JP3242514B2 - City gas desulfurization method - Google Patents

City gas desulfurization method

Info

Publication number
JP3242514B2
JP3242514B2 JP32593593A JP32593593A JP3242514B2 JP 3242514 B2 JP3242514 B2 JP 3242514B2 JP 32593593 A JP32593593 A JP 32593593A JP 32593593 A JP32593593 A JP 32593593A JP 3242514 B2 JP3242514 B2 JP 3242514B2
Authority
JP
Japan
Prior art keywords
hydrogen
gas
desulfurization
copper
city gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32593593A
Other languages
Japanese (ja)
Other versions
JPH06256779A (en
Inventor
正孝 増田
治 岡田
健 田畑
晋 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP32593593A priority Critical patent/JP3242514B2/en
Publication of JPH06256779A publication Critical patent/JPH06256779A/en
Application granted granted Critical
Publication of JP3242514B2 publication Critical patent/JP3242514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は都市ガスの脱硫方法に関
し、より詳細には、水素ガスを含まない都市ガス中の硫
黄含有量を長時間安定して高度に低下させ得る脱硫方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desulfurization method for city gas, and more particularly to a desulfurization method capable of stably and highly reducing the sulfur content in city gas containing no hydrogen gas for a long time.

【0002】[0002]

【従来の技術】都市ガス中には、多くの場合、硫黄濃度
として約5ppm以上の硫黄化合物が付臭剤として含ま
れている。付臭剤としては、その目的から、ジメチルサ
ルファイド等、物理化学的に安定で、容易に吸着されな
い硫黄化合物が採用されている。これらの硫黄化合物
は、触媒等を用いて都市ガスを改質・燃焼する場合に
は、それらの触媒に悪影響を与える原因となるので、脱
硫剤を用いた脱硫工程に付され、硫黄分を除去したのち
使用される。このような安定な硫黄化合物を除去する方
法としては、化学プロセスで石油留分等の脱硫に使われ
ている水添脱硫法、活性炭等による吸着脱硫等が考えら
れる。しかし、前者においては、到達可能な脱硫レベル
は0.1ppm程度であるので、触媒の被毒を完全に防
止することができない。また、後者においては、活性炭
は都市ガス中に数千ppmのオーダーで含まれる炭素数
3〜6以上の炭化水素も同時に吸着してしまうため、本
来、硫黄化合物が吸着すべきサイトのほとんどが利用で
きず、十分な硫黄吸着量を確保しようとすると、必要活
性炭量が膨大になるという問題がある。
2. Description of the Related Art In many cases, city gas contains a sulfur compound having a sulfur concentration of about 5 ppm or more as an odorant. As the odorant, a sulfur compound such as dimethyl sulfide, which is stable in physicochemical and is not easily adsorbed, is used for the purpose. When reforming and burning city gas using a catalyst or the like, these sulfur compounds cause a bad influence on the catalyst. Therefore, the sulfur compound is subjected to a desulfurization step using a desulfurizing agent to remove sulfur components. Used afterwards. Examples of a method for removing such a stable sulfur compound include a hydrodesulfurization method used for desulfurization of petroleum fractions and the like in a chemical process, and adsorption desulfurization using activated carbon and the like. However, in the former case, the achievable desulfurization level is about 0.1 ppm, so that poisoning of the catalyst cannot be completely prevented. In the latter case, activated carbon also simultaneously adsorbs hydrocarbons having 3 to 6 or more carbon atoms contained in city gas in the order of several thousand ppm. If it is impossible to secure a sufficient sulfur adsorption amount, there is a problem that the required amount of activated carbon becomes enormous.

【0003】[0003]

【発明が解決しようとする課題】そこで、特開平2−3
02496号公報に開示されているように、銅系脱硫剤
を用いて都市ガスを脱硫する方法がある。この方法では
都市ガス中の硫黄含有量を0.1ppb以下に脱硫する
ことが可能であり、かつ活性炭と比較して十分なライフ
を持っているが、実際のプロセスに組み込み長時間安定
して使用するには、更に長時間のライフを持つことが要
求されている。本発明は、上記従来技術の問題点を解消
するために創案されたもので、本発明者等が種々研究を
重ねた結果、水素ガスを含有しない都市ガスを、共沈法
により調製された銅−亜鉛系脱硫剤を用いて脱硫する際
に、ジメチルサルファイドなど吸着脱硫では除去しにく
い硫黄化合物の脱硫に、微量の水素が重要な役割をして
おり、都市ガスに少量の水素を添加して脱硫することに
より、都市ガス中の硫黄化合物を長時間安定して、著し
く低減できることを見出して完成したもので、本発明は
都市ガスを高度に且つ長時間安定して脱硫できる脱硫方
法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, Japanese Unexamined Patent Application Publication No.
As disclosed in Japanese Patent No. 02496, there is a method for desulfurizing city gas using a copper-based desulfurizing agent. In this method, the sulfur content in city gas can be desulfurized to 0.1 ppb or less, and it has a longer life than activated carbon. To do so, it is required to have a longer life. The present invention has been made in order to solve the above-mentioned problems of the prior art, and as a result of various studies conducted by the present inventors, a city gas containing no hydrogen gas has been prepared by using a copper prepared by a coprecipitation method. -When desulfurizing with a zinc-based desulfurizing agent, a small amount of hydrogen plays an important role in desulfurization of sulfur compounds that are difficult to remove by adsorption desulfurization such as dimethyl sulfide. The present invention has been completed by finding that sulfur compounds in city gas can be stably and remarkably reduced for a long time by desulfurization. The present invention provides a desulfurization method capable of highly desirably desulfurizing city gas for a long time. The purpose is to:

【0004】[0004]

【課題を解決するための手段】上記の課題を解決すべく
なされた、本発明の都市ガスの脱硫方法は、水素ガスを
含有しない都市ガスに水素を添加し、共沈法により調製
された銅−亜鉛系脱硫剤を用いて脱硫することからな
る。特に、都市ガスに、約0.01%(容量%、以下同
様)以上の水素を添加することによって行われるが、水
素添加量をむやみに多くしても脱硫効果に変わりはな
く、その場合にはむしろ経済的に不利になる。従って、
0.01〜10%程度の水素、好ましくは0.1〜7%
程度の水素、より好ましくは1〜5%程度の水素を添加
しながら、都市ガスを脱硫する方法が好適である。本発
明の方法によれば、脱硫後の都市ガス中の硫黄含有量を
確実に5ppb(硫黄分として、以下同様)以下、通常
の条件では1ppb以下、好ましい条件では0.1pp
b以下に低減することができる。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for desulfurizing city gas of the present invention is characterized in that hydrogen is added to city gas containing no hydrogen gas and copper prepared by a coprecipitation method. -Desulfurization using a zinc-based desulfurization agent. In particular, it is performed by adding about 0.01% (volume%, the same applies hereinafter) or more of hydrogen to city gas. Even if the amount of hydrogen added is increased excessively, the desulfurization effect remains unchanged. Is rather disadvantageous economically. Therefore,
About 0.01 to 10% hydrogen, preferably 0.1 to 7%
A method of desulfurizing city gas while adding about 1% of hydrogen, more preferably about 1% to 5% of hydrogen is suitable. According to the method of the present invention, the sulfur content in the city gas after desulfurization is ensured to be 5 ppb or less (sulfur content is the same hereinafter), 1 ppb or less under normal conditions, and 0.1 ppb under preferable conditions.
b or less.

【0005】本発明において、水素ガスを含有しない都
市ガスには、例えば、13Aなどのガス事業法で定めら
れた分類名称で呼ばれるガスや、パイプライン又はボン
ベで供給されるLPGなどが包含され、より具体的に
は、C1〜C5の炭化水素を主成分とするガス、例えば、
天然ガス、液化天然ガス、液化石油ガス、石油精製オフ
ガス、及びこれらの混合ガスが包含される。本発明の脱
硫方法は、脱硫剤として、共沈法により調製された銅−
亜鉛系脱硫剤を用い、都市ガスに水素を添加しながら当
該脱硫剤に接触させることにより行われる。銅−亜鉛系
脱硫剤としては、少なくとも銅及び酸化亜鉛を含有し、
共沈法により調製された脱硫剤であれば特に限定される
ものではないが、好ましくは下記に示すような方法によ
り調製されたCu−Zn系脱硫剤、Cu−Zn−Al系
脱硫剤などが好適に使用される。
[0005] In the present invention, the city gas which does not contain hydrogen gas includes, for example, gas referred to by a classification name defined by the Gas Business Law such as 13A, LPG supplied by pipeline or cylinder, and the like. More specifically, a gas mainly composed of C 1 to C 5 hydrocarbons, for example,
Natural gas, liquefied natural gas, liquefied petroleum gas, petroleum refined offgas, and mixtures thereof are included. The desulfurization method of the present invention comprises, as a desulfurizing agent, copper prepared by a coprecipitation method.
This is performed by using a zinc-based desulfurizing agent and contacting the city gas with the desulfurizing agent while adding hydrogen to the city gas. The copper-zinc-based desulfurizing agent contains at least copper and zinc oxide,
The desulfurizing agent is not particularly limited as long as it is a desulfurizing agent prepared by a coprecipitation method. Preferably, a Cu-Zn-based desulfurizing agent prepared by the method shown below, a Cu-Zn-Al-based desulfurizing agent, and the like are used. It is preferably used.

【0006】(1)Cu−Zn系脱硫剤 銅化合物(例えば、硝酸銅、酢酸銅等)及び亜鉛化合物
(例えば、硝酸亜鉛、酢酸亜鉛等)を含む水溶液とアル
カリ物質(例えば、炭酸ナトリウム、炭酸カリウム等)
の水溶液を混合して沈殿を生じさせる(共沈法)。生成
した沈殿は十分に水で洗浄した後、濾過し、乾燥する。
次にこれを約270〜400℃で焼成し、一旦水でスラ
リーとした後、濾過・乾燥し、酸化銅−酸化亜鉛の焼結
体を得る。酸化銅及び酸化亜鉛の配合比は、原子比で通
常、銅:亜鉛=1:約0.3〜10、好ましくは1:約
0.5〜3、より好ましくは1:約1〜2.3程度とす
ることが好ましい。亜鉛量が少なすぎる場合には、銅の
シンタリングを効果的に防止することができず、一方亜
鉛量が多すぎる場合には、銅系脱硫剤としての十分な脱
硫性能を発揮しない。次いで、かくして得られた混合酸
化物を水素還元する。水素還元は、好ましくは、水素含
有量6%以下、より好ましくは0.5〜4容量%程度と
なるように、反応に関与しないガス(例えば、窒素ガ
ス、アルゴンガス、メタンガス等)により希釈された水
素ガスの存在下に、150〜350℃程度で上記混合物
を還元処理することにより行われる。このようにして得
られるCu−Zn系脱硫剤は、他の担体成分としてある
種の金属化合物、例えば、酸化クロムなどを含有してい
てもよい。また、上記の工程において、沈殿物を焼成す
る際又は焼結体を水素還元する際に、必要に応じて助剤
を加えた後、タブレットや押出成形物などの形状に成形
するのが好ましい。
(1) Cu-Zn desulfurizing agent An aqueous solution containing a copper compound (eg, copper nitrate, copper acetate, etc.) and a zinc compound (eg, zinc nitrate, zinc acetate, etc.) and an alkaline substance (eg, sodium carbonate, carbonate, etc.) Potassium, etc.)
Are mixed to form a precipitate (coprecipitation method). The precipitate formed is thoroughly washed with water, filtered and dried.
Next, this is calcined at about 270 to 400 ° C., and once slurried with water, filtered and dried to obtain a sintered body of copper oxide-zinc oxide. The compounding ratio of copper oxide and zinc oxide is usually copper: zinc = 1: about 0.3 to 10, preferably 1: about 0.5 to 3, and more preferably 1: about 1 to 2.3. It is preferable to set the degree. If the amount of zinc is too small, sintering of copper cannot be effectively prevented, while if the amount of zinc is too large, sufficient desulfurization performance as a copper-based desulfurizing agent will not be exhibited. Next, the mixed oxide thus obtained is reduced with hydrogen. The hydrogen reduction is preferably performed by diluting with a gas (e.g., nitrogen gas, argon gas, methane gas, or the like) that does not participate in the reaction so that the hydrogen content is preferably 6% or less, more preferably about 0.5 to 4% by volume. The reduction is performed at about 150 to 350 ° C. in the presence of hydrogen gas. The Cu—Zn-based desulfurizing agent obtained in this manner may contain a certain metal compound as another carrier component, for example, chromium oxide. In addition, in the above-mentioned process, when firing the precipitate or reducing the sintered body with hydrogen, it is preferable to add an auxiliary agent as needed, and then to form a tablet or an extruded product.

【0007】(2)Cu−Zn−Al系脱硫剤 銅化合物(例えば、硝酸銅、酢酸銅等)及び亜鉛化合物
(例えば、硝酸亜鉛、酢酸亜鉛等)及びアルミニウム化
合物(例えば、水酸化アルミニウム、硝酸アルミニウ
ム、アルミン酸ナトリウム等)を含む水溶液とアルカリ
物質(例えば、炭酸ナトリウム、炭酸カリウム等)の水
溶液を混合して、沈殿を生じさせる(共沈法)。この
時、アルミニウム化合物はアルカリ物質の溶液に加えて
おいて、この溶液と銅化合物及び亜鉛化合物を含む水溶
液を混合して沈殿を生成してもよい。次いで、生成した
沈殿は十分に水で洗浄した後、濾過し、乾燥する。次に
これを約270〜400℃で焼成し、一旦水でスラリー
とした後、濾過、乾燥し、酸化銅−酸化亜鉛−酸化アル
ミニウムの焼結体を得る。酸化銅、酸化亜鉛及び酸化ア
ルミニウムの配合比は、原子比で通常、銅:亜鉛:アル
ミニウム=1:約0.3〜10:約0.05〜2、より
好ましくは1:約0.6〜3:約0.3〜1程度とする
ことが好ましい。亜鉛量が少なすぎる場合には、銅のシ
ンタリングを効果的に防止することができず、一方亜鉛
量が多すぎる場合には、銅系脱硫剤としての十分な脱硫
性能を発揮しない。また、アルミニウム量が少なすぎる
場合には、Cu−ZnO構造を安定化することができ
ず、一方アルミニウム量が多すぎる場合には、脱硫性能
が低下する。次いで、かくして得られた混合酸化物を水
素還元する。水素還元は、好ましくは、水素含有量6%
以下、より好ましくは0.5〜4容量%程度となるよう
に、反応に関与しないガス(例えば、窒素ガス、アルゴ
ンガス、メタンガス等)により希釈された水素ガスの存
在下に、150〜350℃程度で上記混合物を還元処理
することにより行われる。このようにして得られるCu
−Zn−Al系脱硫剤は、他の担体成分としてある種の
金属化合物、例えば、酸化クロムなどを含有していても
よい。また、上記の工程において、沈殿物を焼成する際
又は焼結体を水素還元する際に、必要に応じて助剤を加
えた後、タブレットや押出成形物などの形状に成形する
のが好ましい。
(2) Cu-Zn-Al-based desulfurizing agent Copper compound (eg, copper nitrate, copper acetate, etc.), zinc compound (eg, zinc nitrate, zinc acetate, etc.) and aluminum compound (eg, aluminum hydroxide, nitric acid, etc.) An aqueous solution containing aluminum, sodium aluminate, etc.) and an aqueous solution of an alkaline substance (eg, sodium carbonate, potassium carbonate, etc.) are mixed to cause precipitation (coprecipitation method). At this time, the aluminum compound may be added to the solution of the alkali substance, and the solution may be mixed with the aqueous solution containing the copper compound and the zinc compound to form a precipitate. Next, the formed precipitate is sufficiently washed with water, filtered, and dried. Next, this is calcined at about 270 to 400 ° C., and once slurried with water, filtered and dried to obtain a sintered body of copper oxide-zinc oxide-aluminum oxide. The compounding ratio of copper oxide, zinc oxide, and aluminum oxide is usually atomic ratio of copper: zinc: aluminum = 1: about 0.3-10: about 0.05-2, more preferably 1: about 0.6-. 3: It is preferable to be about 0.3-1. If the amount of zinc is too small, sintering of copper cannot be effectively prevented, while if the amount of zinc is too large, sufficient desulfurization performance as a copper-based desulfurizing agent will not be exhibited. If the amount of aluminum is too small, the Cu—ZnO structure cannot be stabilized, while if the amount of aluminum is too large, the desulfurization performance decreases. Next, the mixed oxide thus obtained is reduced with hydrogen. Hydrogen reduction preferably has a hydrogen content of 6%
Hereinafter, the temperature is preferably set to 150 to 350 ° C. in the presence of a hydrogen gas diluted with a gas that does not participate in the reaction (for example, nitrogen gas, argon gas, methane gas, or the like) so as to be about 0.5 to 4% by volume. It is carried out by reducing the above mixture to a degree. Cu obtained in this manner
The Zn-Al-based desulfurizing agent may contain a certain metal compound as another carrier component, for example, chromium oxide. In addition, in the above-mentioned process, when firing the precipitate or reducing the sintered body with hydrogen, it is preferable to add an auxiliary agent as needed, and then to form a tablet or an extruded product.

【0008】上記(1)及び(2)における混合酸化物
の水素還元に関し、銅は融点が低いため、熱により粒径
が増大し、表面積が減少しやすく、また、過度の熱によ
り細孔構造が微妙に変化して、その結果、脱硫剤として
の特性が大きく変化する。更に、酸化銅の水素還元は発
熱反応である。従って、混合酸化物の水素還元に際して
は、混合酸化物の水素還元を温和な条件下に進行させる
のが好ましく、前記のように水素含有量6%以下、より
好ましくは0.5〜4容量%程度となるように、反応に
関与しないガスにより希釈された水素ガスの存在下に、
150〜350℃程度の温度に維持しつつ還元処理する
方法が好適である。反応に関与しないガスとしては、窒
素ガス等の不活性ガスが好適に使用される。
[0008] Regarding the hydrogen reduction of the mixed oxide in the above (1) and (2), since copper has a low melting point, the particle size is increased by heat and the surface area is easily reduced, and the pore structure is reduced by excessive heat. Delicately changes, and as a result, the properties as a desulfurizing agent greatly change. Furthermore, hydrogen reduction of copper oxide is an exothermic reaction. Therefore, in the reduction of the mixed oxide with hydrogen, it is preferable that the hydrogen reduction of the mixed oxide is allowed to proceed under mild conditions, and as described above, the hydrogen content is 6% or less, more preferably 0.5 to 4% by volume. To the extent that in the presence of hydrogen gas diluted by gases that do not participate in the reaction,
A method of performing a reduction treatment while maintaining the temperature at about 150 to 350 ° C. is preferable. As a gas not involved in the reaction, an inert gas such as a nitrogen gas is preferably used.

【0009】上記の方法で得られる銅−亜鉛系脱硫剤
は、微粒子の凝集体からなる緻密な構造をしており、非
常に小さい銅微粒子が、酸化亜鉛粒子表面に均一に分散
しているとともに、酸化亜鉛との化学的な相互作用によ
り高活性状態になっている。また、Cu−Zn−Al系
脱硫剤においては、酸化アルミニウムは全体に分布し、
熱による銅粒子、酸化亜鉛粒子のシンタリングを防いで
高活性な状態を保持している。従って、これらの脱硫剤
を使用する場合には、都市ガス中の硫黄含有量を確実に
5ppb以下、通常の条件では1ppb以下、更に適当
な条件では容易に0.1ppb以下とすることができ
る。特にCu−Zn−Al系脱硫剤にあっては、酸化ア
ルミニウムの作用により、耐熱性に優れ、高温での強度
低下及び硫黄吸着力の低下を著しく減少させることがで
きるという利点が得られるため、使用温度域の制約が緩
和される。
The copper-zinc desulfurizing agent obtained by the above method has a dense structure consisting of aggregates of fine particles, and very small copper fine particles are uniformly dispersed on the surface of zinc oxide particles. , Is in a highly active state due to chemical interaction with zinc oxide. In the Cu-Zn-Al-based desulfurizing agent, aluminum oxide is distributed throughout,
Prevents sintering of copper particles and zinc oxide particles due to heat and maintains a highly active state. Therefore, when these desulfurizing agents are used, the sulfur content in city gas can be reliably reduced to 5 ppb or less, 1 ppb or less under ordinary conditions, and 0.1 ppb or less easily under more appropriate conditions. In particular, in the case of a Cu-Zn-Al-based desulfurizing agent, due to the action of aluminum oxide, the heat resistance is excellent, and the advantage that strength reduction at high temperatures and reduction in sulfur adsorption power can be significantly reduced is obtained, Restrictions on operating temperature range are eased.

【0010】本発明の脱硫方法は、上記のようにして調
製された銅−亜鉛系脱硫剤を150〜300℃の温度範
囲で使用する。Cu−Zn−Al系脱硫剤にあっては、
150〜400℃程度の温度範囲で使用してもよい。好
ましくは、都市ガスを脱硫する前に、加熱器を用いるか
又は脱硫ガスと熱交換することにより都市ガスを予熱
し、150〜400℃程度で脱硫すればよい。脱硫温度
は硫黄化合物の分解反応速度を速くするという点では、
より高い温度で脱硫することが望ましいが、一方、あま
り温度が高いと脱硫剤の銅成分がシンタリングを起こし
脱硫剤の表面積が減少する。従って、実際には200〜
350℃、より好ましくは250〜300℃で使用する
ことが好ましい。
[0010] The desulfurization method of the present invention uses the copper-zinc-based desulfurizing agent prepared as described above in a temperature range of 150 to 300 ° C. For Cu-Zn-Al-based desulfurizing agent,
You may use in the temperature range of about 150-400 degreeC. Preferably, before desulfurizing the city gas, the city gas may be preheated by using a heater or exchanging heat with the desulfurization gas, and desulfurized at about 150 to 400 ° C. In that desulfurization temperature speeds up the decomposition reaction of sulfur compounds,
It is desirable to desulfurize at a higher temperature, but if the temperature is too high, the copper component of the desulfurizing agent will sinter and reduce the surface area of the desulfurizing agent. Therefore, actually,
It is preferable to use at 350 ° C, more preferably at 250 to 300 ° C.

【0011】本発明の脱硫方法は、通常、銅−亜鉛系脱
硫剤が充填された脱硫管に都市ガスと水素を通じること
により行われる。添加する水素量は厳密には都市ガス中
に含まれている硫黄の種類、量などに応じて調整される
が、実際含まれている硫黄量はppmオーダーの量であ
るため、少なくとも0.01%以上の水素を添加するこ
とによって行われる。しかし、水素添加量をむやみに多
くしても脱硫効果に変わりはなく、その場合にはむしろ
経済的に不利になる。従って、0.01〜10%程度の
水素、好ましくは0.1〜7%程度の水素、より好まし
くは1〜5%程度の水素を添加しながら、都市ガスを脱
硫する方法が好ましい。また、水蒸気改質プロセスの前
処理の脱硫として使用する場合には、水蒸気改質反応に
よってできた水素を一部リサイクルすることによって使
用することができる。充填すべき脱硫剤の量は、都市ガ
ス中の硫黄含有量、使用条件等により適宜設定される
が、通常、GHSVが200〜4000(l/h)程
度、好ましくは300〜2000(l/h)程度となる
ように定めればよい。
The desulfurization method of the present invention is generally carried out by passing city gas and hydrogen through a desulfurization tube filled with a copper-zinc desulfurizing agent. Strictly speaking, the amount of hydrogen to be added is adjusted according to the type and amount of sulfur contained in the city gas. However, since the amount of sulfur actually contained is on the order of ppm, it is at least 0.01%. This is done by adding more than% hydrogen. However, even if the amount of hydrogen added is increased excessively, the desulfurization effect does not change, in which case it is rather economically disadvantageous. Therefore, a method of desulfurizing city gas while adding about 0.01 to 10% of hydrogen, preferably about 0.1 to 7% of hydrogen, more preferably about 1 to 5% of hydrogen is preferable. When used as desulfurization in the pretreatment of the steam reforming process, it can be used by partially recycling hydrogen produced by the steam reforming reaction. The amount of the desulfurizing agent to be charged is appropriately set depending on the sulfur content in the city gas, usage conditions, and the like, but is usually about 200 to 4000 (l / h), preferably 300 to 2000 (l / h). ).

【0012】また、銅−亜鉛系脱硫剤の寿命を延ばすに
は、銅−亜鉛系脱硫剤の前に酸化亜鉛系吸着脱硫剤を充
填し、酸化亜鉛で吸着され得る硫黄化合物を予め除去す
ることが望ましい。この方法によれば、都市ガス中に含
まれている硫化水素等が酸化亜鉛で除去されるので、銅
−亜鉛系脱硫剤の負荷が軽減され、結果として寿命が延
長される。また、メルカプタン系の硫黄化合物が都市ガ
スに含まれている場合にも、酸化亜鉛で吸着されるの
で、銅−亜鉛系脱硫剤の負荷が軽減され、結果として寿
命が延長される。
In order to extend the life of the copper-zinc desulfurizing agent, a zinc oxide-based adsorptive desulfurizing agent is charged before the copper-zinc based desulfurizing agent, and sulfur compounds that can be adsorbed by zinc oxide are removed in advance. Is desirable. According to this method, the hydrogen sulfide and the like contained in the city gas are removed by the zinc oxide, so that the load of the copper-zinc desulfurizing agent is reduced, and as a result, the life is extended. Further, even when a mercaptan-based sulfur compound is contained in city gas, it is adsorbed by zinc oxide, so that the load of the copper-zinc-based desulfurizing agent is reduced, and as a result, the life is extended.

【0013】[0013]

【発明の効果】本発明によれば、脱硫性能が極めて優れ
た銅−亜鉛系脱硫剤が使用されているとともに共存する
水素の効果により、少量の脱硫剤で、高度に脱硫された
都市ガスを長時間安定して容易に得ることができるとい
う効果を奏する。従って、硫黄被毒に弱い触媒を使用し
て都市ガスを改質する場合等において、触媒の硫黄被毒
を実用上完全に防止することができるなど、硫黄による
悪影響を極めて高度なレベルまで排除することが可能で
ある。
According to the present invention, a copper-zinc-based desulfurizing agent having extremely excellent desulfurization performance is used, and a highly desulfurized city gas can be produced with a small amount of a desulfurizing agent by the effect of coexisting hydrogen. This has the effect that it can be obtained stably and easily for a long time. Therefore, when reforming city gas using a catalyst that is vulnerable to sulfur poisoning, for example, the sulfur poisoning of the catalyst can be completely prevented practically, and the adverse effects of sulfur are eliminated to an extremely high level. It is possible.

【0014】[0014]

【実施例】以下、実施例及び比較例に基づいて本発明を
より詳細に説明するが、本発明はこれら実施例に限定さ
れるものではない。 実施例1 硝酸銅と硝酸亜鉛をモル比1:1の割合で含有する混合
水溶液と、炭酸ナトリウムの水溶液を、80℃程度に保
持した精製水に撹拌下一定の速度で同時滴下した。生成
した沈殿を熟成、洗浄、濾過、乾燥後、直径1/8イン
チ×長さ1/8インチに打錠成形し、更に約280℃で
焼成した。次いで該焼成体約150ccを充填した脱硫
管(脱硫層長さ30cm)に水素1容量%を含む窒素ガ
スを流通させ、温度200℃で還元した後、該脱硫管に
下記表1に示される組成からなる都市ガス(以下、13
Aガスという)150(l/h)と水素1.5(l/
h)を通じ(GHSV=1000h-1)、温度200
℃、圧力0.02kg/cm2・Gの条件下に脱硫し
た。脱硫ガス中の硫黄含有量をコールドトラップ法で経
時的に測定したところ、2000時間の運転にわたり、
0.1ppb以下であった。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 A mixed aqueous solution containing copper nitrate and zinc nitrate at a molar ratio of 1: 1 and an aqueous solution of sodium carbonate were simultaneously added dropwise to purified water maintained at about 80 ° C. at a constant rate with stirring. The resulting precipitate was aged, washed, filtered, dried, and then tableted into a tablet having a diameter of 1/8 inch and a length of 1/8 inch, followed by firing at about 280 ° C. Then, a nitrogen gas containing 1% by volume of hydrogen was passed through a desulfurization tube (desulfurization layer having a length of 30 cm) filled with about 150 cc of the fired body and reduced at a temperature of 200 ° C., and the composition shown in Table 1 below was passed through the desulfurization tube. City gas consisting of
A (referred to as gas A) 150 (l / h) and hydrogen 1.5 (l / h)
h) (GHSV = 1000 h −1 ), temperature 200
Desulfurization was carried out under the conditions of ° C and a pressure of 0.02 kg / cm 2 · G. When the sulfur content in the desulfurization gas was measured over time by the cold trap method, over a period of 2000 hours of operation,
It was 0.1 ppb or less.

【0015】[0015]

【表1】 [Table 1]

【0016】比較例1 実施例1と同じ脱硫剤で、13Aガス150(l/h)
を、水素を添加しないで通じ、温度200℃、圧力0.
02kg/cm2・Gの条件下に脱硫した。その結果、
約1200時間で脱硫ガス中の硫黄濃度が0.1ppm
に達した。
COMPARATIVE EXAMPLE 1 The same desulfurizing agent as in Example 1 was used except that 13A gas was 150 (l / h).
Without adding hydrogen, at a temperature of 200 ° C. and a pressure of 0.
Desulfurization was performed under the condition of 02 kg / cm 2 · G. as a result,
Sulfur concentration in desulfurization gas is 0.1ppm in about 1200 hours
Reached.

【0017】実施例2 水酸化ナトリウム水溶液に約120℃で水酸化アルミニ
ウムを溶解し、アルミン酸塩ができるまで撹拌する。こ
のアルミン酸ナトリウム溶液を炭酸ナトリウム溶液に加
え、この溶液を約60℃に保つ。この溶液に硝酸銅及び
硝酸亜鉛をモル比1:1の割合で含有する混合水溶液を
撹拌しながら徐々に滴下し沈殿を生ずる。沈殿は十分に
水で洗浄した後、濾過し、乾燥する。次にこれを約28
0℃で焼成し、一旦水でスラリーとした後、濾過、乾燥
し、直径1/8インチ×長さ1/8インチの大きさに成
形し、モル比で1:1:0.3の酸化銅−酸化亜鉛−酸
化アルミニウムの焼結体を得た。次いで該焼成体約15
0ccを充填した脱硫管(脱硫層長さ30cm)に水素
1容量%を含む窒素ガスを流通させ、温度200℃で還
元した後、該脱硫管に13Aガス150(l/h)と水
素1.5(l/h)を通じ(GHSV=1000
-1)、温度200℃、圧力0.02kg/cm2・G
の条件下に脱硫した。脱硫ガス中の硫黄含有量をコール
ドトラップ法で経時的に測定したところ、2400時間
の運転に亘り、0.1ppb以下であった。
Example 2 Aluminum hydroxide is dissolved in an aqueous solution of sodium hydroxide at about 120 ° C. and stirred until an aluminate is formed. This sodium aluminate solution is added to the sodium carbonate solution and the solution is kept at about 60 ° C. To this solution, a mixed aqueous solution containing copper nitrate and zinc nitrate at a molar ratio of 1: 1 is gradually added dropwise with stirring to produce a precipitate. The precipitate is thoroughly washed with water, filtered and dried. Then this is about 28
After baking at 0 ° C., the slurry is once slurried with water, filtered, dried, formed into a size of 1/8 inch in diameter × 1/8 inch in length, and oxidized at a molar ratio of 1: 1: 0.3. A sintered body of copper-zinc oxide-aluminum oxide was obtained. Next, the fired body about 15
A nitrogen gas containing 1% by volume of hydrogen was passed through a desulfurization tube (desulfurization layer having a length of 30 cm) filled with 0 cc and reduced at a temperature of 200 ° C., and then 150 A (l / h) of 13A gas and 1. 5 (l / h) (GHSV = 1000
h -1 ), temperature 200 ° C, pressure 0.02 kg / cm 2 · G
Under the following conditions. When the sulfur content in the desulfurization gas was measured over time by the cold trap method, it was 0.1 ppb or less over 2400 hours of operation.

【0018】実施例3 硝酸銅、硝酸亜鉛及び水酸化アルミニウムをモル比1:
1:0.3の割合で含有する混合水溶液を、約60℃に
保った炭酸ナトリウム水溶液に撹拌しながら滴下し沈殿
を生成する。沈殿は十分に水で洗浄した後、濾過し、乾
燥する。次にこれを約280℃で焼成し、一旦水でスラ
リーとした後、濾過、乾燥し、直径1/8インチ×長さ
1/8インチの大きさに成形した。次いで該焼成体約1
50ccを充填した脱硫管(脱硫層長さ30cm)に水
素1容量%を含む窒素ガスを流通させ、温度200℃で
還元した後、該脱硫管に13Aガス150(l/h)と
水素1.5(l/h)を通じ(GHSV=1000
-1)、温度200℃、圧力0.02kg/cm2・G
の条件下に脱硫した。脱硫ガス中の硫黄含有量をコール
ドトラップ法で経時的に測定したところ、2400時間
の運転に亘り、0.1ppb以下であった。
Example 3 Copper nitrate, zinc nitrate and aluminum hydroxide were mixed at a molar ratio of 1:
A mixed aqueous solution containing at a ratio of 1: 0.3 is added dropwise to an aqueous sodium carbonate solution maintained at about 60 ° C. while stirring to form a precipitate. The precipitate is thoroughly washed with water, filtered and dried. Next, this was baked at about 280 ° C., once formed into a slurry with water, filtered, dried, and formed into a size of 1/8 inch in diameter × 1/8 inch in length. Then, about 1
A nitrogen gas containing 1% by volume of hydrogen was passed through a desulfurization tube (desulfurization layer having a length of 30 cm) filled with 50 cc and reduced at a temperature of 200 ° C., and then 150 A (l / h) of 13A gas and 1. 5 (l / h) (GHSV = 1000
h -1 ), temperature 200 ° C, pressure 0.02 kg / cm 2 · G
Under the following conditions. When the sulfur content in the desulfurization gas was measured over time by the cold trap method, it was 0.1 ppb or less over 2400 hours of operation.

【0019】実施例4 水素添加量を0.1%[0.15(l/h)]とする以
外は、実施例3と同様にして、13Aガスの脱硫を行っ
た。その結果、脱硫ガス中の硫黄含有量は、2400時
間の運転にわたり、0.1ppb以下に抑制されてい
た。
Example 4 13A gas was desulfurized in the same manner as in Example 3 except that the amount of hydrogen added was 0.1% [0.15 (l / h)]. As a result, the sulfur content in the desulfurization gas was suppressed to 0.1 ppb or less over the operation for 2400 hours.

【0020】実施例5 炭酸ナトリウム水溶液に水酸化アルミニウムを加え、こ
の溶液を60℃に保ち、これに硝酸銅及び硝酸亜鉛をモ
ル比で1:1の割合で含有する混合水溶液を撹拌しなが
ら徐々に滴下し沈殿を生成させる。その後の処理は実施
例3と同様にして行い、モル比で1:1:0.3の酸化
銅−酸化亜鉛−酸化アルミニウムの焼結体を得た。次い
で該焼成体約150ccを充填した脱硫管(脱硫層長さ
30cm)に水素1容量%を含む窒素ガスを流通させ、
温度200℃で還元した後、該脱硫管に13Aガス15
0(l/h)と水素1.5(l/h)を通じ(GHSV
=1000h-1)、温度200℃、圧力0.02kg/
cm2・Gの条件下に脱硫した。脱硫ガス中の硫黄含有
量をコールドトラップ法で経時的に測定したところ、2
400時間の運転に亘り、0.1ppb以下であった。
Example 5 Aluminum hydroxide was added to an aqueous solution of sodium carbonate, the solution was kept at 60 ° C., and a mixed aqueous solution containing copper nitrate and zinc nitrate in a molar ratio of 1: 1 was gradually added thereto while stirring. To form a precipitate. The subsequent treatment was performed in the same manner as in Example 3, to obtain a copper oxide-zinc oxide-aluminum oxide sintered body at a molar ratio of 1: 1: 0.3. Then, a nitrogen gas containing 1% by volume of hydrogen was passed through a desulfurization tube (desulfurization layer length 30 cm) filled with about 150 cc of the fired body,
After reduction at a temperature of 200 ° C., 13A gas 15
0 (l / h) and 1.5 (l / h) of hydrogen (GHSV
= 1000h -1 ), temperature 200 ° C, pressure 0.02kg /
It was desulfurized under the condition of cm 2 · G. The sulfur content in the desulfurization gas was measured over time by the cold trap method.
It was less than 0.1 ppb over 400 hours of operation.

【0021】実施例6 実施例5と同じ脱硫剤を用い、脱硫温度を温度250℃
とする以外は実施例3と同様の条件で、13Aガスを脱
硫した。その結果、脱硫ガス中の硫黄含有量は、400
0時間の運転にわたり、0.1ppb以下に抑制されて
いた。
Example 6 Using the same desulfurizing agent as in Example 5, the desulfurization temperature was set at 250 ° C.
13A gas was desulfurized under the same conditions as in Example 3 except for the following. As a result, the sulfur content in the desulfurization gas is 400
It was suppressed to 0.1 ppb or less over the operation for 0 hours.

【0022】実施例7 実施例2と同様にして、LPG(硫黄含有量5ppm)
を150(l/h)の流量で、約1%の水素[1.5
(l/h)]を添加して脱硫を行った。その結果、脱硫
ガス中の硫黄含有量は、2000時間の運転にわたり、
0.1ppb以下に抑制されていた。
Example 7 In the same manner as in Example 2, LPG (sulfur content: 5 ppm)
At a flow rate of 150 (l / h) and about 1% hydrogen [1.5
(L / h)] for desulfurization. As a result, the sulfur content in the desulfurization gas over 2000 hours of operation,
It was suppressed to 0.1 ppb or less.

【0023】実施例8 都市ガスを原燃料とする汎用のリン酸型燃料電池発電シ
ステムの脱硫装置にCu−Zn−Al系脱硫剤を充填
し、原燃料の脱硫試験を行った。脱硫装置としては、実
施例3と同様の製法で得られたCu−Zn−Al系脱硫
剤38リットルを充填した脱硫装置(脱硫層長さ約76
cm)を用いた。原燃料として、上記表1に示される成
分からなる都市ガス13Aガスを用い、このガス(12
Nm3/h、GHSV=320h-1)を200℃に予熱
した後、0.1Nm3の水素とともに上記脱硫装置に導
入して脱硫した。脱硫されたガスをS/C(炭化水素中
の炭素1モル当りの水蒸気のモル数)=2.0、反応温
度450℃(入口)及び665℃(出口)、反応圧力
0.1kg/cm2で水蒸気改質反応に付した。水蒸気改質さ
れた燃料ガスは、市販の低温一酸化炭素変性触媒が充填
された熱交換反応器型一酸化炭素変成器において、変成
器出口温度190℃、反応圧力0.2kg/cm2の条件下に
変成した後、燃料電池本体の燃料極に導き、酸化極に導
入された空気中の酸素と反応させて、電気エネルギーを
取り出した。脱硫装置出口におけるガス中の硫黄含有量
を経時的に測定したが、6200時間経過後も硫黄含有
量は0.1ppb以下であり、水蒸気改質触媒は620
0時間経過後においても触媒活性の劣化反応開始直後と
同様な活性を維持しており、燃料電池は正常に作動し
た。
Example 8 A desulfurizer of a general-purpose phosphoric acid fuel cell power generation system using city gas as a raw fuel was charged with a Cu-Zn-Al-based desulfurizing agent, and a raw fuel desulfurization test was performed. As the desulfurization device, a desulfurization device filled with 38 liters of a Cu—Zn—Al-based desulfurization agent obtained by the same manufacturing method as in Example 3 (desulfurization layer length: about 76
cm) was used. As a raw fuel, a city gas 13A gas having the components shown in Table 1 above was used.
(Nm 3 / h, GHSV = 320 h −1 ) was preheated to 200 ° C., and then introduced into the desulfurization unit together with 0.1 Nm 3 of hydrogen to desulfurize. The desulfurized gas was subjected to S / C (molar number of steam per mole of carbon in hydrocarbon) = 2.0, reaction temperature 450 ° C. (inlet) and 665 ° C. (outlet), reaction pressure 0.1 kg / cm 2. For steam reforming reaction. The steam reformed fuel gas was heated in a heat exchange reactor type carbon monoxide converter packed with a commercially available low-temperature carbon monoxide modifying catalyst under the conditions of a transformer outlet temperature of 190 ° C. and a reaction pressure of 0.2 kg / cm 2 . After denaturation, it was led to the fuel electrode of the fuel cell main body, and reacted with oxygen in the air introduced into the oxidation electrode to extract electric energy. The sulfur content in the gas at the outlet of the desulfurization unit was measured with time. After 6200 hours, the sulfur content was 0.1 ppb or less, and the steam reforming catalyst was 620 ppm.
Even after the elapse of 0 hours, the catalyst activity maintained the same activity immediately after the start of the degradation reaction, and the fuel cell operated normally.

【0024】比較例2 銅−亜鉛系脱硫剤に代えて、銅を担持した活性炭(表面
積約700m2/g)150ccを実施例1と同様の脱
硫管に充填し、13Aガス150(l/h)を通じ、温
度25℃、圧力0.02kg/cm2・Gの条件下に脱
硫した。その結果、脱硫ガス中の硫黄含有量は、約10
0時間で、0.1ppmに達した。また、水素を添加し
ても脱硫効果は全く変わらなかった。
Comparative Example 2 In place of the copper-zinc-based desulfurizing agent, 150 cc of activated carbon carrying copper (surface area of about 700 m 2 / g) was charged into the same desulfurization tube as in Example 1, and 13 A gas 150 (l / h) ), And desulfurized under the conditions of a temperature of 25 ° C. and a pressure of 0.02 kg / cm 2 · G. As a result, the sulfur content in the desulfurization gas is about 10
At 0 hours, it reached 0.1 ppm. Also, the addition of hydrogen did not change the desulfurization effect at all.

【0025】実施例9 13Aガスを139.5(l/h)とし、水素添加量を
10.5(l/h)とする以外は実施例3と同様にして
脱硫を行った。その結果、脱硫ガス中の硫黄含有量は、
2400時間の運転にわたり、0.1ppb以下に抑制
されていた。
Example 9 Desulfurization was performed in the same manner as in Example 3 except that the 13A gas was 139.5 (l / h) and the amount of hydrogen added was 10.5 (l / h). As a result, the sulfur content in the desulfurization gas is
It was suppressed to 0.1 ppb or less over the operation for 2400 hours.

【0026】実施例10 13Aガス135(l/h)とし、水素添加量を15
(l/h)とする以外は実施例3と同様にして脱硫を行
った。その結果、脱硫ガス中の硫黄含有量は、2400
時間の運転にわたり、0.1ppb以下に抑制されてい
た。
Example 10 13A gas was set to 135 (l / h) and the amount of hydrogen added was 15
Except for (l / h), desulfurization was performed in the same manner as in Example 3. As a result, the sulfur content in the desulfurization gas is 2400
It was suppressed to 0.1 ppb or less over the operation over time.

【0027】比較例3 混練り法によって調製された銅−亜鉛系脱硫剤(高さ1
/8インチ×直径1/8インチのペレット、銅含有量=
41重量%、銅:亜鉛(原子比)=1:0.76)を実
施例1と同様の脱硫管に充填し、水素1容量%を含む窒
素ガスを流通させ、温度200℃で還元した後、13A
ガス150(l/h)と水素1.5(l/h)を添加し
て、温度200℃、圧力0.02kg/cm2・Gの条
件下に脱硫した。その結果、運転開始から約208時間
後には脱硫ガス中の硫黄は、0.05ppmに達してい
た。このように、混練り法によって調製された脱硫剤の
脱硫効果は、共沈法により調製された脱硫剤より劣って
いた。
Comparative Example 3 A copper-zinc desulfurizing agent (height 1) prepared by a kneading method
/ 8 inch x 1/8 inch diameter pellet, copper content =
41% by weight, copper: zinc (atomic ratio) = 1: 0.76) was filled in the same desulfurization tube as in Example 1, nitrogen gas containing 1% by volume of hydrogen was passed through, and reduced at a temperature of 200 ° C. , 13A
150 (l / h) of gas and 1.5 (l / h) of hydrogen were added, and desulfurization was performed under the conditions of a temperature of 200 ° C and a pressure of 0.02 kg / cm 2 · G. As a result, about 208 hours after the start of the operation, the sulfur in the desulfurization gas reached 0.05 ppm. Thus, the desulfurizing effect of the desulfurizing agent prepared by the kneading method was inferior to that of the desulfurizing agent prepared by the coprecipitation method.

【0028】比較例4 市販の硝酸亜鉛(日産ガードラー社製G−72D)を粉
砕して約3mmの大きさに篩い分けし、これに硝酸銅水
溶液を含浸させ加熱濃縮する。これを乾燥しさらに約2
80℃で焼成し、酸化亜鉛−酸化銅混合物(モル比9
5:5)を得た。次いで、該焼成体約150ccを実施
例1と同様の脱硫管に充填し、水素1容量%を含む窒素
ガスを流通させ、温度200℃で還元した後、13Aガ
ス150(l/h)と水素1.5(l/h)を添加し
て、温度200℃、圧力0.02kg/cm2・Gの条
件下に脱硫した。その結果、運転開始直後から脱硫ガス
中に硫黄が検出され、さらに約1時間後には0.1pp
mに達していた。
Comparative Example 4 Commercially available zinc nitrate (G-72D manufactured by Nissan Gardler Co., Ltd.) was pulverized and sieved to a size of about 3 mm, impregnated with an aqueous solution of copper nitrate and concentrated by heating. Dry it and add about 2
Firing at 80 ° C., a zinc oxide-copper oxide mixture (molar ratio 9
5: 5). Next, about 150 cc of the fired body was filled in the same desulfurization tube as in Example 1, nitrogen gas containing 1% by volume of hydrogen was passed, and reduced at a temperature of 200 ° C. 1.5 (l / h) was added, and the mixture was desulfurized at a temperature of 200 ° C. and a pressure of 0.02 kg / cm 2 · G. As a result, sulfur was detected in the desulfurization gas immediately after the start of operation, and 0.1 pp after about one hour.
m had been reached.

【0029】比較例5 硝酸銅、硝酸亜鉛及び硝酸アルミニウムをモル比1:
1:0.3の割合で含有する混合水溶液と、炭酸ナトリ
ウムの水溶液を、80℃程度に保持した精製水に撹拌下
一定の速度で同時に滴下した。この時、溶液のpHは7
〜7.5に維持しつつ沈殿生成を行う。生成した沈殿を
熟成、洗浄、濾過、乾燥後、直径1/8インチ×長さ1
/8インチに打錠成型し、更に約280℃で焼成した。
次いで該焼成体150ccを脱硫管(脱硫層長さ30c
m)に充填し、水素還元を事前に行わず、該脱硫管に1
3Aガス150(l/h)と水素0.15(l/h)を
通じ(GHSV=1000h-1)、温度200℃、圧力
0.02kg/cm2・Gの条件下に脱硫した。その結
果、運転開始直後から脱硫ガス中に硫黄が検出され、約
3時間後には0.05ppmに達していた。
Comparative Example 5 Copper nitrate, zinc nitrate and aluminum nitrate were mixed at a molar ratio of 1:
A mixed aqueous solution containing a ratio of 1: 0.3 and an aqueous solution of sodium carbonate were simultaneously dropped into purified water maintained at about 80 ° C. at a constant rate while stirring. At this time, the pH of the solution was 7
Precipitate while maintaining at ~ 7.5. The resulting precipitate is aged, washed, filtered, dried and then 1/8 inch in diameter x 1 in length
It was tableted to / 8 inch and fired at about 280 ° C.
Next, 150 cc of the fired body was placed in a desulfurization tube (desulfurization layer length 30 c
m) without hydrogen reduction beforehand,
Desulfurization was performed by passing 150 g of 3A gas (l / h) and 0.15 l / h of hydrogen (GHSV = 1000 h -1 ) at a temperature of 200 ° C. and a pressure of 0.02 kg / cm 2 · G. As a result, sulfur was detected in the desulfurization gas immediately after the start of operation, and reached about 0.05 ppm after about 3 hours.

【0030】比較例6 比較例5と同じ製法で得た酸化銅−酸化亜鉛−酸化アル
ミニウム焼成物150ccを脱硫管(脱硫層長さ30c
m)に充填し、水素還元を事前に行わず、該脱硫管に1
3Aガス135(l/h)と水素15(l/h)を通じ
(GHSV=1000h-1)、温度200℃、圧力0.
02kg/cm2・Gの条件下に脱硫した。その結果、
13Aガスと水素を導入した時に脱硫層の温度が500
℃を越え、さらに、200時間後には、0.03ppm
の硫黄が検出された。
Comparative Example 6 150 cc of a copper oxide-zinc oxide-aluminum oxide fired product obtained by the same method as in Comparative Example 5 was desulfurized (desulfurized layer length 30 c
m) without hydrogen reduction beforehand,
Through 3A gas 135 (l / h) and hydrogen 15 (l / h) (GHSV = 1000 h -1 ), temperature 200 ° C., pressure 0.
Desulfurization was performed under the condition of 02 kg / cm 2 · G. as a result,
When the 13A gas and hydrogen are introduced, the temperature of the desulfurization layer becomes 500
° C, and after 200 hours, 0.03 ppm
Of sulfur was detected.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高見 晋 大阪市中央区平野町四丁目1番2号 大 阪瓦斯株式会社内 (56)参考文献 特開 平1−259088(JP,A) 特開 平1−123627(JP,A) 特開 昭62−282637(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10L 3/10 B01D 53/46 B01J 20/02 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Susumu Takami 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. (56) References JP-A 1-259088 (JP, A) JP-A Hei 1-123627 (JP, A) JP-A-62-282637 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C10L 3/10 B01D 53/46 B01J 20/02

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素ガスを含有しない都市ガスに水素を
0.01〜5%(容量%)添加し、共沈法により調製さ
れた銅−亜鉛系脱硫剤を用いて脱硫することを特徴とす
る都市ガスの脱硫方法。
1. A method of adding 0.01 to 5% (% by volume) of hydrogen to a city gas containing no hydrogen gas and desulfurizing the copper gas using a copper-zinc desulfurizing agent prepared by a coprecipitation method. City gas desulfurization method.
【請求項2】 銅−亜鉛系脱硫剤が、酸化銅−酸化亜鉛
混合物又は酸化銅−酸化亜鉛−酸化アルミニウム混合物
を水素還元して得られた脱硫剤であることを特徴とする
請求項1記載の都市ガスの脱硫方法。
2. The copper-zinc desulfurizing agent is a desulfurizing agent obtained by hydrogen-reducing a copper oxide-zinc oxide mixture or a copper oxide-zinc oxide-aluminum oxide mixture. City gas desulfurization method.
【請求項3】 都市ガス中の硫黄含有量を5ppb以下に
脱硫することを特徴とする請求項1又は2記載の都市ガ
スの脱硫方法。
3. The method for desulfurizing a city gas according to claim 1, wherein the sulfur content in the city gas is desulfurized to 5 ppb or less.
【請求項4】 都市ガス中の硫黄含有量を1ppb以下に
脱硫することを特徴とする請求項1〜3いずれか1記載
の都市ガスの脱硫方法。
4. The method for desulfurizing a city gas according to claim 1, wherein the sulfur content in the city gas is reduced to 1 ppb or less.
【請求項5】 都市ガス中の硫黄含有量を0.1ppb以下
に脱硫することを特徴とする請求項1〜4いずれか1記
載の都市ガスの脱硫方法。
5. The method for desulfurizing a city gas according to claim 1, wherein the sulfur content in the city gas is desulfurized to 0.1 ppb or less.
【請求項6】 水素ガスを含有しない都市ガスに水素を
0.01〜5%(容量%)添加し、共沈法により調製さ
れた銅−亜鉛系脱硫剤を用いて脱硫する都市ガスの脱硫
方法であって、該水素として、脱硫した都市ガスを水蒸
気改質反応に付し、該水蒸気改質反応によってできた水
素を一部リサイクルして用いることを特徴とする請求項
1〜5いずれか1記載の都市ガスの脱硫方法。
6. A desulfurization of a city gas which is desulfurized by adding 0.01 to 5% (by volume) of hydrogen to a city gas containing no hydrogen gas and using a copper-zinc desulfurizing agent prepared by a coprecipitation method. The method according to any one of claims 1 to 5, wherein as the hydrogen, a desulfurized city gas is subjected to a steam reforming reaction, and hydrogen generated by the steam reforming reaction is partially recycled and used. The method for desulfurizing city gas according to claim 1.
【請求項7】 銅−亜鉛系脱硫剤が、酸化銅−酸化亜鉛
混合物又は酸化銅−酸化亜鉛−酸化アルミニウム混合物
を水素還元して得られた脱硫剤であることを特徴とする
請求項6記載の都市ガスの脱硫方法。
7. The copper-zinc-based desulfurizing agent is a desulfurizing agent obtained by hydrogen-reducing a copper oxide-zinc oxide mixture or a copper oxide-zinc oxide-aluminum oxide mixture. City gas desulfurization method.
JP32593593A 1992-11-27 1993-11-29 City gas desulfurization method Expired - Lifetime JP3242514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32593593A JP3242514B2 (en) 1992-11-27 1993-11-29 City gas desulfurization method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-341235 1992-11-27
JP34123592 1992-11-27
JP32593593A JP3242514B2 (en) 1992-11-27 1993-11-29 City gas desulfurization method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000355811A Division JP2001200278A (en) 1992-11-27 2000-11-22 Process for desulfurizing town gas

Publications (2)

Publication Number Publication Date
JPH06256779A JPH06256779A (en) 1994-09-13
JP3242514B2 true JP3242514B2 (en) 2001-12-25

Family

ID=26572006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32593593A Expired - Lifetime JP3242514B2 (en) 1992-11-27 1993-11-29 City gas desulfurization method

Country Status (1)

Country Link
JP (1) JP3242514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139108A1 (en) 2017-01-26 2018-08-02 パナソニック株式会社 Desulfurization apparatus and desulfurization method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096128B2 (en) * 1997-08-21 2008-06-04 大阪瓦斯株式会社 Method for producing desulfurizing agent and method for desulfurizing hydrocarbon
JP4609961B2 (en) * 2000-01-28 2011-01-12 Jx日鉱日石エネルギー株式会社 Method for removing sulfur compounds
US6875410B2 (en) * 2000-02-01 2005-04-05 Tokyo Gas Co., Ltd. Adsorbent for removing sulfur compounds from fuel gases and removal method
JP6607387B2 (en) 2015-02-02 2019-11-20 パナソニックIpマネジメント株式会社 Desulfurization method and desulfurizer
JP6701778B2 (en) * 2015-02-13 2020-05-27 日本製鉄株式会社 Method for producing hydrogen by reforming hydrocarbons, apparatus for producing hydrogen, operating method for fuel cell, and operating apparatus for fuel cell
JP2019181452A (en) 2018-03-30 2019-10-24 パナソニックIpマネジメント株式会社 Desulfurizer, hydrogen generation device and fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139108A1 (en) 2017-01-26 2018-08-02 パナソニック株式会社 Desulfurization apparatus and desulfurization method
US10625198B2 (en) 2017-01-26 2020-04-21 Panasonic Corporation Desulfurization apparatus and desulfurization method

Also Published As

Publication number Publication date
JPH06256779A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
JP4096128B2 (en) Method for producing desulfurizing agent and method for desulfurizing hydrocarbon
JPWO2006101079A1 (en) Desulfurization agent and desulfurization method using the same
TW200836833A (en) Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
JP3746401B2 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
WO2004022224A1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
JP4330846B2 (en) Process for preparing low sulfur reformate gas for use in fuel cell systems
JP3242514B2 (en) City gas desulfurization method
JP2018001080A (en) Co oxidation catalyst and method for producing the same, supported catalyst and exhaust gas treatment apparatus
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP3261192B2 (en) Method for desulfurizing hydrocarbon feedstock for fuel cell
JP2688749B2 (en) Method for producing high temperature resistant high-order desulfurizing agent
JP2654515B2 (en) Method for producing desulfurizing agent
JP2005007383A (en) Adsorbent for removing sulfur compound and method for producing hydrogen for fuel cell
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP2001200278A (en) Process for desulfurizing town gas
JPH0748101A (en) Production of hydrogen-containing gas for fuel cell
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP3230864B2 (en) Method for producing desulfurizing agent
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP4961102B2 (en) Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite
EP0599351A1 (en) Method of desulfurization of town gas
US7345007B2 (en) Catalyst for selective oxidation of carbon monoxide in reformed gas
JP2002220205A (en) Contact oxidation method for carbonaceous compound
JPH02302496A (en) Desulfurizing method of town gas
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

EXPY Cancellation because of completion of term