KR100302640B1 - Removal of Sulfur Oxides and Nitrogen Oxides Using Natural Manganese Ore in a Continuous Fluidized Bed Reactor - Google Patents
Removal of Sulfur Oxides and Nitrogen Oxides Using Natural Manganese Ore in a Continuous Fluidized Bed Reactor Download PDFInfo
- Publication number
- KR100302640B1 KR100302640B1 KR1019980047217A KR19980047217A KR100302640B1 KR 100302640 B1 KR100302640 B1 KR 100302640B1 KR 1019980047217 A KR1019980047217 A KR 1019980047217A KR 19980047217 A KR19980047217 A KR 19980047217A KR 100302640 B1 KR100302640 B1 KR 100302640B1
- Authority
- KR
- South Korea
- Prior art keywords
- oxides
- nitrogen oxides
- natural manganese
- sulfur oxides
- manganese ore
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8637—Simultaneously removing sulfur oxides and nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0222—Compounds of Mn, Re
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
본 발명은 연속식 유동층 반응기에서 천연망간광석(pyrolusite, β-MnO2)을 이용한 황산화물과 질소산화물의 동시 제거하는 방법에 관한 것으로, 좀 더 상세하게는 배기가스중의 황산화물은 화학흡착반응 및 질소산화물은 암모니아를 환원제로 사용하여 황산화물과 천연망간광석의 화학반응에 의해서 생성된 망간황화물에 의한 선택적 촉매 환원법에 의해 연속식 유동층 반응기에서 동시에 제거하는 방법에 관한 것이다. 상기 촉매는 온도범위 300∼500℃, 체류시간 10∼40분 범위에서 배기가스중의 황산화물과 질소산화물을 단일 반응기내에서 효과적으로 동시 제거할 수 있다.The present invention relates to a method for the simultaneous removal of sulfur oxides and nitrogen oxides using natural manganese ore (pyrolusite, β-MnO 2 ) in a continuous fluidized bed reactor, more specifically sulfur oxides in the exhaust gas is chemisorption reaction And nitrogen oxides are simultaneously removed in a continuous fluidized bed reactor by selective catalytic reduction with manganese sulfide produced by chemical reaction between sulfur oxides and natural manganese ores using ammonia as a reducing agent. The catalyst can effectively remove the sulfur oxides and nitrogen oxides in the exhaust gas in a single reactor in the temperature range 300 ~ 500 ℃, residence time 10 ~ 40 minutes.
Description
본 발명은 연속식 유동층 반응기에서 천연망간광석을 흡착제 또는 촉매로 이용하여 황산화물과 질소산화물을 동시에 제거하는 방법에 관한 것으로, 좀 더 상세하게는 가격이 저렴하고 특별한 가공이 필요치 않으며, 충분한 내마모성을 가지며, 황산화물의 흡착제거 효율과 암모니아를 환원제로 이용한 질소산화물의 우수한 환원능력을 동시에 가지고 있는 천연망간광석을 연속식 유동층반응기에 적용하여 동시에 단일반응기에서 황산화물과 질소산화물을 제거하는 방법에 관한 것이다.The present invention relates to a method of simultaneously removing sulfur oxides and nitrogen oxides by using natural manganese ore as an adsorbent or catalyst in a continuous fluidized bed reactor, more specifically, inexpensive and does not require special processing, sufficient wear resistance A method for removing sulfur oxides and nitrogen oxides from a single reactor by applying a natural manganese ore which has both adsorption removal efficiency of sulfur oxides and excellent reduction ability of nitrogen oxides using ammonia as a reducing agent to a continuous fluidized bed reactor will be.
연소로나 보일러와 같은 고정원에서 발생하는 황산화물과 질소산화물의 제거 방법은 여러 가지 방법들에 대한 실용화 및 연구가 진행중이며, 황산화물에 대해서는 석회석, 소석회를 이용한 습식법이 주류를 이루고 있고, 질소산화물의 경우에는 금속산화물 촉매에 암모니아를 환원제로 사용한 선택적 촉매환원법이 경제적 및 기술적인 측면에서 가장 타당한 방법으로 인식되고 있다.Various methods for the removal of sulfur oxides and nitrogen oxides from fixed sources such as combustion furnaces and boilers are under development and researches are in progress. For the sulfur oxides, the wet method using limestone and slaked lime is mainstream In the case of, the selective catalytic reduction method using ammonia as the reducing agent in the metal oxide catalyst is recognized as the most appropriate method from the economic and technical aspects.
그러나 이러한 방법은 배기가스중에 발생하는 황산화물과 질소산화물의 제거를 위해서는 각각의 개별적인 처리장치가 필요하므로 장치 설치비 및 운영비의 큰 손실을 가져온다. 따라서 단일 처리장치에서 황산화물과 질소산화물을 동시에 처리하기 위한 연구가 진행중이며, 본 발명에서와 같이 금속산화물을 이용하는 방법은 다음과 같다.However, this method requires a separate treatment device for the removal of sulfur oxides and nitrogen oxides in the exhaust gas, resulting in a large loss of equipment installation and operating costs. Therefore, research is being conducted to simultaneously process sulfur oxides and nitrogen oxides in a single treatment device, and a method of using a metal oxide as in the present invention is as follows.
금속산화물을 이용하여 황산화물과 질소산화물을 동시에 제거하는 방법은 황화반응과 선택적 촉매 환원반응이 단일 반응기에서 동시에 일어나게 된다. 먼저 하기 반응식 1과 같이 황산화물이 산소존재하에서 금속산화물에 흡착되어 금속황화물을 형성하고, 생성된 금속황화물과 반응하지 않은 금속산화물이 하기 반응식 2 및 3과 같이 암모니아를 환원제로 사용하여 질소산화물을 환원시킨다.In the method of simultaneously removing sulfur oxides and nitrogen oxides using metal oxides, sulfidation reactions and selective catalytic reduction reactions occur simultaneously in a single reactor. First, as shown in Scheme 1, sulfur oxide is adsorbed to metal oxide in the presence of oxygen to form metal sulfide, and the metal oxide that does not react with the produced metal sulfide uses nitrogen ammonia as a reducing agent as in Schemes 2 and 3 below. Reduce.
이와 같이, 금속산화물을 이용한 황산화물과 질소산화물의 동시제거는 주로 산화구리를 이용한 연구가 많이 진행되어 왔다[Yeh, J. T., Demski, R. J., Strakey, J. P. and Joubert, J. I., "Combined SO2/NOx Removal from Flue Gas", Environ. Prog., 4(4), 223-228(1985): Centi, G., Passarini, N., Perathoner, S., Riva, A., and Stella, G., "Combined DeSOx/DeNOx Reactions on a Copper on Alumina Sorbent-Catalyst. 1. Mechanism of SO2Oxidation-Adsorption", Ind. Eng. Chem. Res., 31, 1947(1992).]. 이러한 흡착제 및 촉매로 작용하는 산화구리는 알루미나 또는 실리카에 담지시켜 사용하며, 수소 또는 메탄과 같은 환원성가스에 의해 재생이 가능하다. 그러나, 그 제조과정이 복잡하고 유동층반응기에서 사용할 수 있는 내마모성을 가지지 못하여 실제 공정에 사용하지 못하는 단점을 가지고 있다. 따라서 황산화물과 질소산화물을 동시에 제거할 수 있으며, 제조의 용이성 및 경제성을 가지며, 대규모의 배기가스 처리가 가능한 유동층반응기에서 사용 가능한 내마모성이 우수한 흡착제 및 촉매가 요구되는 실정이다.As described above, the simultaneous removal of sulfur oxides and nitrogen oxides using metal oxides has been mainly studied using copper oxides [Yeh, JT, Demski, RJ, Strakey, JP and Joubert, JI, "Combined SO 2 / NOx. Removal from Flue Gas ", Environ. Prog., 4 (4), 223-228 (1985): Centi, G., Passarini, N., Perathoner, S., Riva, A., and Stella, G., "Combined DeSOx / DeNOx Reactions on a Copper on Alumina Sorbent-Catalyst. 1. Mechanism of SO 2 Oxidation-Adsorption ", Ind. Eng. Chem. Res., 31, 1947 (1992). Copper oxide acting as an adsorbent and a catalyst is supported on alumina or silica and can be regenerated by a reducing gas such as hydrogen or methane. However, the manufacturing process is complicated and does not have the wear resistance that can be used in the fluidized bed reactor has a disadvantage that can not be used in the actual process. Accordingly, there is a need for an adsorbent and a catalyst having excellent wear resistance in a fluidized bed reactor capable of simultaneously removing sulfur oxides and nitrogen oxides, having ease of manufacture and economy, and capable of treating a large amount of exhaust gas.
한편, 이산화망간, 망간단괴 또는 망간광석을 배기가스의 탈황 및/또는 탈질에 사용된 예도 있다. 예를 들어, 일본특개평 제 8-155300호에서는 30∼80중량%의 이산화망간 및 5∼15중량%의 산화암모늄을 함유하는 망간광석을 이용하여 탈황 및 탈질방법이 개시되어 있다. 그러나, 상기 특허에서는 망간광석을 구성성분으로만 한정하고 있을뿐 특별한 제한 없으며, 이를 이용하여 배기가스의 탈황 및 탈질시 다수개의 이동층 반응기를 사용하고 있으며, 탈황 및 탈질 효율이 높지 않은 단점이 있다. 또한 이동층반응기를 사용하여 본 발명에 사용된 유동층반응기와는 반응자체 및 공정이 상이하며 본 발명에서는 황산화물을 망간광석에 직접 황화반응에 의해 흡착제거하고 반응온도 영역이 300∼500℃ 사이인데 비해, 황산화물을 암모니아와 반응시킨 염(황산암모늄)의 형태로 단순 물리흡착 제거할 뿐만아니라 반응온도 영역도 90∼150℃의 저온으로 본 발명과는 큰 차이가 있다.On the other hand, manganese dioxide, manganese nodule or manganese ore is also used for the desulfurization and / or denitrification of the exhaust gas. For example, Japanese Patent Laid-Open No. 8-155300 discloses a desulfurization and denitrification method using manganese ore containing 30 to 80 wt% manganese dioxide and 5 to 15 wt% ammonium oxide. However, the patent is limited only to the manganese ore as a constituent, there is no particular limitation, using a plurality of mobile bed reactors for the desulfurization and denitrification of the exhaust gas using this, there is a disadvantage that the desulfurization and denitrification efficiency is not high. . In addition, the reaction itself and the process is different from the fluidized bed reactor used in the present invention by using a moving bed reactor. In the present invention, the sulfur oxides are adsorbed and removed by sulfidation directly to manganese ore, and the reaction temperature range is between 300 and 500 ° C. In contrast, not only simple physical adsorption removal in the form of a salt (ammonium sulfate) in which sulfur oxide is reacted with ammonia, but also a low temperature of 90 to 150 ° C. has a large difference from the present invention.
또한, 본 출원인이 발명자인 대한민국 특허출원 제 97-19125호에서는 본 발명에 사용된 천연망간광석을 배기가스중의 질소산화물을 130∼250℃에서 제거하는 촉매로 사용하고 있지만, 이 반응은 천연망간광석 자체를 선택적촉매환원법의 촉매로 사용하고 있으며, 300℃가 넘으면 탈질 효율이 매우 낮아지며, 또한 황산화물에 대한 영향과 언급은 없다.In addition, although the applicant's inventor, Korean Patent Application No. 97-19125, uses the natural manganese ore used in the present invention as a catalyst for removing nitrogen oxides in the exhaust gas at 130 to 250 ° C. The ore itself is used as a catalyst for the selective catalytic reduction method, and the denitrification efficiency is very low above 300 ° C, and there is no mention or influence on sulfur oxides.
이러한 문제점을 해결하기 위하여 본 발명자들은 광범위한 연구를 수행한 결과, 고도의 기술과 고가의 금속산화물을 이용한 촉매의 제조과정이 필요없는 자연에 존재하는 천연망간광석을 직접 이용하여 배기가스중의 황산화물과 질소산화물을 단일 반응기에서 동시 제거할 수 있었고, 본 발명은 이에 기초하여 완성되었다.In order to solve this problem, the present inventors have conducted extensive research, and as a result, sulfur oxides in the exhaust gas can be directly utilized by using natural manganese ore existing in nature, which does not require the preparation of a catalyst using high technology and expensive metal oxides. And nitrogen oxides could be removed simultaneously in a single reactor, and the present invention was completed based on this.
따라서, 본 발명의 목적은 기존의 개별적인 반응기에서 수행된 황산화물과 질소산화물의 제거를 단일 반응기에서 동시에 수행하며, 또한 특별한 가공이 필요치 않아 가격이 매우 저렴한 천연망간광석을 이용하여 대규모의 배기가스 처리가 가능한 유동층반응기에서 황산화물과 질소산화물을 효과적으로 제거할 수 있는 방법을 제공하는데 있다.Therefore, an object of the present invention is to remove sulfur oxides and nitrogen oxides carried out in a separate reactor at the same time in a single reactor, and also do not require any special processing, large-scale exhaust gas treatment using natural manganese ore which is very inexpensive The present invention provides a method for effectively removing sulfur oxides and nitrogen oxides from a fluidized bed reactor.
상기 목적을 달성하기 위한 본 발명의 황산화물과 질소산화물의 제거방법은 망간산화물이 주로 MnO2의 형태를 이루고 있으며, 상기 MnO2는 X선 회절 주 피크가 28.7。, 37.3。, 및 42.7。 (2θ)인 β-MnO2의 구조를 갖는 천연망간광석을 황산화물에 대한 흡착제 및 황화반응에 의하여 생성된 망간광석의 황산화물이 질소산화물에 대한 환원촉매로 사용하고, 환원제로 암모니아를 사용하여 선택적 촉매 환원법으로 연속식 유동층 반응기에서 제거하는 것으로 이루어진다.Removal of cargo, and the nitrogen oxides of the present invention sulfuric acid for achieving the abovementioned objects is manganese oxide which mainly forms a form of MnO 2,. The MnO 2 is the diffraction main peak X-ray 28.7, 37.3., And 42.7 ( Natural manganese ore having a structure of β-MnO 2 of 2θ) is used as an adsorbent for sulfur oxides and sulfur oxides of manganese ores produced by sulfidation reactions as a reduction catalyst for nitrogen oxides, and ammonia is used as a reducing agent. Removal in a continuous fluidized bed reactor by catalytic reduction.
도 1은 본 발명의 실시예 1에 따라 고정층반응기에서 황산화물과 반응하여 형성된 망간황화물의 선택적 촉매 환원 능력을 나타내는 그래프이다.1 is a graph showing the selective catalytic reduction capacity of manganese sulfide formed by reacting with a sulfur oxide in a fixed bed reactor according to Example 1 of the present invention.
도 2는 본 발명의 실시예 2에 따라 연속식 유동층반응기에서 온도를 변화시키며 얻은 황산화물 및 질소산화물의 동시 제거효율를 나타낸 그래프이다.2 is a graph showing the simultaneous removal efficiency of sulfur oxides and nitrogen oxides obtained by varying the temperature in a continuous fluidized bed reactor according to Example 2 of the present invention.
도 3은 본 발명의 실시예 3에 따라 연속식 유동층반응기에서 동시 탈황 및 탈질 수행시 체류시간 및 온도의 변화에 따른 황산화물과 질소산화물의 제거효율을 나타낸 그래프이다.3 is a graph showing removal efficiency of sulfur oxides and nitrogen oxides according to changes in residence time and temperature during simultaneous desulfurization and denitrification in a continuous fluidized bed reactor according to Example 3 of the present invention.
이하 본 발명을 좀 더 구체적으로 살펴보면 다음과 같다.Looking at the present invention in more detail as follows.
본 발명에서는 배기가스중의 황산화물에 대한 흡착제 및 질소산화물에 대한 촉매로서 천연망간광석을 사용하였으며 천연망간광석의 평균화학조성과 물리적 특징을 하기 표 1 및 2에 각각 기재하였다.In the present invention, a natural manganese ore was used as an adsorbent for sulfur oxides and a catalyst for nitrogen oxides in the exhaust gas, and the average chemical composition and physical characteristics of the natural manganese ores are described in Tables 1 and 2, respectively.
좀 더 상세하게는, 천연물질로 존재하는 망간광석은 피롤루사이트(pyrolusite), 실로멜란(psilomelane), 매거나이트(maganite), 부라우나이트(braunite), 하우수맨나이트(hausmannite) 등 여러 종류가 존재하나, 본 발명에 사용된 천연망간광석은 망간산화물중 MnO2를 주성분으로 하는 피롤루사이트이며, 또한 MnO2의 격자 형태는 α-, β-, γ-, δ-의 종류가 있으나, 본 발명의 망간광석 시료의 XRD 분석 결과, 주 피크(peak)가 28.7。, 37.3。, 및 42.7。 (2θ)를 이루는 β-MnO2로 다른 MnO2의 격자 형태와 구별되어 그 반응성 및 생성된 금속황화물의 형태가 다르다.More specifically, the manganese ore that exists as a natural substance has various types such as pyrolusite, psilomelane, maganite, braunite, and hausmannite. Although present, the natural manganese ore used in the present invention is pyrrolusite having MnO 2 as a main component of manganese oxide, and the lattice form of MnO 2 has a kind of α-, β-, γ-, δ-, but XRD analysis of the manganese ore sample of the invention revealed that β-MnO 2, whose main peaks were 28.7 °, 37.3 °, and 42.7 ° (2θ), was distinguished from other lattice forms of other MnO 2 and its reactivity and produced metal. Sulfide forms are different.
이러한 차이점을 예를들면, 상기 일본특개평 제 8-155300호에 언급된 망간광석은 X-선 회절면 간격이 2.15±0.05Å, 2.39±0.05Å, 3.11±0.05Å인 피크(peak)를 가진 α-MnO2로 주 반응 온도영역이 90∼150℃이며, 황산화물의 제거는 망간광석에 직접 흡착한 것이 아닌 황산암모늄 형태로 제거한다. 그러나, 본 발명에 사용된 천연망간광석은 β-MnO2가 주성분인 피롤루사이트로 주 반응 온도범위가 300∼500℃이며, 황산화물을 직접 황화반응 흡착에 의해 제거하여 망간광석의 형태에 따라 제거 반응영역 및 과정이 상이함을 알 수 있다.For example, the manganese ore mentioned in Japanese Patent Application Laid-Open No. 8-155300 has peaks with an X-ray diffraction plane spacing of 2.15 ± 0.05 Hz, 2.39 ± 0.05 Hz, 3.11 ± 0.05 Hz. With α-MnO 2 , the main reaction temperature ranges from 90 to 150 ° C., and sulfur oxides are removed in the form of ammonium sulfate rather than directly adsorbed on manganese ore. However, the natural manganese ore used in the present invention is pyrrolusite having β-MnO 2 as a main component, and the main reaction temperature ranges from 300 to 500 ° C., and sulfur oxides are removed by direct sulfidation adsorption, depending on the form of manganese ore. It can be seen that the removal reaction zone and process are different.
또한, 상기 표 1의 화학조성에서 알 수 있듯이, 황산화물의 흡착과 질소산화물의 환원에 현재 많이 이용되고 있는 여러 가지 금속산화물(Mn, Fe, 및 Mg) 등을 포함하고 있어 본 발명의 천연망간광석은 흡착제 및 촉매로 사용될 수 있음을 보여준다. 본 발명에서는 상기 천연망간광석을 황산화물의 흡착제 및 질소산화물의 촉매로 유동층반응기에서 사용하기 위해서는 분쇄를 통한 입자 크기(예를 들면, 평균입도 0.195, 0.359, 0.715, 또는 1.015mm)를 얻고, 100℃ 이상의 건조상태를 유지하여 표면에 부착된 수분만 제거하면 된다. 이러한 입자크기는 유동화만 가능하다면 어떤 입자크기와 분포에 영향을 받지 않는다.In addition, as can be seen from the chemical composition of Table 1, natural manganese of the present invention includes a variety of metal oxides (Mn, Fe, and Mg) that are currently used for the adsorption of sulfur oxides and the reduction of nitrogen oxides It shows that ores can be used as adsorbents and catalysts. In the present invention, in order to use the natural manganese ore in the fluidized bed reactor as an adsorbent of sulfur oxides and a catalyst of nitrogen oxides to obtain a particle size through grinding (for example, average particle size 0.195, 0.359, 0.715, or 1.015mm), 100 It is only necessary to remove moisture attached to the surface by maintaining a dry state of more than ℃. This particle size is not affected by any particle size and distribution as long as fluidization is possible.
이러한 천연망간광석을 입자 공급기를 통해 유동층내로 주입과 배출을 일정하게 하여 유동층내의 충진량을 일정하게 한후 황산화물, 질소산화물, 암모니아, 및 공기 혼합가스를 반응기에 도입하여 온도에 따른 전환율을 관찰한 결과, 기존의 탈질촉매는 황산화물이 촉매를 피독하여 전환율이 급격히 감소하는데 반해, 300∼500℃ 사이의 온도영역에서 황산화물과 질소산화물의 동시 제거에 우수한 효과를 나타내었다. 이러한 넓은 작업온도 범위는 배기가스의 배출온도와 대기오염물의 규제에 만족하기 위한 각 공정의 조건에 따라 다양하게 적용할 수 있음을 나타낸다. 또한 본 발명의 촉매를 사용할 경우 질소산화물에 대한 암모니아 농도비를 0.7∼1.2의 범위에서 조절할 수 있다. 상기 농도비가 0.7 미만이면 효율이 너무 낮으며 1.2를 초과하면 미반응 암모니아가 배출되어 촉매의 양이 증가하게 되므로 비경제적이며, 본 발명의 경우 농도비 1.05배 이하에서 미반응 암모니아 배출량은 5 ppm 이하 이였다.After the natural manganese ore was injected into the fluidized bed through the particle feeder, the filling amount in the fluidized bed was constant, and then sulfur oxides, nitrogen oxides, ammonia, and air mixed gas were introduced into the reactor to observe the conversion rate according to the temperature. In the existing denitrification catalysts, sulfur oxides poisoned the catalysts and the conversion rate decreased drastically, whereas the denitrification catalysts showed an excellent effect on the simultaneous removal of sulfur oxides and nitrogen oxides in the temperature range between 300 and 500 ° C. This wide range of working temperatures indicates that it is possible to apply variously to the conditions of each process to satisfy the emission temperature of the exhaust gas and the regulation of air pollutants. In addition, when using the catalyst of the present invention it can be adjusted in the range of 0.7 to 1.2 ammonia concentration ratio to nitrogen oxides. If the concentration ratio is less than 0.7, the efficiency is too low. If the concentration ratio exceeds 1.2, the unreacted ammonia is discharged and the amount of the catalyst is increased, which is uneconomical. In the present invention, the unreacted ammonia emission was 5 ppm or less at the concentration ratio of 1.05 times or less. .
또한, 본 발명에 따르면, 먼저 황산화물과 흡착 반응한 금속황화물에 의해 질소산화물이 제거되므로 반응후 배출되는 황화된 천연망간광석은 수소 또는 일산화탄소 같은 환원성 가스 하에서 열적 재생을 통해 재생하여 재 사용할 수도 있다.In addition, according to the present invention, since the nitrogen oxides are first removed by the metal sulfide adsorbed and reacted with the sulfur oxide, the sulfided natural manganese ore discharged after the reaction may be regenerated and reused by thermal regeneration under a reducing gas such as hydrogen or carbon monoxide. .
이하 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the following examples.
실시예 1Example 1
천연망간광석의 황산화물과 질소산화물에 대한 동시제거 능력을 알아보기 위해 실험온도 400∼500℃ 범위에서 황산화물의 배기가스중의 존재 유무에 따른 질소산화물의 선택적 촉매 환원 능력을 고정층반응기에서 측정하였고, 그 결과를 도 1에 나타내었다.In order to investigate the simultaneous removal of sulfur oxides and nitrogen oxides from natural manganese ores, the selective catalytic reduction capacity of nitrogen oxides according to the presence or absence of sulfur oxides in the exhaust gas was measured in a fixed bed reactor. And the result is shown in FIG.
본 실시예에서는 상기 천연망간광석을 40∼50메쉬(평균입자크기 0.359mm)로 분쇄한 다음, 내경 8mm의 고정층반응기에서 약 3cc 충진시켜 실험을 수행하였다. 공급된 황산화물의 농도는 1920ppm, 질소산화물의 농도는 480ppm, 암모니아의 농도는 질소산화물의 1.04배, 3% 산소를 포함하고 있으며 촉매층내 공간속도(GHSV)는 20,000h-1이었다.In this embodiment, the natural manganese ore was pulverized to 40-50 mesh (average particle size 0.359mm), and the experiment was performed by filling about 3cc in a fixed bed reactor having an inner diameter of 8mm. The supplied sulfur oxide concentration was 1920ppm, the nitrogen oxide concentration was 480ppm, the ammonia concentration was 1.04 times that of nitrogen oxide and 3% oxygen, and the space velocity (GHSV) in the catalyst layer was 20,000h- 1 .
도 1로부터 알 수 있는 바와 같이, 황산화물이 주입되지 않은 부분(SCR 영역)에서는 질소산화물의 전환율이 400℃에서는 약 70%, 500℃에서는 약 12%로 낮으나, 황산화물이 주입되어 천연망간광석 표면에 망간황화물이 형성된 경우 질소산화물의 전환율이 급격히 증가하여 400℃에서는 약 85%, 500℃에서는 약 50%로 증가하였다. 이는 본 발명에 사용된 천연망간광석이 황산화물의 제거와 동시에 황화반응에 의해 생성된 황산화물이 질소산화물을 환원시키는 능력이 있는 것을 나타내는 것이다. 황산화물의 경우 시간의 증가에 따라 급격히 흡착능력이 감소하는 것을 보이므로 미반응한 천연망간광석을 연속적으로 공급하면 원하는 황산화물의 제거 효과를 얻을 수 있으며 또한 천연망간광석의 자체 탈질능력과 황화물로된 천연망간광석이 서로 보완적으로 작용하여 연속식 반응기에서 사용할 때 황산화물과 질소산화물을 한 반응기에서 동시에 높은 효율로 제거할 수 있음을 의미한다.As can be seen from FIG. 1, the conversion rate of nitrogen oxide is low at about 70% at 400 ° C. and about 12% at 500 ° C. in the portion (SCR region) where no sulfur oxide is injected, but the sulfur oxide is injected to the natural manganese ore. When manganese sulfide was formed on the surface, the conversion rate of nitrogen oxides increased rapidly, increasing to about 85% at 400 ° C and about 50% at 500 ° C. This indicates that the natural manganese ore used in the present invention is capable of reducing nitrogen oxides by the sulfur oxides produced by the sulfidation reaction simultaneously with the removal of the sulfur oxides. In the case of sulfur oxides, the adsorption capacity decreases rapidly with increasing time, so continuous supply of unreacted natural manganese ore can achieve the desired removal effect of sulfur oxides. The natural manganese ores are complementary to each other, which means that when used in a continuous reactor, sulfur oxides and nitrogen oxides can be removed simultaneously in one reactor with high efficiency.
실시예 2Example 2
상기 실시예 1의 결과를 바탕으로 연속식 반응기를 제조하여 다음과 같은 실험을 실시하였다. 천연망간광석을 이용하여 연속식 유동층반응기에서 황산화물과 질소산화물의 동시 제거 실험을 수행 결과는 도 2와 같다.Based on the results of Example 1, a continuous reactor was prepared, and the following experiment was performed. The results of simultaneous removal of sulfur oxides and nitrogen oxides in a continuous fluidized bed reactor using natural manganese ore are shown in FIG. 2.
본 실시예에서는 내경 4cm, 높이 80cm인 유동층반응기에 종횡비 1과 천연망간광석의 유동층내 체류시간이 11분이 유지되도록 유동층 상부에서 천연망간광석을 주입하고 층하부에서 배출되도록 하였다. 공급된 황산화물의 농도는 1965ppm, 질소산화물의 농도는 452ppm, 암모니아의 공급비는 1.04배로 하여 공기와 혼합하여 일정 유속 0.204m/sec를 유지하며 유동층내로 공급하였다.In this embodiment, the manganese ore was injected from the top of the fluidized bed and discharged from the bottom of the bed so that the aspect ratio 1 and the residence time of the natural manganese ore were maintained for 11 minutes in a fluidized bed reactor having an inner diameter of 4 cm and a height of 80 cm. The supplied sulfur oxide concentration was 1965 ppm, the nitrogen oxide concentration was 452 ppm, and the ammonia feed ratio was 1.04 times, which was mixed with air to maintain a constant flow rate of 0.204 m / sec and supplied into the fluidized bed.
도 2로부터 알 수 있는 바와 같이, 금속황화물이 형성됨에 따라 질소산화물의 환원능력이 크게 증가한다. 초기 천연망간광석의 표면에 황산화물이 흡착되지 않았을 경우 400℃에서 약 52%의 질소산화물 전환율을 보였으나 황산화물과 천연망간광석의 흡착반응이 진행된 후는 90% 이상의 질소산화물 전환율을 보였으며, 황산화물의 경우는 약 88%의 제거효율을 보였다. 또한 황산화물과 질소산화물의 동시제거시 온도의 영향을 보면 질소산화물은 온도가 증가할수록 암모니아 자체 산화반응이 증가하여 상대적으로 낮은 온도인 350℃에서 가장 높은 약 94%의 전환율을 보였고, 황산화물의 경우는 화학흡착반응에 의해 제거되므로 온도가 증가할수록 전환률이 증가하여 450℃의 경우가 약 92%의 가장 높은 전환률을 보였다.As can be seen from Figure 2, as the metal sulfide is formed, the reducing ability of the nitrogen oxides greatly increases. When sulfur oxide was not adsorbed on the surface of the initial natural manganese ore, the conversion rate of nitrogen oxide was about 52% at 400 ℃. In the case of sulfur oxides, the removal efficiency was about 88%. In addition, the effects of temperature on the simultaneous removal of sulfur oxides and nitrogen oxides showed that the oxides of nitrogen oxides increased with increasing temperature, resulting in the highest conversion rate of 94% at 350 ° C, which is relatively low. In the case of removal by the chemisorption reaction, the conversion rate increased with increasing temperature, and the highest conversion rate of about 92% was obtained at 450 ° C.
실시예 3Example 3
실제 공정조업시 각각의 공정에 맞는 최적 반응조건을 유지하기 위하여 상기 실시예 2와 동일한 조건에서 유동층반응기내로 유입된 천연망간광석의 체류시간을 11, 24 및 32분으로 변화시켰고, 그 결과는 도 3과 같다.In order to maintain the optimum reaction conditions for each process during the actual process operation, the residence time of the natural manganese ore introduced into the fluidized bed reactor under the same conditions as in Example 2 was changed to 11, 24 and 32 minutes. Same as FIG. 3.
체류시간의 영향은 질소산화물의 경우 반응시간이 빨라 거의 영향을 받지 않았으나 황산화물의 경우는 표면 흡착반응에의해 제거되므로 미반응 흡착점이 상대적으로 많은 즉, 체류시간이 짧은 11분의 경우가 전환율이 가장 우수하였다.The effect of residence time was almost unaffected by the fast reaction time in the case of nitrogen oxides, but the sulfur oxides were removed by the surface adsorption reaction. Best.
따라서 실시예 2 및 3에서 나타낸 바와 같이, 온도와 체류시간의 영향을 조업하는 공정의 배기가스 처리조건에 따라 최적 조업조건을 선택할 수 있다.Therefore, as shown in Examples 2 and 3, the optimum operating conditions can be selected according to the exhaust gas treatment conditions of the process of operating the influence of temperature and residence time.
본 발명에 따른 천연망간광석은 황산화물에 대해서는 황화반응에 의한 흡착제의 역할을 하며 질소산화물의 제거에 있어서는 황화된 천연망간광석이 환원제인 암모니아와 함께 촉매의 역할을 수행하므로 300∼500℃의 온도범위와 10∼40분 사이의 체류시간 범위에서 질소산화물과 황산화물을 한 반응기에서 동시에 제거할 수 있다.The natural manganese ore according to the present invention serves as an adsorbent by sulfidation reaction for sulfur oxides, and in the removal of nitrogen oxides, the sulfurized natural manganese ore plays a role of catalyst along with ammonia, a reducing agent, at a temperature of 300 to 500 ° C. Nitrogen oxides and sulfur oxides can be removed simultaneously in one reactor in the range and residence time between 10 and 40 minutes.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980047217A KR100302640B1 (en) | 1998-11-04 | 1998-11-04 | Removal of Sulfur Oxides and Nitrogen Oxides Using Natural Manganese Ore in a Continuous Fluidized Bed Reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980047217A KR100302640B1 (en) | 1998-11-04 | 1998-11-04 | Removal of Sulfur Oxides and Nitrogen Oxides Using Natural Manganese Ore in a Continuous Fluidized Bed Reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000031268A KR20000031268A (en) | 2000-06-05 |
KR100302640B1 true KR100302640B1 (en) | 2001-11-30 |
Family
ID=19557184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980047217A KR100302640B1 (en) | 1998-11-04 | 1998-11-04 | Removal of Sulfur Oxides and Nitrogen Oxides Using Natural Manganese Ore in a Continuous Fluidized Bed Reactor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100302640B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020094344A (en) * | 2001-06-11 | 2002-12-18 | 학교법인고려중앙학원 | Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent |
KR100473080B1 (en) * | 2000-12-22 | 2005-03-08 | 한국전력기술 주식회사 | Method for Improving NOx Removal Efficiency from Flue Gas and Reducing Consumption of Ammonia and Emission of Nitrogen Dioxide Using Modified Natural Manganese Ores |
KR20150138701A (en) | 2014-06-02 | 2015-12-10 | 한국과학기술연구원 | Apparatus and method for sulfide crystallization of Cu and Ni using fluidized bed reactor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7153345B2 (en) * | 2004-02-04 | 2006-12-26 | Battelle Memorial Institute | Sulfur oxide adsorbents and emissions control |
KR102183059B1 (en) * | 2018-11-20 | 2020-11-25 | 한국조선해양 주식회사 | Exhaust gas treatment method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0731846A (en) * | 1993-07-26 | 1995-02-03 | Nippon Steel Corp | Treatment of waste gas released to air |
-
1998
- 1998-11-04 KR KR1019980047217A patent/KR100302640B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0731846A (en) * | 1993-07-26 | 1995-02-03 | Nippon Steel Corp | Treatment of waste gas released to air |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100473080B1 (en) * | 2000-12-22 | 2005-03-08 | 한국전력기술 주식회사 | Method for Improving NOx Removal Efficiency from Flue Gas and Reducing Consumption of Ammonia and Emission of Nitrogen Dioxide Using Modified Natural Manganese Ores |
KR20020094344A (en) * | 2001-06-11 | 2002-12-18 | 학교법인고려중앙학원 | Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent |
KR20150138701A (en) | 2014-06-02 | 2015-12-10 | 한국과학기술연구원 | Apparatus and method for sulfide crystallization of Cu and Ni using fluidized bed reactor |
Also Published As
Publication number | Publication date |
---|---|
KR20000031268A (en) | 2000-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4001375A (en) | Process for the desulfurization of flue gas | |
US4187282A (en) | Process for treating a waste gas containing sulfur oxides | |
US20020052291A1 (en) | Low temperature sorbents for removal of sulfur compounds from fluid feed streams | |
Yang et al. | Low temperature denitrification and mercury removal of Mn/TiO2-based catalysts: A review of activities, mechanisms, and deactivation | |
US5728358A (en) | Sox sorbent regeneration | |
US4251495A (en) | Process for purifying a hydrogen sulfide containing gas | |
JPH07256093A (en) | Durable zinc oxide-containing adsorbent for desulfurization of coal gas | |
CA3038760A1 (en) | A noxious gas purificant and its preparation and purification method thereof | |
Ye et al. | Feasibility of flue-gas desulfurization by manganese oxides | |
EP0851787A1 (en) | Process for selective oxidation | |
CN100413566C (en) | Direct oxidation desulfurization catalyst and preparation method thereof | |
CN1197766C (en) | Method for direct oridation in sulphur, by catalytic process and in vapour phase of low content H2S in gas | |
US4070305A (en) | Process for regenerating catalyst | |
TW200808440A (en) | Absorption composition and process for purifying streams of substances | |
KR100302640B1 (en) | Removal of Sulfur Oxides and Nitrogen Oxides Using Natural Manganese Ore in a Continuous Fluidized Bed Reactor | |
CN113877638B (en) | Preparation method for preparing denitration and dioxin removal VOCs integrated catalyst by fractional precipitation method and prepared catalyst | |
JPS59131568A (en) | Manufacture of spinel composition containing alkali earth metal and aluminum | |
CN1410149A (en) | Combustion catalyst of hydrogen sulfide in gas and its preparation and use method | |
KR20190104707A (en) | Catalyst for selectively reducing nitric oxide and nitric oxide reduction system using the same | |
CZ294657B6 (en) | Coated catalyst containing metal oxides and catalytic decomposition process of ammonia and hydrogen cyanide in coke-oven gas | |
US5948382A (en) | Selective oxidation of hydrogen sulfide in the presence of mixed-oxide catalyst containing iron, molybdenum and antimony | |
CA2333061C (en) | Attrition resistant, zinc titanate-containing, reduced sulfur sorbents | |
US4608240A (en) | Method for the desulfurization of hydrocarbon gas | |
EP1062025B1 (en) | IMPROVED PROCESS FOR TREATING H2S-LEAN STREAMS WITH RECYCLE OF SOx FROM BURNER | |
CN113522233A (en) | Purifying agent, preparation method and application thereof, and purifying method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20040706 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |