KR20020093260A - Method for forming metal interconnection layer of seniconductor device - Google Patents

Method for forming metal interconnection layer of seniconductor device Download PDF

Info

Publication number
KR20020093260A
KR20020093260A KR1020010031727A KR20010031727A KR20020093260A KR 20020093260 A KR20020093260 A KR 20020093260A KR 1020010031727 A KR1020010031727 A KR 1020010031727A KR 20010031727 A KR20010031727 A KR 20010031727A KR 20020093260 A KR20020093260 A KR 20020093260A
Authority
KR
South Korea
Prior art keywords
film
tin
metal
wiring
forming
Prior art date
Application number
KR1020010031727A
Other languages
Korean (ko)
Inventor
정철모
곽상현
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020010031727A priority Critical patent/KR20020093260A/en
Publication of KR20020093260A publication Critical patent/KR20020093260A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for fabricating a metal interconnection of a semiconductor device is provided to prevent a decrease of a dielectric characteristic of a low dielectric insulation layer, by forming a TiN layer as a capping layer of the metal interconnection while using a chemical vapor deposition(CVD) process. CONSTITUTION: A barrier layer(21), a metal layer(22) for interconnection and an anti-reflective coating(ARC) are sequentially deposited on a semiconductor substrate(11). The ARC, the metal layer for interconnection and the barrier layer are patterned to form the metal interconnection(30). The TiN layer as the capping layer of the metal interconnection is deposited on the semiconductor substrate including the metal interconnection by a CVD process. The TiN layer is blanket-etched to form a TiN spacer(31a) on both sidewalls of the metal interconnection.

Description

반도체 소자의 금속배선 형성방법{METHOD FOR FORMING METAL INTERCONNECTION LAYER OF SENICONDUCTOR DEVICE}METHODS FOR FORMING METAL INTERCONNECTION LAYER OF SENICONDUCTOR DEVICE}

본 발명은 반도체 소자의 금속배선 형성방법에 관한 것으로, 보다 상세하게는, CVD 공정에 의한 TiN막을 금속배선의 캡핑층(Capping Layer)으로서 적용하는 금속배선 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming metal wirings of semiconductor devices, and more particularly, to a method for forming metal wirings by applying a TiN film by a CVD process as a capping layer of metal wiring.

주지된 바와 같이, 금속배선의 재료로서는 알루미늄(Al)이 주로 이용되어 왔으며, 최근들어, 구리(Cu)의 이용이 증가되고 있는 추세이다. 이러한 알루미늄 또는 구리 재질의 금속배선은 전기전도도가 매우 우수하고, 아울러, 가공성이 좋기 때문에 소자의 전기적 특성을 확보하는데 매우 유리하다.As is well known, aluminum (Al) has been mainly used as a material for metal wiring, and in recent years, the use of copper (Cu) is increasing. The metal wiring of aluminum or copper material is very advantageous in securing electrical characteristics of the device because of its excellent electrical conductivity and good processability.

한편, 알루미늄 또는 구리 재질의 금속배선은 반도체 제조 공정 동안, 또는, 소자의 동작시에 흐르는 전류 및 이에 기인해서 발생되는 주울 열(joule heating)로 인하여, 필연적으로 전자 이동(electromigration) 또는 외방 확산이 일어나게 되며, 이로 인해, 소자의 전기적 특성에 악영향을 미치게 된다. 특히, 알루미늄 금속배선의 경우에, 전자 이동에 기인해서 보이드(void), 또는, 힐락(hillock)과 같은 현상이 발생됨으로써, 단선(open)과 같은 치명적인 결함이 발생할 수 있으며, 이러한 전자 이동 현상은 금속배선의 선폭 및 두께가 감소됨에 따라 전류 밀도(current density)가 증가되어 더 높은 주울 열 발생이 일어나게 되면서 그 발생 정도는 더욱 심화될 것으로 예상된다.On the other hand, the metal wiring made of aluminum or copper is inevitably caused by electromigration or outward diffusion due to the current flowing during the semiconductor manufacturing process or the operation of the device and the Joule heating generated thereby. This can adversely affect the electrical properties of the device. In particular, in the case of aluminum metal wiring, a phenomenon such as void or hillock may occur due to electron movement, and a fatal defect such as open may occur. As the line width and thickness of the metal wires are reduced, the current density is increased to generate higher Joule heat, which is expected to increase.

따라서, 알루미늄 또는 구리 재질의 금속배선을 포함한 대부분의 금속배선은 그 하부에 베리어막(barrier layer)을, 그리고, 상부에 난반사막(Anti Reflective Coating layer)을 배치시킴으로써, 상기 베리어막과 난반사막이 각각 고유의 기능, 예컨데, 상기 베리어막이 배선용 금속막의 접착력 증대 및 기판 실리콘과의 반응을 억제시키도록 기능하고, 난반사막이 식각 프로파일의 유지하도록 기능하도록 하는 것 이외에, 부가적으로 전자 이동에 의한 금속이온 이동 및 확산에 기인하는 문제들을 최대한 감소시키는 기능을 하도록 하고 있다.Therefore, most metal wirings, including metal wirings made of aluminum or copper, have a barrier layer at the bottom thereof and an anti-reflective coating layer at the top thereof, whereby the barrier film and the diffuse reflection film are respectively formed. In addition to the inherent function, for example, the barrier film functions to increase the adhesion of the metal film for wiring and to suppress the reaction with the substrate silicon, and to allow the diffuse reflection film to maintain the etching profile, additionally, metal ion movement by electron transfer. And to minimize the problems caused by diffusion.

그런데, 이러한 금속배선 구조에서는 베리어막과 난반사막에 의해 배선용 금속막의 하부 및 상부 방향으로의 전자 이동에 의한 금속이온 이동 및 확산은 억제 가능하지만, 측면으로의 금속이온 이동 및 확산은 여전히 존재하게 된다. 이에, 최근의 금속배선 공정에서는 금속배선을 캡핑층(Capping Layer)으로 덮음으로써, 금속배선 측면 방향으로의 금속이온 이동 또는 확산을 방지시키고 있다.By the way, in the metal wiring structure, the barrier film and the diffuse reflection film can suppress the movement and diffusion of metal ions due to the movement of electrons in the lower and upper directions of the wiring metal film, but the movement and diffusion of metal ions to the side surfaces still exist. . Therefore, in the recent metallization process, the metallization is covered with a capping layer, thereby preventing the movement or diffusion of metal ions in the metallization side direction.

도 1은 종래 캡핑층이 형성된 금속배선을 도시한 단면도이다. 여기서, 도 1은 하지층을 포함한 반도체 기판, 2는 Ti/TiN 재질의 베리어막, 3은 알루미늄 또는 구리로된 배선용 금속막, 4는 Ti/TiN 재질의 제1난반사막, 5는 무기질의 제2난반사막, 6은 금속배선, 7은 산화막(Oxide) 또는 질산화막(Oxynitride)으로된 캡핑층, 10는 산화막 계열의 층간절연막을 각각 나타낸다.1 is a cross-sectional view illustrating a metal wiring in which a capping layer is formed in the related art. 1 is a semiconductor substrate including an underlayer, 2 is a barrier film made of Ti / TiN material, 3 is a wiring metal film made of aluminum or copper, 4 is a first diffuse reflection film made of Ti / TiN material, and 5 is made of inorganic material. 2 diffuse reflection film, 6 is a metal wiring, 7 is a capping layer made of oxide or oxynitride, and 10 is an oxide-based interlayer insulating film, respectively.

도시된 바와 같이, 금속배선(6)은 베리어막(2), 배선용 금속막(3) 및 난반사막(4, 5)의 적층 구조로 이루어지며, 이러한 금속배선(6)은 산화막 또는 질산화막 재질의 캡핑층(7)으로 덮혀져 있고, 그리고, 층간절연막(Inter Metal Layer : 이하, IMD)이 전체 구조물 상에 도포되어 있다.As shown, the metal wiring 6 has a laminated structure of the barrier film 2, the wiring metal film 3, and the diffuse reflection films 4 and 5, and the metal wiring 6 is formed of an oxide film or a nitrification material. Is covered with a capping layer 7, and an interlayer insulating film (hereinafter referred to as IMD) is applied over the entire structure.

한편, 이러한 구조에 있어서, 알루미늄 또는 구리로된 배선용 금속막에서의 전자 이동 및 확산은 베리어막과 난반사막 및 캡핑층에 의해 억제될 수 있지만, 금속배선의 선폭 및 금속배선들간의 간격(이하, 스페이스라 칭함) 감소가 요구되면서 이웃하는 금속배선들 사이에서의 기생 캐패시턴스에 의한 신호 지연 현상이 심화됨으로써, 결국, 전술한 바와 같은 구조의 금속배선은 소자의 전기적 특성을 확보할 수 없다는 문제를 갖게 된다.On the other hand, in this structure, electron transfer and diffusion in the wiring metal film made of aluminum or copper can be suppressed by the barrier film, the diffuse reflection film, and the capping layer, but the line width of the metal wiring and the spacing between the metal wirings (hereinafter, As a reduction is required, signal delay due to parasitic capacitance between neighboring metal wires is intensified, and as a result, the metal wire structure as described above has a problem in that it is impossible to secure the electrical characteristics of the device. do.

따라서, 최근에는 금속배선들간의 사이에 개재되는 유전막, 즉, 층간절연막의 재질로서 저유전율(Low-k) 절연막을 이용함으로써, 기생 캐패시턴스에 의한 신호 지연 현상을 최대한 억제시키고 있다.Therefore, recently, a low dielectric constant (Low-k) insulating film is used as the material of the dielectric film interposed between the metal wirings, that is, the interlayer insulating film, thereby minimizing the signal delay caused by parasitic capacitance.

그러나, 층간절연막의 재질로서 저유전율 절연막을 이용하는 방법은, 예컨데, 0.2㎛×0.2㎛ 이하의 선폭 및 스페이스를 갖는 금속배선에 적용될 경우, 금속배선들 사이에 개재되는 유전막의 유전상수 값에서 캡핑층의 비중이 높아지게 되고, 여기서, 산화막 또는 질산화막으로된 캡핑층의 유전율은 저유전율 절연막에 비해 상대적으로 높기 때문에 상기 저유전율 절연막에 의한 유전율 감소 효과는 미약하게 되며, 결국, 신호 지연 문제는 해결되지 못한다.However, a method of using a low dielectric constant insulating film as a material of an interlayer insulating film, for example, when applied to a metal wiring having a line width and space of 0.2 μm × 0.2 μm or less, a capping layer at a dielectric constant value of a dielectric film interposed between the metal wires. Since the dielectric constant of the capping layer made of an oxide film or a nitric oxide film is relatively higher than that of the low dielectric constant insulating film, the dielectric constant reduction effect of the low dielectric constant insulating film becomes weak, and thus, the signal delay problem is not solved. can not do it.

또한, 도 1에 도시된 바와 같이, 산화막 또는 질산화막 재질의 캡핑층(7)은 그 형성시에 금속배선(6)의 상부에서 오버행(Over-hang) 현상이 발생되기 때문에, 후속 공정에서 갭필(gap-fill) 문제를 야기시키게 되며, 아울러, 이러한 갭필의 문제는 캠핑층으로 고밀도 플라즈마 산화막(High Density Plasma Oxide)으로 형성하는 것에 의해 해결 가능하지만, 이 방법은 유전율 측면에서는 바람직하지 못하다.In addition, as shown in FIG. 1, the capping layer 7 made of an oxide film or an oxynitride film has an overhang phenomenon on the upper portion of the metal wiring 6 at the time of its formation. (gap-fill) problem, and also, the gap fill problem can be solved by forming a high density plasma oxide (High Density Plasma Oxide) in the camping layer, this method is not preferable in terms of permittivity.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 층간절연막의 재질인 저유전 절연막의 유전 특성을 확보할 수 있는 반도체 소자의 금속배선 형성방법을 제공함에 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for forming a metal wiring of a semiconductor device capable of securing dielectric properties of a low dielectric insulating film, which is a material of an interlayer insulating film.

또한, 본 발명은 고집적화에 기인하는 층간절연막의 갭필 문제를 해결할 수 있는 반도체 소자의 금속배선 형성방법을 제공함에 그 다른 목적이 있다.In addition, another object of the present invention is to provide a method for forming a metal wiring of a semiconductor device that can solve the gap fill problem of an interlayer insulating film due to high integration.

게다가, 본 발명은 금속배선의 전기적 특성을 확보할 수 있는 반도체 소자의 금속배선 형성방법을 제공함에 그 또 다른 목적이 있다.In addition, another object of the present invention is to provide a method for forming a metal wiring of a semiconductor device capable of securing the electrical characteristics of the metal wiring.

도 1은 종래 기술에 따라 형성된 금속배선을 도시한 단면도.1 is a cross-sectional view showing a metal wiring formed according to the prior art.

도 2a 내지 도 2d는 본 발명의 실시예에 따른 금속배선 형성방법을 설명하기 위한 공정 단면도.2A to 2D are cross-sectional views illustrating a method for forming metal wiring according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

11 : 반도체 기판 20 : 하지층11 semiconductor substrate 20 base layer

21 : 베리어 금속막 22 : 배선용 금속막21: barrier metal film 22: wiring metal film

23 : 제1난반사막 24 : 제2난반사막23: first diffused desert 24: second diffused desert

30 : 금속배선 31 : TiN막30 metal wiring 31 TiN film

31a : TiN 스페이서 32 : 저유전율 절연막31a: TiN spacer 32: low dielectric constant insulating film

상기와 같은 목적을 달성하기 위한 본 발명의 금속배선 형성방법은, 반도체 기판 상에 베리어막, 배선용 금속막 및 난반사막을 차례로 증착하고, 그런다음, 상기 난반사막, 배선용 금속막 및 베리어막을 패터닝하여 금속배선을 형성한다. 이어서, 상기 금속배선을 포함한 반도체 기판 상에 캡핑층(Capping Layer)으로서 CVD 공정으로 TiN막을 증착한 다음, 상기 TiN막을 블랭킷 식각하여 상기 금속배선의 양측벽에 TiN 스페이서를 형성한다.In the metal wiring forming method of the present invention for achieving the above object, a barrier film, a wiring metal film and a diffuse reflection film is sequentially deposited on a semiconductor substrate, and then the diffuse reflection film, the wiring metal film and the barrier film are patterned to form a metal. Form the wiring. Subsequently, a TiN film is deposited by a CVD process as a capping layer on the semiconductor substrate including the metal wiring, and the TiN film is blanket-etched to form TiN spacers on both sidewalls of the metal wiring.

여기서, 본 발명의 금속배선 형성방법은 상기 TiN 스페이서를 금속배선을 포함한 반도체 기판 상에 CVD 공정으로 TiN막을 증착함과 동시에 RF 처리를 반복하여 형성할 수도 있다.Here, in the method for forming a metal wiring of the present invention, the TiN spacer may be formed by repeatedly depositing a TiN film on a semiconductor substrate including a metal wiring by a CVD process and simultaneously performing an RF treatment.

또한, 본 발명의 금속배선 형성방법은, 상기 난사반사막을 Ti/TiN으로된 제1난반사막과 무기질 물질로된 제2난반사막으로 구성하며, 상기 무기질 물질로된 제2난반사막은 300∼1,000Å 두께로 형성한다.In addition, the method for forming a metal wiring according to the present invention comprises the diffuse reflection film comprising a first diffuse reflection film made of Ti / TiN and a second diffuse reflection film made of an inorganic material, and the second diffuse reflection film made of the inorganic material is 300 to 1,000 mW. Form to thickness.

게다가, 본 발명의 금속배선 형성방법은 CVD 공정에 의한 TiN막을 500℃ 이하의 온도에서 100∼500Å 두께로 증착한다.In addition, the metal wiring forming method of the present invention deposits a TiN film by a CVD process to a thickness of 100 to 500 kPa at a temperature of 500 ° C or lower.

아울러, 본 발명의 금속배선 형성방법은 배선용 금속막으로서 알루미늄막 또는 구리막을 이용한다.In addition, the metal wiring formation method of this invention uses an aluminum film or a copper film as a metal film for wiring.

본 발명에 따르면, 캡핑층으로서 CVD 공정에 의한 TiN을 이용함으로써, 층간절연막의 저유전율 특성을 확보하면서, 고집적화에 기인하는 갭필 문제도 해결할 수 있고, 아울러, 금속배선에서의 신호 지연의 문제도 해결할 수 있다.According to the present invention, by using TiN by the CVD process as the capping layer, it is possible to solve the gap fill problem caused by high integration while securing the low dielectric constant characteristics of the interlayer insulating film, and also to solve the problem of signal delay in metal wiring. Can be.

(실시예)(Example)

이하, 첨부된 도면에 의거하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2d는 본 발명의 실시에에 따른 금속배선 형성방법을 설명하기 위한 공정 단면도로서, 이를 설명하면 다음과 같다.2A to 2D are cross-sectional views illustrating a method for forming a metal wiring according to an embodiment of the present invention.

도 2a를 참조하면, 반도체 기판(11) 상에 공지의 공정을 통해 트랜지스터(도시안됨)를 포함한 하지층(20)을 형성한다. 그런다음, 하지층(20) 상에 Ti/TiN으로된 베리어막(21)과, 알루미늄 또는 구리로된 배선용 금속막(22), Ti/TiN으로된 제1난반사막(23) 및 질산화막과 같은 무기질 물질로된 제2난반사막(24)을 차례로 증착한다. 이어서, 제2 및 제1난반사막(24, 23)과 알루미늄막(22) 및 베리어막(21)을 공지의 마스크 공정 및 RIE 공정을 통해 패터닝하여 금속배선(30)을 형성한다.Referring to FIG. 2A, an underlayer 20 including a transistor (not shown) is formed on a semiconductor substrate 11 through a known process. Then, the barrier film 21 made of Ti / TiN, the wiring metal film 22 made of aluminum or copper, the first diffuse reflection film 23 made of Ti / TiN, and the nitride oxide film were formed on the base layer 20. A second diffuse reflection film 24 made of the same inorganic material is deposited one after another. Subsequently, the second and first diffuse reflection films 24 and 23, the aluminum film 22, and the barrier film 21 are patterned through a well-known mask process and RIE process to form the metal wiring 30.

여기서, 상기 제1난반사막(23)은 식각 배선용 금속막(22)에서의 전자 이동 또는 외방 확산을 방지하기 위해 형성하는 것이며, 상기 제2난반사막(24)은 금속배선의 식각 프로파일을 유지하면서 후속의 블랭킷 식각시에 금속배선(30)을 보호하기 위해 형성하는 것이다. 이때, 상기 제2난반사막(24)은 종래 보다는 두껍게, 예컨데, 300∼1,000Å 두께로 형성함이 바람직하다.Here, the first diffuse reflection film 23 is formed to prevent electron movement or outward diffusion in the etch wiring metal film 22, while the second diffuse reflection film 24 maintains the etching profile of the metal wiring. It is formed to protect the metal wiring 30 during subsequent blanket etching. At this time, the second diffuse reflection film 24 is thicker than the prior art, for example, preferably formed to a thickness of 300 ~ 1,000∼.

도 2b를 참조하면, 금속배선(30)을 포함한 반도체 기판(11)의 전체 상에 캡핑층으로서 CVD(Chemical Vapor Deposition) 공정으로 TiN막(31)을 100∼500Å 두께로 증착한다. 이때, 상기 CVD 공정에 의한 TiN막(31)은 500℃ 이하의 온도에서 증착하며, 아울러, 열적 버짓(Thermal Budget)을 줄이기 위해 TDMAT를 전구체로 이용한다.Referring to FIG. 2B, a TiN film 31 is deposited to a thickness of 100 to 500 Å by a CVD (Chemical Vapor Deposition) process as a capping layer over the entire semiconductor substrate 11 including the metal wiring 30. In this case, the TiN film 31 by the CVD process is deposited at a temperature of 500 ° C. or less, and in addition, TDMAT is used as a precursor to reduce the thermal budget.

도 2c를 참조하면, TiN막을 블랭킷(blanket) 식각하여 금속배선(30)의 양측벽에 TiN 스페이서(31a)를 형성하고, 이 결과로서, 스페이서 형태로 캡핑층을 갖는 본 발명에 따른 금속배선(30)을 완성한다.Referring to FIG. 2C, the TiN film is blanket-etched to form TiN spacers 31a on both side walls of the metal wire 30, and as a result, the metal wire according to the present invention having a capping layer in the form of a spacer ( Complete 30).

이후, 도 2d를 참조하면, 상기 단계까지의 결과물 상에 저유전율 절연막을 증착하고, 이어, 도시하지는 않았으나, 후속 공정을 진행한다.Thereafter, referring to FIG. 2D, a low dielectric constant insulating film is deposited on the resultant up to the above step, and then, although not illustrated, a subsequent process is performed.

상기와 같은 본 발명의 금속배선 형성방법에 있어서, 캡핑층이 스텝 커버리지가 양호한 CVD TiN막으로 형성되며, 또한, 종래 산화막 계열의 캡핑층이 1,000∼3,000Å 정도의 두께로 증착되는 것에 비해 상기 CVD TiN막은 100∼500Å 정도의 두께로 증착되기 때문에, 그 증착시에 오버행 현상을 발생되지 않으며, 따라서, 오버행으로 인한 후속에서의 갭필 문제가 근본적으로 해결될 수 있다.In the metal wiring forming method of the present invention as described above, the capping layer is formed of a CVD TiN film having good step coverage, and the CVD capping layer is conventionally deposited with a thickness of about 1,000 to 3,000 kPa. Since the TiN film is deposited to a thickness of about 100 to 500 占 퐉, no overhang phenomenon occurs during the deposition, and therefore, the problem of gap fill after the overhang can be fundamentally solved.

또한, CVD TiN막은 절연막이 아닌 금속막이므로, 배선용 금속막의 저항을 줄일 수 있고, 특히, 후속에서 층간절연막으로서 형성되는 저유전율 절연막의 유전율 특성 저하를 야기시키지 않으며, 그래서, 금속배선에서의 신호 지연 현상을 억제시킬 수 있는 것으로 인해 소자의 전기적 특성을 확보할 수 있게 된다.In addition, since the CVD TiN film is a metal film rather than an insulating film, the resistance of the wiring metal film can be reduced, and in particular, it does not cause a decrease in the dielectric constant characteristics of the low dielectric constant insulating film subsequently formed as an interlayer insulating film, so that the signal delay in the metal wiring is reduced. Since the phenomenon can be suppressed, it is possible to secure the electrical characteristics of the device.

게다가, TiN막은 하드 코팅(Hard Coating) 물질이며, 금속막과 절연막간의 반응 억제력이 좋기 때문에 알루미늄 배선인 경우에는 전자 이동에 의한 금속이온의 이동을, 그리고, 구리 배선인 경우에는 외방 확산을 방지할 수 있으며, 그래서,금속배선의 신뢰성도 확보할 수 있게 된다.In addition, since the TiN film is a hard coating material and has a good suppression force between the metal film and the insulating film, the movement of metal ions due to electron migration in the case of aluminum wiring, and the outward diffusion in the case of copper wiring are prevented. Thus, it is possible to ensure the reliability of the metal wiring.

한편, 전술한 실시예에서는 금속배선의 캡핑층인 TiN 스페이서를 TiN막의 증착 후에 블랭킷 식각을 수행하여 형성하지만, 본 발명의 다른 실시예로서 TiN막의 증착과 동시에 RF 처리(treatment), 즉, 아르곤 이온에 의한 수직 방향으로의 스퍼터 식각을 반복적으로 행함으로써, 금속배선의 양측벽에만 TiN 스페이서가 형성되도록 할 수도 있다.Meanwhile, in the above-described embodiment, the TiN spacer, which is a capping layer of the metallization, is formed by blanket etching after the deposition of the TiN film. However, as another embodiment of the present invention, RF treatment, that is, argon ion is performed simultaneously with the deposition of the TiN film. By repeatedly performing the sputter etching in the vertical direction, the TiN spacer may be formed only on both side walls of the metal wiring.

이상에서와 같이, 본 발명의 방법은 금속배선의 캡핑층을 CVD 공정에 의한 TiN막으로 형성하기 때문에 저유전율 절연막의 유전 특성 저하를 방지할 수 있으며, 이에 따라, 금속배선에서의 신호 지연에 의한 소자의 전기적 특성 저하를 방지할 수 있다. 또한, 상기 CVD 공정에 의한 TiN막은 스텝 커버리지가 우수하며, 그 증착 두께를 얇게 하면서도 금속배선을 보호할 수 있기 때문에 갭필 문제도 해결할 수 있다.As described above, the method of the present invention forms the capping layer of the metal interconnection with the TiN film by the CVD process, thereby preventing the deterioration of the dielectric properties of the low dielectric constant insulating film. Deterioration of the electrical characteristics of the device can be prevented. In addition, the TiN film by the CVD process is excellent in step coverage, and the gap fill problem can be solved because the thickness of the TiN film can be reduced while protecting the metal wiring.

게다가, 본 발명의 방법은 캡핑층을 포함한 베리어막 및 난반사막에 의해서 배선용 금속막이 외부와 격리되도록 하기 때문에 상기 배선용 금속막에서의 전자 이동 또는 외방 확산을 방지할 수 있으며, 이에 따라, 그 자신의 신뢰성은 물론 소자의 신뢰성도 향상시킬 수 있다.In addition, the method of the present invention allows the wiring metal film to be isolated from the outside by the barrier film and the diffuse reflection film including the capping layer, thereby preventing the movement of electrons or the outward diffusion in the wiring metal film. Not only the reliability but also the reliability of the device can be improved.

아울러, 본 발명의 방법은 금속막에 대한 화학적기계연마(Chemical Mechanical Polishing)를 행하지 않고도 다마신(Damascene) 공정과 유사한 소자 특성을 확보할 수 있기 때문에 비용 절감의 효과도 얻을 수 있다.In addition, the method of the present invention can achieve cost reduction because device characteristics similar to the damascene process can be obtained without performing chemical mechanical polishing on the metal film.

기타, 본 발명은 그 요지를 일탈하지 않는 범위에서 다양하게 변경하여 실시할 수 있다.In addition, this invention can be implemented in various changes within the range which does not deviate from the summary.

Claims (12)

반도체 기판 상에 베리어막, 배선용 금속막 및 난반사막을 차례로 증착하는 단계;Sequentially depositing a barrier film, a wiring metal film, and a diffuse reflection film on a semiconductor substrate; 상기 난반사막, 배선용 금속막 및 베리어막을 패터닝하여 금속배선을 형성하는 단계;Patterning the diffuse reflection film, the wiring metal film, and the barrier film to form metal wiring; 상기 금속배선을 포함한 반도체 기판 상에 캡핑층(Capping Layer)으로서 CVD 공정으로 TiN막을 증착하는 단계; 및Depositing a TiN film on the semiconductor substrate including the metal wiring by a CVD process as a capping layer; And 상기 TiN막을 블랭킷 식각하여 상기 금속배선의 양측벽에 TiN 스페이서를 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.Forming a TiN spacer on both sidewalls of the metal wiring by blanket etching the TiN film. 제 1 항에 있어서, 상기 난반사막은 Ti/TiN으로된 제1난반사막과 무기질 물질로된 제2난반사막으로 구성된 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.2. The method of claim 1, wherein the diffuse reflection film comprises a first diffuse reflection film made of Ti / TiN and a second diffuse reflection film made of an inorganic material. 제 2 항에 있어서, 상기 무기질 물질로된 제2난반사막은 300∼1,000Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.3. The method of claim 2, wherein the second diffuse reflection film made of the inorganic material is formed to have a thickness of 300 to 1,000 mW. 제 1 항에 있어서, 상기 CVD 공정에 의한 TiN막은 500℃ 이하에서 증착하는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.The method of claim 1, wherein the TiN film is deposited at 500 ° C. or lower by the CVD process. 제 1 항 또는 제 4 항에 있어서, 상기 CVD 공정에 의한 TiN막은 100∼500Å 두께로 증착하는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.5. The method for forming a metal wiring of a semiconductor device according to claim 1 or 4, wherein the TiN film by the CVD process is deposited to a thickness of 100 to 500 mW. 제 1 항에 있어서, 상기 배선용 금속막은 알루미늄막 또는 구리막인 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.The method of claim 1, wherein the wiring metal film is an aluminum film or a copper film. 제 1 항에 있어서, 상기 TiN 스페이서를 형성하는 단계 후, 결과물 상에 저유전율 절연막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.The method of claim 1, further comprising forming a low dielectric constant insulating film on the resultant after forming the TiN spacer. 반도체 기판 상에 하부 및 상부에 각각 베리어막과 난반사막을 갖는 금속배선을 형성하는 단계;Forming metal wirings having a barrier film and a diffuse reflection film on the lower and upper portions of the semiconductor substrate, respectively; 상기 금속배선을 포함한 반도체 기판 상에 CVD 공정으로 TiN막을 증착함과 동시에 RF 처리를 반복하여, 상기 금속배선의 양측벽에 캡핑층(Capping Layer)으로서 TiN 스페이서를 형성하는 단계; 및Depositing a TiN film on a semiconductor substrate including the metal wiring by a CVD process and simultaneously repeating RF processing to form TiN spacers as capping layers on both sidewalls of the metal wiring; And 상기 TiN 스페이서를 형성하는 단계까지의 결과물 상에 저유전율 절연막을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.Forming a low dielectric constant insulating film on the resultant material up to the step of forming the TiN spacer. 제 8 항에 있어서, 상기 CVD 공정에 의한 TiN막은 500℃ 이하에서 증착하는것을 특징으로 하는 반도체 소자의 금속배선 형성방법.The method of claim 8, wherein the TiN film is deposited at 500 ° C. or lower by the CVD process. 제 8 항 또는 제 9 항에 있어서, 상기 CVD 공정에 의한 TiN막은 100∼500Å 두께로 증착하는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.10. The method of claim 8 or 9, wherein the TiN film by the CVD process is deposited to a thickness of 100 to 500 kPa. 제 8 항에 있어서, 상기 배선용 금속막은 알루미늄막 또는 구리막인 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.10. The method of claim 8, wherein the wiring metal film is an aluminum film or a copper film. 제 8 항에 있어서, 상기 TiN 스페이서를 형성하는 단계 후, 결과물 상에 저유전율 절연막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.The method of claim 8, further comprising forming a low dielectric constant insulating film on the resultant after forming the TiN spacer.
KR1020010031727A 2001-06-07 2001-06-07 Method for forming metal interconnection layer of seniconductor device KR20020093260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010031727A KR20020093260A (en) 2001-06-07 2001-06-07 Method for forming metal interconnection layer of seniconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010031727A KR20020093260A (en) 2001-06-07 2001-06-07 Method for forming metal interconnection layer of seniconductor device

Publications (1)

Publication Number Publication Date
KR20020093260A true KR20020093260A (en) 2002-12-16

Family

ID=27708083

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010031727A KR20020093260A (en) 2001-06-07 2001-06-07 Method for forming metal interconnection layer of seniconductor device

Country Status (1)

Country Link
KR (1) KR20020093260A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970052207A (en) * 1995-12-06 1997-07-29 문정환 Method of forming fine metal wiring in semiconductor device
KR970052332A (en) * 1995-12-22 1997-07-29 김주용 Metal wiring formation method of semiconductor device
KR19990074940A (en) * 1998-03-16 1999-10-05 윤종용 Metal wiring formation method having fluorine blocking film on sidewall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970052207A (en) * 1995-12-06 1997-07-29 문정환 Method of forming fine metal wiring in semiconductor device
KR970052332A (en) * 1995-12-22 1997-07-29 김주용 Metal wiring formation method of semiconductor device
KR19990074940A (en) * 1998-03-16 1999-10-05 윤종용 Metal wiring formation method having fluorine blocking film on sidewall

Similar Documents

Publication Publication Date Title
KR100790452B1 (en) Method for forming multi layer metal wiring of semiconductor device using damascene process
US7679192B2 (en) Semiconductor device including cover layer
KR100271718B1 (en) Manufacturing method of metal line for semiconductor device
KR0159016B1 (en) Method of manufacturing insulation film inter metal wire in a semiconductor device
US20090001577A1 (en) Metal line of semiconductor device with a triple layer diffusion barrier and method for forming the same
JP2000150517A (en) Semiconductor integrated circuit device and fabrication thereof
KR100652317B1 (en) Method for manufacturing metal pad of the semiconductor device
KR100905828B1 (en) Metal line of semiconductor device and forming method thereof
KR20020093260A (en) Method for forming metal interconnection layer of seniconductor device
KR100451493B1 (en) Metal wiring formation method of semiconductor device
KR100935193B1 (en) Metal layer of semiconductor device and method for manufacturing the same
KR20100036008A (en) Method for forming metal wiring of semiconductor device
KR100197992B1 (en) Forming method for metal wiring in semiconductor device
KR20080062556A (en) Method for forming metal plug of semiconductor device
KR100661220B1 (en) Method for forming metal interconnect with dual dielectric layer
KR100588666B1 (en) Method for forming metal interconnect of semiconductor device
KR100215830B1 (en) Forming method for metal wiring
KR100652316B1 (en) Method for manufacturing inter metal dielectric layer of semiconductor device
KR20010079427A (en) Method for producing semiconductor device using intermediate metal film of the same material within one of diffusion barrier
KR100459063B1 (en) Method for manufacturing intermetal dielectric layer of semiconductor device
KR20020048720A (en) A method for forming damascene metal wire using copper
KR20020002602A (en) Method for forming bitline in semiconductor device
KR20090052517A (en) Method of forming a metal-line in semiconductor device
KR100770533B1 (en) Semiconductor device and method for manufacturing the semiconductor device
KR100373351B1 (en) A method for fabricating semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application