したもので、脱硫性能に優れた脱硫剤の製造
方法を提供することを目的とする。
The present invention was developed by the present inventors as a result of repeated various studies in view of the problems with conventional copper-based desulfurization agents as described above. The sulfur content in various gases and oils can be reduced to 0.1 ppb or less by using a desulfurizing agent obtained by hydrogen reduction of a gold L oxide mixture containing copper oxide prepared by the method. The object of the present invention is to provide a method for producing a desulfurizing agent with excellent desulfurization performance.

く課題を解決するための手段〉 上記の課題を解決すべくなされた、本発明の脱硫剤の製
造方法は、クロム、マンガン、コバルト、ランタン、セ
リウム、アルカリ土類金属、バナジウム及びジルコニウ
ムからなる群(以下、「金属群」と称する)より選ばれ
た少なくとも1種類の元素の水溶性塩と銅の水溶性塩と
から、好ましくは、加えて亜鉛の水溶性塩とから、より
好ましくは、さらに加えてアルミニウムの水溶性塩とか
ら、共沈法により調製した酸化銅を含有する金属酸化物
混合物を水素還元することを特徴とするものである。
Means for Solving the Problems> The method for producing a desulfurizing agent of the present invention, which was made to solve the above problems, uses a desulfurizing agent of the group consisting of chromium, manganese, cobalt, lanthanum, cerium, alkaline earth metals, vanadium, and zirconium. (hereinafter referred to as "metal group") and a water-soluble salt of copper, preferably, in addition, a water-soluble salt of zinc, more preferably, In addition, it is characterized in that a metal oxide mixture containing copper oxide prepared by a coprecipitation method from a water-soluble salt of aluminum is subjected to hydrogen reduction.

本発明においては、ます共沈法により酸化銅を含有する
金属酸化物混合物を調製する。
In the present invention, a metal oxide mixture containing copper oxide is prepared by a coprecipitation method.

最初に、銅の水溶性塩と金属群の元素の水溶性塩を用い
た共沈法による金属酸化物混合物の調製法を説明すると
、ここで使用される銅及び金属群の元素の水溶性塩とし
ては各種水溶性塩が用い得るが、触媒毒となる物質を含
まない硝酸塩、酢酸塩等を用いるのが好ましく、特に硝
酸塩がより好ましい。共沈法自体は、触媒の製造に際し
て従来から採用されている方法と同様の方法により行え
ばよい。例えば、銅の水溶性塩と金属群の元素の水溶性
塩の一種又は二種以上とを含有する混合水溶液と、塩基
性化合物(例えば、炭酸ナトリウム、炭酸カリウム等)
の水溶液とを、80℃程度に保持した精製水(例えば、
蒸留水、イオン交換水等)中に攪拌下一定の速度で中和
しつつ、同時滴下して混合スラリーを生成させる。次い
で、生成する沈澱を洗浄し、濾取し、110〜120℃
で乾燥した後、必要ならば助剤を加えて、圧縮成型し、
更に300℃程度で焼成することにより行われ、かくし
て酸化銅を含有する金属酸化物混合物が得られる。なお
、これらの各条件は、使用する銅の水溶性塩及び金属群
の元素の水溶性塩の種類に応じて適宜選択すればよく、
特に限定されるものではない。
First, we will explain how to prepare a metal oxide mixture by coprecipitation using a water-soluble salt of copper and a water-soluble salt of an element of the metal group. Although various water-soluble salts can be used as the catalyst, it is preferable to use nitrates, acetates, etc. that do not contain substances that poison the catalyst, and nitrates are particularly preferable. The coprecipitation method itself may be carried out by a method similar to that conventionally employed in the production of catalysts. For example, a mixed aqueous solution containing a water-soluble salt of copper and one or more water-soluble salts of elements of the metal group, and a basic compound (e.g., sodium carbonate, potassium carbonate, etc.)
an aqueous solution of purified water (for example,
(distilled water, ion-exchanged water, etc.) while stirring and neutralizing at a constant speed, a mixed slurry is generated. Next, the formed precipitate is washed, collected by filtration, and heated to 110 to 120°C.
After drying, add auxiliary agents if necessary and compression mold.
This is further carried out by firing at about 300° C., thus obtaining a metal oxide mixture containing copper oxide. In addition, each of these conditions may be selected as appropriate depending on the type of water-soluble salt of copper and water-soluble salt of an element of the metal group to be used.
It is not particularly limited.

上記で得られた酸化銅を含有する金属酸化物混合物は、
成分が均一で、粒子が微細であり、酸化銅が高い分散状
態に維持されている。酸化銅と金属群の元素の酸化物成
分との混合比は広い範囲で変わりうるが、通常、酸化銅
の含有率は10重量%から70重量%の範囲が好ましい
。銅が少なすぎると、銅系脱硫剤としての十分な性能を
発揮することができず、また、銅が多くなり過ぎると、
シンタリングを起こして分散状態が悪くなる。次いで、
かくして得られた酸化銅を含有する金属酸化物混合物を
水素還元することにより、本発明の脱硫剤が得られる。
The metal oxide mixture containing copper oxide obtained above is
The composition is uniform, the particles are fine, and the copper oxide is maintained in a highly dispersed state. Although the mixing ratio of copper oxide and the oxide component of the element of the metal group can vary within a wide range, it is usually preferred that the content of copper oxide is in the range of 10% by weight to 70% by weight. If there is too little copper, it will not be able to exhibit sufficient performance as a copper-based desulfurizing agent, and if there is too much copper,
Sintering occurs and the dispersion condition worsens. Then,
The desulfurizing agent of the present invention can be obtained by reducing the metal oxide mixture containing copper oxide thus obtained with hydrogen.

上記の水素還元は慣用の方法にて行うことができるが、
銅は融点が低いので、熱により粒径が増大し、表面積が
減少し易く、また過度の熱により、細孔構造が変化して
、触媒の特性が変化する。従って、上記金属酸化物混合
物の水素還元に際して、酸化銅の水素還元が発熱反応で
あるので、温和な条件下、例えば、水素含有量6容積%
程度、好ましくは0.5〜4容量%程度に調整した不活
性ガス(例えば、窒素、アルゴン等)と水素との混合ガ
スの存在下に、150〜300℃程度の温度を維持しつ
つ還元処理するのが好ましい。
The above hydrogen reduction can be carried out by conventional methods, but
Since copper has a low melting point, heat tends to increase the particle size and decrease the surface area, and excessive heat changes the pore structure and changes the properties of the catalyst. Therefore, when reducing the metal oxide mixture with hydrogen, hydrogen reduction of copper oxide is an exothermic reaction, so under mild conditions, for example, hydrogen content of 6% by volume.
Reduction treatment while maintaining a temperature of about 150 to 300°C in the presence of a mixed gas of hydrogen and an inert gas (e.g., nitrogen, argon, etc.) adjusted to a certain degree, preferably about 0.5 to 4% by volume. It is preferable to do so.

このようにして得られた脱硫剤においては、大きな表面
積を有する微粒子状の銅が均一に分散し、高活性状態と
なっているので、硫黄吸着力が極めて強力且つ大きくな
っている。ここで、銅と共沈する金属としては、銅を高
い分散状態に保つと共に、実際の脱硫条件下で副反応を
起こさないものが必要であり、一般的に、この条件を満
たすのは、前記金属群の元素(即ち、クロム、マンガン
、コバルト、ランタン、セリウム、アルカリ土類金属、
バナジウム、ジルコニウム等)である。
In the desulfurization agent thus obtained, fine particle copper having a large surface area is uniformly dispersed and is in a highly active state, so that the sulfur adsorption power is extremely strong and large. Here, the metal that co-precipitates with copper must be one that keeps copper in a highly dispersed state and does not cause side reactions under actual desulfurization conditions. Generally, the metal that satisfies this condition is Elements of the metal group (i.e. chromium, manganese, cobalt, lanthanum, cerium, alkaline earth metals,
vanadium, zirconium, etc.).

上記で得られる脱硫剤は、好ましくは亜鉛成分を含有さ
せた脱硫剤とされ、前記の共沈混合物の調製時に共沈に
より亜鉛成分を含有させ、焼成した後、水素還元するこ
とにより得られる。即ち、銅の・水溶性塩及び亜鉛の水
溶性塩(例えば、硝酸亜鉛、酢酸亜鉛等)及び金属群の
元素の水溶性塩の一種又は二種以上を含有する混合水溶
液と塩基性化合物の水溶液から共沈させ、乾燥後焼成す
ることにより酸化銅、酸化亜鉛及び金属群の元素の酸化
物を含有する混合物を調製し、次いで、上記と同様の条
件で水素還元することにより、該亜鉛成分を含有した脱
硫剤が得られる。酸化亜鉛は水素還元した後の脱硫剤中
の銅を高い分散状態に保つ効果がある。脱硫剤中の銅、
亜鉛及び金属群の元素の原子比は、広い範囲で変わりう
るが、通常、銅:亜鉛:金属群の元素−1:0.3〜1
0:0.05〜10(原子比)程度とすることが好まし
く、より好ましくは1:0.6〜3:0.1〜2(原子
比)程度とすればよい。銅が上記範囲より少ないと銅系
脱硫剤としての十分な性能を発揮することができず、ま
た、銅が上記範囲より多くなると、シンタリングを起こ
して分散状態が悪くなるおそれがある。
The desulfurization agent obtained above is preferably a desulfurization agent containing a zinc component, and is obtained by incorporating the zinc component by coprecipitation during the preparation of the coprecipitation mixture, firing, and then reducing with hydrogen. That is, a mixed aqueous solution containing one or more water-soluble salts of copper, water-soluble salts of zinc (e.g., zinc nitrate, zinc acetate, etc.) and water-soluble salts of elements of the metal group, and an aqueous solution of a basic compound. A mixture containing copper oxide, zinc oxide and oxides of elements of the metal group is prepared by co-precipitation, drying and calcination, and then hydrogen reduction under the same conditions as above to remove the zinc component. A desulfurizing agent containing the desulfurization agent is obtained. Zinc oxide has the effect of keeping the copper in the desulfurization agent in a highly dispersed state after hydrogen reduction. Copper in desulfurization agents,
The atomic ratio of zinc and the elements of the metal group can vary within a wide range, but is usually copper:zinc:element of the metal group -1:0.3 to 1.
The ratio is preferably about 0:0.05 to 10 (atomic ratio), more preferably about 1:0.6 to 3:0.1 to 2 (atomic ratio). If the copper content is less than the above range, sufficient performance as a copper-based desulfurization agent cannot be exhibited, and if the copper content is more than the above range, sintering may occur and the dispersion state may deteriorate.

更に、上記で得られた脱硫剤には、脱硫剤の耐熱性を高
めるために、銅、亜鉛及び金属群の元素に加えて、アル
ミニウム成分を含有させることが好ましく、上記の銅成
分、亜鉛成分及び金属群の元素成分を含む共沈混合物の
調製時に共沈によりアルミニウム成分を含有させ、焼成
した後、水素還元することにより得られる。即ち、銅の
水溶性塩、亜鉛の水溶性塩、アルミニウムの水溶性塩(
例えば、硝酸アルミニウム、アルミン酸ナトリウム等)
及び金属群の元素の水溶性塩の一種又は二種以上を含有
する混合水溶液と塩基性化合物の水溶液から共沈させ、
乾燥後焼成することにより酸化銅、酸化亜鉛、酸化アル
ミニウム及び金属群の元素の酸化物を含有する混合物を
調製し、次いで、前記と同様の条件で水素還元すること
により、該アルミニウム成分を含有した脱硫剤が得られ
る。
Furthermore, in order to improve the heat resistance of the desulfurizing agent obtained above, it is preferable to contain an aluminum component in addition to copper, zinc, and elements of the metal group. It can be obtained by incorporating an aluminum component by coprecipitation during the preparation of a coprecipitated mixture containing elemental components of the metal group and calcination, followed by hydrogen reduction. Namely, water-soluble salts of copper, water-soluble salts of zinc, water-soluble salts of aluminum (
For example, aluminum nitrate, sodium aluminate, etc.)
Co-precipitation from a mixed aqueous solution containing one or more water-soluble salts of elements of the metal group and an aqueous solution of a basic compound,
A mixture containing copper oxide, zinc oxide, aluminum oxide and oxides of elements of the metal group was prepared by drying and firing, and then hydrogen reduction was performed under the same conditions as above to prepare a mixture containing the aluminum component. A desulfurizing agent is obtained.

酸化アルミニウムは、高温における脱硫剤の強度の低下
を防止すると共に高温での硫黄吸着能の低下を著しく低
減する作用を有する。脱硫剤中の銅、亜鉛、アルミニウ
ム及び金属群の元素の原子比は広い範囲で変わりうるが
、通常、銅;亜鉛;アルミニウム二金属群の元素−1:
0.3〜10:0.05〜2:0.05〜10(原子比
)程度とすることが好ましい。銅が上記範囲より少ない
と銅系脱硫剤としての十分な性能を発揮することができ
ず、また銅が上記範囲より多くなると、シンタリングを
起こして分散状態が悪くなるおそれがある。また、アル
ミニウムが上記範囲より少ないと耐熱性の向上に寄与で
きず、また上記範囲より多いと脱硫性能が低下するおそ
れがある。
Aluminum oxide has the effect of preventing a decrease in the strength of the desulfurizing agent at high temperatures and significantly reducing the decrease in sulfur adsorption ability at high temperatures. The atomic ratios of copper, zinc, aluminum and elements of the metal group in the desulfurization agent can vary over a wide range, but are usually copper; zinc; aluminum; element of the bimetallic group -1:
The ratio is preferably about 0.3 to 10:0.05 to 2:0.05 to 10 (atomic ratio). If the copper content is less than the above range, sufficient performance as a copper-based desulfurization agent cannot be exhibited, and if the copper content is more than the above range, sintering may occur and the dispersion state may deteriorate. Furthermore, if the amount of aluminum is less than the above range, it cannot contribute to the improvement of heat resistance, and if it is more than the above range, there is a risk that the desulfurization performance may be reduced.

本発明の方法により得られる脱硫剤は、公知のタイプの
脱硫剤と同様にして、例えば、所定形状の吸着脱硫装置
に充填し、これに精製すべきガス類又は油類を通過させ
ることにより使用される。
The desulfurization agent obtained by the method of the present invention can be used in the same manner as known types of desulfurization agents, for example, by filling it into an adsorption desulfurization device of a predetermined shape and passing the gas or oil to be purified through it. be done.

また、本発明の方法により得られる脱硫剤は、従来の吸
着脱硫剤では精製不可能であった高度の吸着性能を有し
ているので、常法に従って、できるだけ脱硫を行った後
、更に高度の脱硫を行う“二次脱硫剤”として使用する
場合に、特に顕著な効果を奏する。上記の精製すべきガ
ス類及び油類としては、例えば、天然ガス、エタン、プ
ロパン、ブタン、LPG (液化石油ガス)、ライトナ
フサ、ヘビーナフサ、軽灯油、コークス炉ガス、各種の
都市ガス等が例示される。
In addition, the desulfurization agent obtained by the method of the present invention has a high degree of adsorption performance that could not be purified with conventional adsorption desulfurization agents. It has particularly remarkable effects when used as a "secondary desulfurization agent" for desulfurization. Examples of the gases and oils to be purified include natural gas, ethane, propane, butane, LPG (liquefied petroleum gas), light naphtha, heavy naphtha, light kerosene, coke oven gas, and various city gases. be done.

なお、本発明の方法により得られる脱硫剤を使用して脱
硫を行うに際しては、必要ならば、例えば、150〜3
00℃程度、アルミニウム成分を含む脱硫剤については
、150〜400℃程度の加熱下に行ってもよい。
In addition, when desulfurizing using the desulfurizing agent obtained by the method of the present invention, if necessary, for example, 150 to 3
For desulfurizing agents containing an aluminum component, heating may be carried out at approximately 150 to 400°C.

く発明の効果〉 本発明の方法により得られる脱硫剤は脱硫性能に優れ、
各種のガス類及び油類中の有機硫黄及び無機硫黄含量を
著しく低下させることができ(通常、0.1ppb又は
それ以下)、加えて亜鉛成分を含有する脱硫剤は脱硫性
能が一層高く、更にアルミニウム成分を含有する脱硫剤
は耐熱性に優れるという効果を奏する。
Effects of the Invention The desulfurizing agent obtained by the method of the present invention has excellent desulfurization performance,
Desulfurization agents that can significantly reduce the organic sulfur and inorganic sulfur content in various gases and oils (usually 0.1 ppb or less), and also contain zinc components, have even higher desulfurization performance and A desulfurizing agent containing an aluminum component has an effect of being excellent in heat resistance.

く実施例〉 以下、参考例、実施例及び比較例に基いて、本発明をよ
り詳細に説明するが、本発明はこれら実施例に限定され
るものではない。
Examples> Hereinafter, the present invention will be explained in more detail based on Reference Examples, Examples, and Comparative Examples, but the present invention is not limited to these Examples.

参考例1 硫黄含有Q 1 0 0 p p mのナフサを、常法
に従って、まずNi−Mo系水添脱硫触媒の存在下に温
度380℃、圧力10kg/cシ−G,LHSV1.0
、水素/ナフサ−0.1(モル比)の条件下に水添分解
した後、ZnO系吸着脱硫剤に接触させて脱硫した。得
られた精製ガス中の硫黄化合物濃度は、約0.2ppm
であった。
Reference Example 1 Naphtha containing 100 ppm of sulfur was first heated in the presence of a Ni-Mo hydrodesulfurization catalyst at a temperature of 380°C, a pressure of 10 kg/c Sea-G, and a LHSV of 1.0 according to a conventional method.
After hydrogenolysis under the conditions of , hydrogen/naphtha-0.1 (molar ratio), desulfurization was carried out by contacting with a ZnO-based adsorption desulfurization agent. The concentration of sulfur compounds in the purified gas obtained was approximately 0.2 ppm.
Met.

実施例1 硝酸銅及び硝酸クロムを含有する混合水溶液にアルカリ
物質として炭酸ナトリウム水溶液を加え、生じた沈澱を
水洗及び濾取した後、高さ1/8インチX直径1/8イ
ンチの大きさに打錠成型し、約300℃で焼成した。該
焼成体中の銅とクロムの原子比は夫々約1=2であった
Example 1 A sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate and chromium nitrate, and the resulting precipitate was washed with water and collected by filtration. It was molded into tablets and fired at about 300°C. The atomic ratio of copper and chromium in the fired body was about 1=2, respectively.

次いで、該焼成体100ccを充填した二次脱硫装置(
脱硫層長さ30cm)に水素2容量%を含む窒素ガスを
流通させ、温度200℃で還元した後、該脱硫装置に参
考例1で得た精製ガス400g/hを通じ、温度250
℃、圧力8kg/c4−Gの条件下に再度脱硫した。
Next, a secondary desulfurization equipment (
Nitrogen gas containing 2% by volume of hydrogen was passed through the desulfurization layer (length 30 cm) to reduce the temperature at 200°C, and then 400g/h of the purified gas obtained in Reference Example 1 was passed through the desulfurization equipment at a temperature of 250°C.
Desulfurization was carried out again under the conditions of temperature and pressure of 8 kg/c4-G.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、1000時間の運転にわたり、平均1ppb以下
に低下していた。
As a result, the concentration of sulfur compounds in the finally obtained refined gas decreased to an average of 1 ppb or less over 1000 hours of operation.

比較例1 実施例1の脱硫剤に代えて活性アルミナ担体(表面積1
00rrr/sr)上に銅5%を担持させた脱硫剤を使
用して、実施例1と同様の二次脱硫を行ったところ、運
転開始直後に硫黄化合物がスリップしはじめ、精製ガス
中に0.05ppmの硫黄化合物が検出された。
Comparative Example 1 Activated alumina carrier (surface area 1
When secondary desulfurization was carried out in the same manner as in Example 1 using a desulfurization agent with 5% copper supported on (00rrr/sr), sulfur compounds began to slip immediately after the start of operation, and 0% copper was carried in the purified gas. .05 ppm of sulfur compounds were detected.

比較例2 硝酸クロムを含有する水溶液に85℃で炭酸ナトリウム
水溶液を加え、生じた沈澱を水洗し濾取した後、再び精
製水中に懸濁させた。該懸濁液に硝酸銅水溶液を加え、
強く攪拌しながら、85℃で炭酸ナトリウム水溶液を加
えた。生成した沈澱を十分に水洗し、濾取した後、高さ
1/8インチ×直径1/8インチに打錠成型し、約30
0℃で焼成した。該焼成体中の銅とクロムの原子比は夫
々約1;2であった。次いで、該焼成体を実施例1と同
様に水素還元処理した後、実施例1と同様こして参考例
1で得られた精製ガスを二次脱硫した。
Comparative Example 2 A sodium carbonate aqueous solution was added to an aqueous solution containing chromium nitrate at 85° C., and the resulting precipitate was washed with water, filtered, and then suspended in purified water again. Adding a copper nitrate aqueous solution to the suspension,
While stirring vigorously, an aqueous sodium carbonate solution was added at 85°C. The generated precipitate was thoroughly washed with water, collected by filtration, and then molded into tablets of 1/8 inch in height x 1/8 inch in diameter.
It was fired at 0°C. The atomic ratio of copper and chromium in the fired body was about 1:2, respectively. Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then the purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as in Example 1.

その結果、運転開始から100時間後に最終精製ガス中
の硫黄化合物濃度は0.05ppmとなり、更に24時
間経過した後は0.12ppmに増大した。
As a result, the concentration of sulfur compounds in the final purified gas was 0.05 ppm 100 hours after the start of operation, and increased to 0.12 ppm after a further 24 hours.

実施例2 硝酸銅、硝酸亜鉛及び硝酸クロムを含有する混合水溶液
にアルカリ物質として炭酸ナトリウム水溶液を加え、生
じた沈澱を水洗及び濾取した後、高さ1/8インチX直
径1/8インチの大きさに打錠成型し、約300℃で焼
成した。該焼成体中の銅:亜鉛:クロムの原子比は夫々
約1:1:1であった。次いで、該焼成体を実施例1と
同様に水素還元処理した後、実施例1と同様にして参考
例1で得られた精製ガスを二次脱硫した。
Example 2 A sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate, and chromium nitrate, and the resulting precipitate was washed with water and collected by filtration. The tablets were molded into a size and baked at about 300°C. The atomic ratio of copper:zinc:chromium in the fired body was about 1:1:1, respectively. Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then the purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as in Example 1.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、4000時間の運転にわたり、平均0.1ppb
以下に低下していた。
As a result, the sulfur compound concentration in the final purified gas was 0.1 ppb on average over 4000 hours of operation.
It had fallen below.

比較例3 硝酸亜鉛と硝酸クロムを含有する水溶液に85℃で炭酸
ナトリウム水溶液を加え、生じた沈澱を水洗し濾取し、
再び精製水中に懸濁させた。該懸濁液に硝酸銅を含有す
る水溶液を加え、強く攪拌しながら、85℃で炭酸ナト
リウム水溶液を加えた。生成した沈澱を十分に水洗し、
濾取した後、高さ1/8インチ×直径1/8インチに打
錠成型し、約300℃で焼成した。該焼成体中の銅:亜
鉛;クロムの原子比は夫々約1:1:1であった。
Comparative Example 3 A sodium carbonate aqueous solution was added to an aqueous solution containing zinc nitrate and chromium nitrate at 85°C, and the resulting precipitate was washed with water and collected by filtration.
It was suspended again in purified water. An aqueous solution containing copper nitrate was added to the suspension, and while stirring strongly, an aqueous sodium carbonate solution was added at 85°C. Wash the formed precipitate thoroughly with water,
After filtering, the mixture was molded into tablets of 1/8 inch in height x 1/8 inch in diameter, and fired at about 300°C. The atomic ratio of copper:zinc:chromium in the fired body was about 1:1:1, respectively.

次いで、該焼成体を実施例1と同様に水素還元処理した
後、実施例1と同様にして参考例1で得られた精製ガス
を二次脱硫した。
Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then the purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as in Example 1.

その結果、運転開始から220時間後には最終精製ガス
中の硫黄化合物濃度は0.05ppmとなり、更に24
時間経過した後には0.1ppmに増大した。
As a result, the concentration of sulfur compounds in the final purified gas was 0.05 ppm 220 hours after the start of operation, and the concentration of sulfur compounds in the final purified gas was 0.05 ppm, and
After time elapsed, it increased to 0.1 ppm.

実施例3 硝酸銅、硝酸亜鉛及び硝酸マンガンを含有する混合水溶
液にアルカリ物質として炭酸ナトリウム水溶液を加え、
生じた沈澱を水洗及び濾取した後、高さ1/8インチX
直径1/8インチの大きさに打錠成型し、約300℃で
焼成した。該焼成体中の銅:亜鉛:マンガンの原子比は
夫々約1=1二〇.8であった。次いで、該焼成体を実
施例1と同様に水素還元処理した後、実施例1と同様に
して参考例1で得られた精製ガスを二次脱硫した。
Example 3 A sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate, and manganese nitrate,
After washing the resulting precipitate with water and collecting it by filtration, a height of 1/8 inch
It was molded into tablets with a diameter of 1/8 inch and fired at about 300°C. The atomic ratio of copper:zinc:manganese in the fired body is approximately 1=120. It was 8. Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then the purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as in Example 1.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、1000時間の運転にわたり、平均0.1ppb
以下に低下していた。
As a result, the sulfur compound concentration in the final purified gas was 0.1 ppb on average over 1000 hours of operation.
It had fallen below.

実施例4 硝酸銅、硝酸亜鉛及び硝酸バリウムを含有する混合水溶
液にアルカリ物質として炭酸ナトリウム水溶液を加え、
生じた沈澱を水洗及び濾取した後、高さ1/8インチ×
直径1/8インチの大きさに打錠成型し、約300℃で
焼成した。該焼成体中の銅:亜鉛;バリウムの原子比は
夫々約1:1:0.4であった。次いで、該焼成体を実
施例1と同様に水素還元処理した後、実施例1と同様に
して参考例1で得られた精製ガスを二次脱硫した。
Example 4 A sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate and barium nitrate,
After washing the resulting precipitate with water and collecting it by filtration,
It was molded into tablets with a diameter of 1/8 inch and fired at about 300°C. The atomic ratio of copper:zinc;barium in the fired body was about 1:1:0.4, respectively. Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then the purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as in Example 1.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、1500時間の運転にわたり、平均0.lppb
以下に低下していた。
As a result, the sulfur compound concentration in the final purified gas was 0.000000000000000 on average over 1500 hours of operation. lppb
It had fallen below.

実施例5 硝酸銅、硝酸亜鉛及び硝酸ジルコニウムを含有する混合
水溶液にアルカリ物質として炭酸ナトリウム水溶液を加
え、生じた沈澱を水洗及び濾取した後、高さ1/8イン
チ×直径1/8インチの大きさに打錠成型し、約300
℃で焼成した。該焼成体中の銅:亜鉛:ジルコニウムの
原子比は夫々約1:1:0.3であった。次いで、該焼
成体を実施例1と同様に水素還元処理した後、実施例1
と同様にして参考例1で得られた精製ガスを二次脱硫し
た。
Example 5 A sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate, and zirconium nitrate, and the resulting precipitate was washed with water and collected by filtration. Molded into tablets of approximately 300 pieces
Calcined at ℃. The atomic ratio of copper:zinc:zirconium in the fired body was about 1:1:0.3, respectively. Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then subjected to hydrogen reduction treatment in the same manner as in Example 1.
The purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as described above.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、1000時間の運転にわたり、平均0.1ppb
以下に低下していた。
As a result, the sulfur compound concentration in the final purified gas was 0.1 ppb on average over 1000 hours of operation.
It had fallen below.

実施例6 硝酸銅、硝酸亜鉛及び硝酸コバルトを含有する混合水溶
液にアルカリ物質として炭酸ナトリウム水溶液を加え、
生じた沈澱を水洗及び濾取した後、高さ1/8インチX
直径1/8インチの大きさに打錠成型し、約300℃で
焼成した。該焼成体中の銅:亜鉛;コバルトの原子比は
夫々約1:1二〇,5であった。次いで、該焼成体を実
施例1と同様に水素還元処理した後、実施例1と同様に
して参考例1で得られた精製ガスを二次脱硫した。
Example 6 A sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate, and cobalt nitrate,
After washing the resulting precipitate with water and collecting it by filtration, a height of 1/8 inch
It was molded into tablets with a diameter of 1/8 inch and fired at about 300°C. The atomic ratio of copper:zinc:cobalt in the fired body was about 1:120.5, respectively. Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then the purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as in Example 1.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、1000時間の運転にわたり、平均0.19pb
以下に低下していた。
As a result, the sulfur compound concentration in the final purified gas was 0.19 pb on average over 1000 hours of operation.
It had fallen below.

実施例7 硝酸銅、硝酸亜鉛及び硝酸ランタンを含有する混合水溶
液にアルカリ物質として炭酸ナトリウム水溶液を加え、
生じた沈澱を水洗及び濾取した後、高さ1/8インチ×
直径1/8インチの大きさに打鍵成型し、約300℃で
焼成した。該焼成体中の銅:亜鉛:ランタンの原子比は
夫々約1=1:0.1であった。次いで、該焼成体を実
施例1と同様に水素還元処理した後、実施例1と同様に
して参考例1で得られた精製ガスを二次脱硫した。
Example 7 A sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate and lanthanum nitrate,
After washing the resulting precipitate with water and collecting it by filtration,
The key was molded to a size of 1/8 inch in diameter and fired at about 300°C. The atomic ratio of copper:zinc:lanthanum in the fired body was about 1=1:0.1, respectively. Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then the purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as in Example 1.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、1000時間の運転にわたり、平均0.lppb
以下に低下していた。
As a result, the concentration of sulfur compounds in the final purified gas was 0.000% on average over 1000 hours of operation. lppb
It had fallen below.

実施例8 硝酸銅、硝酸亜鉛、硝酸アルミニウム及び硝酸クロムを
含有する混合水溶液にアルカリ物質として炭酸ナトリウ
ム水溶液を加え、生じた沈澱を水洗及び濾取した後、高
さ1/8インチX直径1/8インチの大きさに打錠成型
し、約400℃で焼成した。該焼成体中の銅:亜鉛:ア
ルミニウム:クロムの原子比は夫々約1:1:0.7:
0.5であった。次いで、該焼成体を実施例1と同様に
水素還元処理した後、実施例1と同様にして参考例1で
得られた精製ガスを二次脱硫した。
Example 8 A sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate, aluminum nitrate, and chromium nitrate, and the resulting precipitate was washed with water and filtered, and then made into a 1/8 inch high x 1/8 inch diameter. It was molded into 8-inch tablets and fired at about 400°C. The atomic ratio of copper:zinc:aluminum:chromium in the fired body is approximately 1:1:0.7:
It was 0.5. Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then the purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as in Example 1.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、4000時間の運転にわたり、平均0.1ppb
以下に低下していた。
As a result, the sulfur compound concentration in the final purified gas was 0.1 ppb on average over 4000 hours of operation.
It had fallen below.

実施例9 硝酸銅、硝酸亜鉛、硝酸アルミニウム及び硝酸マンガン
を含有する混合水溶液にアルカリ物質として炭酸ナトリ
ウム水溶液を加え、生じた沈澱を水洗及び濾取した後、
高さ1/8インチX直径1/8インチの大きさに打鍵成
型し、約400℃で焼成した。該焼成体中の銅:亜鉛:
アルミニウム;マンガンの原子比は夫々約1:1:0.
7:0.3であった。次いで、該焼成体を実施例1と同
様に水素還元処理した後、実施例1と同様にして参考例
1で得られた精製ガスを二次脱硫した。
Example 9 A sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate, aluminum nitrate, and manganese nitrate, and the resulting precipitate was washed with water and collected by filtration.
The key was molded into a size of 1/8 inch in height x 1/8 inch in diameter, and fired at about 400°C. Copper:zinc in the fired body:
The atomic ratio of aluminum and manganese is approximately 1:1:0.
7:0.3. Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then the purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as in Example 1.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、1500時間の運転にわたり、平均0.lppb
以下に低下していた。
As a result, the sulfur compound concentration in the final purified gas was 0.000000000000000 on average over 1500 hours of operation. lppb
It had fallen below.

実施例10 硝酸鋼、硝酸亜鉛、硝酸クロム及び硝酸マンガンを含有
する混合水溶液にアルカリ物質として炭酸ナトリウム水
溶液を加え、生じた沈澱を水洗及び濾取した後、高さ1
/8インチ×直径1/8インチの大きさに打鍵成型し、
約400℃で焼成した。該焼成体中の銅:亜鉛;クロム
:マンガンの原子比は夫々約1:1:0.7:0.3で
あった。
Example 10 Aqueous sodium carbonate solution was added as an alkaline substance to a mixed aqueous solution containing steel nitrate, zinc nitrate, chromium nitrate, and manganese nitrate, and the resulting precipitate was washed with water and collected by filtration.
The key is molded into a size of /8 inches x 1/8 inch in diameter,
It was fired at about 400°C. The atomic ratios of copper:zinc; chromium:manganese in the fired body were about 1:1:0.7:0.3, respectively.

次いで、該焼成体を実施例1と同様に水素還元処理した
後、実施例1と同様にして参考例1で得られた精製ガス
を二次脱硫した。
Next, the fired body was subjected to hydrogen reduction treatment in the same manner as in Example 1, and then the purified gas obtained in Reference Example 1 was subjected to secondary desulfurization in the same manner as in Example 1.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、1000時間の運転にわたり、平均0.lppb
以下に低下していた。
As a result, the concentration of sulfur compounds in the final purified gas was 0.000% on average over 1000 hours of operation. lppb
It had fallen below.

実施例11 実施例2で得られた焼成体を、実施例1と同様にして還
元した後、下記第1表に示される組成からなる都市ガス
13AをIOOR/hの流量で通じ、温度200℃、圧
力o.02kg/c一・Gで脱琉した。
Example 11 The fired body obtained in Example 2 was reduced in the same manner as in Example 1, and then city gas 13A having the composition shown in Table 1 below was passed through it at a flow rate of IOOR/h, and the temperature was 200°C. , pressure o. It was removed at 0.02kg/c-G.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、1000時間の運転にわたり、平均0.lppb
以下に低下していた。
As a result, the concentration of sulfur compounds in the final purified gas was 0.000% on average over 1000 hours of operation. lppb
It had fallen below.

第1表 メタン           86,9容量%エタン 
           8.1容量%ブロバン    
       3.7容量%ブタン         
   1。3容量%付臭剤 ジメチルスルフィド 3m
g−S/Nm’t−プチルメルカブタン 2mg−S/
Nm’実施例12 実施例2で得られた焼成体を、実弛例1と同様に還元し
た後、LPG (硫黄含有32 5 p p m )を
10047/hの流m−c’通じ、温度200’C、圧
力0.02kg/cシ−Gで脱硫した。
Table 1 Methane 86.9% by volume Ethane
8.1% by volume broban
3.7% by volume butane
1.3 volume% odorant dimethyl sulfide 3m
g-S/Nm't-butylmercabutane 2mg-S/
Nm' Example 12 The fired body obtained in Example 2 was reduced in the same manner as in Actual Relaxation Example 1, and then LPG (sulfur-containing 325 ppm) was passed through m-c' at a flow rate of 10047/h to reduce the temperature. Desulfurization was carried out at 200'C and a pressure of 0.02 kg/c Sea-G.

その結果、最終的に得られた精製ガス中の硫黄化合物濃
度は、iooo時間の運転にわたり、平均0.19pb
以下に低下していた。
As a result, the sulfur compound concentration in the final purified gas was 0.19 pb on average over iooo hours of operation.
It had fallen below.

Claims (1)

【特許請求の範囲】 1、クロム、マンガン、コバルト、ランタン、セリウム
、アルカリ土類金属、バナジウム及びジルコニウムから
なる群より選ばれた少なくとも1種類の元素の水溶性塩
と銅の水溶性塩を使用する共沈法により調製した金属酸
化物混合物を水素還元することを特徴とする脱硫剤の製
造方法。 2、クロム、マンガン、コバルト、ランタン、セリウム
、アルカリ土類金属、バナジウム及びジルコニウムから
なる群より選ばれた少なくとも1種類の元素の水溶性塩
、銅の水溶性塩及び亜鉛の水溶性塩を使用する共沈法に
より調製した金属酸化物混合物を水素還元することを特
徴とする脱硫剤の製造方法。 3、クロム、マンガン、コバルト、ランタン、セリウム
、アルカリ土類金属、バナジウム及びジルコニウムから
なる群より選ばれた少なくとも1種類の元素の水溶性塩
、銅の水溶性塩、亜鉛の水溶性塩及びアルミニウムの水
溶性塩を使用する共沈法により調製した金属酸化物混合
物を水素還元することを特徴とする脱硫剤の製造方法。 4、水素濃度を6容量%以下とした希釈水素ガスを使用
して150〜300℃で水素還元を行う請求項1乃至3
のいずれかに記載の脱硫剤の製造方法。
[Claims] 1. A water-soluble salt of at least one element selected from the group consisting of chromium, manganese, cobalt, lanthanum, cerium, alkaline earth metals, vanadium, and zirconium and a water-soluble salt of copper are used. 1. A method for producing a desulfurizing agent, which comprises reducing a metal oxide mixture prepared by a coprecipitation method with hydrogen. 2. Using a water-soluble salt of at least one element selected from the group consisting of chromium, manganese, cobalt, lanthanum, cerium, alkaline earth metals, vanadium, and zirconium, a water-soluble salt of copper, and a water-soluble salt of zinc. 1. A method for producing a desulfurizing agent, which comprises reducing a metal oxide mixture prepared by a coprecipitation method with hydrogen. 3. A water-soluble salt of at least one element selected from the group consisting of chromium, manganese, cobalt, lanthanum, cerium, alkaline earth metals, vanadium, and zirconium, a water-soluble salt of copper, a water-soluble salt of zinc, and aluminum. 1. A method for producing a desulfurizing agent, which comprises hydrogen reducing a metal oxide mixture prepared by a coprecipitation method using a water-soluble salt of 4. Claims 1 to 3 in which the hydrogen reduction is carried out at 150 to 300°C using diluted hydrogen gas with a hydrogen concentration of 6% by volume or less.
A method for producing a desulfurizing agent according to any one of the above.
JP11264089A 1989-05-01 1989-05-01 Production of desulfurizing agent Pending JPH02293044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11264089A JPH02293044A (en) 1989-05-01 1989-05-01 Production of desulfurizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11264089A JPH02293044A (en) 1989-05-01 1989-05-01 Production of desulfurizing agent

Publications (1)

Publication Number Publication Date
JPH02293044A true JPH02293044A (en) 1990-12-04

Family

ID=14591789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11264089A Pending JPH02293044A (en) 1989-05-01 1989-05-01 Production of desulfurizing agent

Country Status (1)

Country Link
JP (1) JPH02293044A (en)

Similar Documents

Publication Publication Date Title
AU662652B2 (en) Composition based on ceric oxide, preparation and use
US4985074A (en) Process for producing a desulfurization agent
GB2191111A (en) Selective removal of hydrogen sulfide over zinc titanate and alumina
US8222180B2 (en) Adsorbent composition for removal of refractory sulphur compounds from refinery streams and process thereof
JP2006501065A (en) Catalyst adsorbent for sulfur compound removal for fuel cells
JP3272384B2 (en) Catalyst composition, method for producing the same, and method for hydrodesulfurizing sulfur-containing hydrocarbons using the catalyst composition
KR100422193B1 (en) Reduction method of nitrogen oxide reduction catalyst and nitrogen oxide in exhaust gas
JP4576124B2 (en) Desulfurization and novel composition therefor
JPH08229399A (en) Stabilized copper oxide-zinc oxide catalyst containing co-catalyst and its preparation
JPS59131568A (en) Manufacture of spinel composition containing alkali earth metal and aluminum
JP2018517555A (en) Method for preparing a sorbent
US20120067778A1 (en) Multimetallic anionic clays and derived products for SOx removal in the fluid catalytic cracking process
JP3261192B2 (en) Method for desulfurizing hydrocarbon feedstock for fuel cell
JP2688749B2 (en) Method for producing high temperature resistant high-order desulfurizing agent
JP3242514B2 (en) City gas desulfurization method
JPH02293044A (en) Production of desulfurizing agent
JP3230864B2 (en) Method for producing desulfurizing agent
JPH02307530A (en) Desulfurizing agent
JP2654515B2 (en) Method for producing desulfurizing agent
CN101100611B (en) Gasoline sulfur-reducing composition and its preparing and using method
EP1554037A1 (en) Catalyst particles and its use in desulphurisation
CN109486509A (en) A kind of absorbing desulfurization catalyst and preparation method thereof
CN109486523A (en) A kind of FCC gasoline desulfurization method for modifying
CN109486508A (en) A kind of FCC gasoline desulfurizing method by adsorption
JP3548796B2 (en) Synthetic desulfurization catalyst and method for producing the same