KR20020067314A - The manufacturing method of titanium oxide powder by dropping precipitant - Google Patents

The manufacturing method of titanium oxide powder by dropping precipitant Download PDF

Info

Publication number
KR20020067314A
KR20020067314A KR1020010007836A KR20010007836A KR20020067314A KR 20020067314 A KR20020067314 A KR 20020067314A KR 1020010007836 A KR1020010007836 A KR 1020010007836A KR 20010007836 A KR20010007836 A KR 20010007836A KR 20020067314 A KR20020067314 A KR 20020067314A
Authority
KR
South Korea
Prior art keywords
titanium dioxide
precipitant
dropping
temperature
powder
Prior art date
Application number
KR1020010007836A
Other languages
Korean (ko)
Other versions
KR100404449B1 (en
Inventor
한상목
신대용
Original Assignee
한상목
신대용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한상목, 신대용 filed Critical 한상목
Priority to KR10-2001-0007836A priority Critical patent/KR100404449B1/en
Publication of KR20020067314A publication Critical patent/KR20020067314A/en
Application granted granted Critical
Publication of KR100404449B1 publication Critical patent/KR100404449B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: Provided is a preparation method of titanium dioxide(TiO2) powder having good crystallinity at room temperature, fine particle size and large surface area for use as photocatalysts by dropwise addition of precipitant. CONSTITUTION: The preparation method comprises the steps of: preparing a reactant solution by dropping TiCl4 to HCl and adding distilled water to be a HCl/TiCl4 molar ratio of 1:2.5-1:3.5; adding drops of NH4HCO3 as a precipitant under 60deg.C until the pH of the reactant arrives between 6¯7 to form precipitates; washing and drying at 110deg.C over 48hrs.; thermal treating at 400-700deg.C. The resultant TiO2 powder has the anatase crystal which is effectively used as photocatalysts.

Description

침전제 적하법을 이용한 이산화티탄 분말의 제조방법{The manufacturing method of titanium oxide powder by dropping precipitant}The manufacturing method of titanium oxide powder by dropping precipitant}

본 발명은 이산화티탄 분말의 제조방법에 관한 것으로서, 보다 상세하게는 비교적 낮은 온도에서 침전물의 결정성 제어가 용이할 뿐만 아니라 상온에서의 결정성이 우수함과 동시에 비표면적이 높아 광촉매로 유용하게 사용될 수 있도록 한 침전제 적하법을 이용항 이산화티탄 분말의 제조방법에 관한 것이다.The present invention relates to a method for producing titanium dioxide powder, and more particularly, it is not only easy to control the crystallinity of the precipitate at a relatively low temperature, but also has excellent crystallinity at room temperature and high specific surface area, which can be usefully used as a photocatalyst. The present invention relates to a method for producing titanium dioxide powder using a precipitant dropping method.

일반적으로 광촉매재료는 광촉매층에 흡착되는 대기중 또는 수중의 유기오염물질을 유리기반응에 의해 광산화 분해 제거하는 소재로서, 그 특성은 광촉매층으로 사용되는 반도체 금속산화물에 의해 좌우된다. 현재 광촉매재료로 널리 유용하게 사용되고 있는 것중의 하나가 바로 이산화티탄(TiO2)이다.In general, a photocatalyst material is a material that photo-oxidizes and removes organic pollutants in the air or water adsorbed to the photocatalyst layer by free radical reaction, and its characteristics depend on the semiconductor metal oxide used as the photocatalyst layer. One of the widely used photocatalyst materials is titanium dioxide (TiO 2 ).

상기 이산화티탄은 약 3.0eV에 해당되는 밴드갭에너지(Eg)를 가지는데, 이때 상기 밴드갭 이상의 에너지를 갖는 파장의 빛으로 여기하면 가전자대의 전자가 전도대로 여기되면서 가전자대에는 양공이 형성되어 광촉매층의 표면으로 이동한다. 이때 상기 양공과 광촉매층의 표면에 있는 수분 또는 OH기가 반응하면 강력한 산화력을 갖는 OH라디칼이 생성된다. 이 OH라디칼은 표면에 흡착되어 있는 유기물을 무해한 화합물로 분해시키거나 또는 병원균을 산화시켜 살균하는 특성을 나타낸다는 것은 기지의 사실이다.The titanium dioxide has a bandgap energy (Eg) corresponding to about 3.0 eV. At this time, when excited with light having a wavelength above the bandgap, electrons in the valence band are excited as conduction bands. Move to the surface of the photocatalyst layer. At this time, when the hole or the water or OH group on the surface of the photocatalytic layer reacts, OH radicals having strong oxidizing power are produced. It is well known that this OH radical exhibits a property of decomposing organic substances adsorbed on the surface into harmless compounds or oxidizing and sterilizing pathogens.

최근에는 상기 이산화티탄의 광조사시의 높은 산화력과 환원력을 이용하여 물과 공기 중의 유기오염물질의 광분해와 항균, 방오 및 방취효과에 관한 연구가 광범위하게 진행되고 있다. 그러나 이러한 응용을 위해서는 우수한 특성을 가지는 고순도의 이산화티탄 분말이 요구되어 진다. 특히, 광촉매로서 이산화티탄을 사용하기 위해서는 결정성이 우수하면서도 높은 비표면적을 가지는 분말이 필요하다. 일반적으로 이산화티탄 분말의 입자가 미립이면서도 비표면적이 넓을수록 그 특성이 우수한 것으로 인정되고 있다.In recent years, research on the photodegradation, antibacterial, antifouling and deodorizing effects of organic pollutants in water and air by using high oxidation and reducing power during light irradiation of titanium dioxide has been widely conducted. However, high purity titanium dioxide powder having excellent properties is required for such an application. In particular, in order to use titanium dioxide as a photocatalyst, a powder having excellent crystallinity and high specific surface area is required. Generally, it is recognized that the finer the particle of the titanium dioxide powder and the larger the specific surface area, the better the characteristics.

상기 이산화티탄 분말의 일반적인 제조방법으로 크게 황산법, 염소법 및 금속알콕사이드법 등이 알려져 있다.As a general method for producing the titanium dioxide powder, sulfuric acid method, chlorine method, metal alkoxide method and the like are known.

상기에서 황산법은 티탄 함유 광물인 일메나이트(illmenite, 예:FeTiO3) 원광석을 황산에 용해한 다음, 정제와 가수분해, 하소의 공정을 거쳐 이산화티탄을 제조하는 방법이다.The sulfuric acid method is a method of producing titanium dioxide through dissolution of ilmenite (eg, FeTiO 3 ) ore, which is a titanium-containing mineral, in sulfuric acid, followed by purification, hydrolysis, and calcining.

또, 염소법은 사염화티탄(TiCl4)을 이용한 방법으로, 사염화티탄을 액상 또는 기상반응을 통하여 산화분해시켜 이산화티탄을 제조하는 방법이다.In addition, the chlorine method is a method using titanium tetrachloride (TiCl 4 ), a method of producing titanium dioxide by oxidative decomposition of titanium tetrachloride through a liquid phase or gas phase reaction.

상기의 황산법과 염소법은 경제성이 우수하기 때문에 현재 가장 널리 상용화되어 있는 방법으로서, 안료용 및 화장품 등의 원료로 사용하는 이산화티탄 분말의 제조에 사용되고 있다. 그러나, 상기의 황산법 및 염소법으로 제조된 이산화티탄 분말들은 그 입자 크기가 상대적으로 크거나(약 100nm 내지 1000nm 정도), 혹은 입자크기가 작더라도 하소에 의한 열처리 공정중 강한 응집체를 형성하여 비표면적이 현저히 줄어들게 되는 단점이 있다. 따라서, 입자크기나 비표면적에 의해 영향을 많이 받게 되는 광촉매로서는 부적절한 것으로 알려져 있다.Since the sulfuric acid method and the chlorine method are excellent in economic efficiency, they are currently the most widely used methods and are used for the production of titanium dioxide powders used as raw materials for pigments and cosmetics. However, the titanium dioxide powders produced by the sulfuric acid method and the chlorine method have a relatively large particle size (about 100 nm to 1000 nm), or a small particle size to form a strong aggregate during the heat treatment process by calcination, so that the specific surface area There is a drawback that this is significantly reduced. Therefore, it is known to be inadequate as a photocatalyst which is greatly influenced by particle size and specific surface area.

그에 따라, 최근에는 보다 미세한 입자크기를 갖고 응집상태가 잘 제어된 이산화티탄 분말을 제조하기 위하여 금속알콕사이드법을 이용하는 연구가 많이 이루어지고 있다. 금속알콕사이드법은 티탄금속(Ti)을 함유한 유기물질인 알콕사이드(예를들면 티타늄-데트라-에톡사이드 등)을 가수분해시킨 다음, 세정, 분리, 결정화 등의 공정을 거쳐 이산화티탄 분말을 제조하는 방법이다.Therefore, in recent years, many studies have been made using the metal alkoxide method to produce titanium dioxide powder having finer particle size and well controlled agglomeration state. The metal alkoxide method hydrolyzes an alkoxide (eg, titanium-detra-ethoxide, etc.), an organic substance containing titanium metal (Ti), and then prepares titanium dioxide powder through a process such as washing, separation, and crystallization. That's how.

상기 금속알콕사이드법은 극초미립의 분말을 제조할 수 있다는 장점이 있는 반면, 출발물질인 알콕사이드가 고가인 관계로 인하여 경제성이 현저히 낮다는 문제점을 갖고 있다.The metal alkoxide method has the advantage of producing an ultrafine powder, but has a problem that the economical efficiency is significantly low due to the expensive alkoxide starting material.

이로 인하여 대한민국 특허 출원번호 제 98-54390호의 "광촉매용 이산화티탄 분말의 제조방법"에서는 사염화 티탄과 같은 저가의 금속염액을 열가수분해하여 비정질의 수산화티탄 겔을 형성하는 단계와; 이 겔을 물속에 재분산하여 100℃ 내지 300℃의 온도로 승온하여 100시간 이내로 유지하고 냉각하는 수열처리하는 단계; 및 이 수열처리된 용액을 여과분리하고 건조하는 단계를 포함하여 구성되는 광촉매용 이산화티탄 분말의 제조방법을 공지하고 있다.For this reason, Korean Patent Application No. 98-54390 entitled "Method for Producing Titanium Dioxide Powder for Photocatalyst" includes thermally hydrolyzing an inexpensive metal salt solution such as titanium tetrachloride to form amorphous titanium hydroxide gel; Redispersing the gel in water, heating the temperature to a temperature of 100 ° C to 300 ° C, maintaining the temperature within 100 hours and cooling the water; And it is known a method for producing a titanium dioxide powder for photocatalyst comprising the step of filtering and drying the hydrothermally treated solution.

그러나 상기 금속염액을 열가수분해하는 과정에서 사염화티탄이 물에 용해될 때 격렬한 발열반응을 일으키면서 오르토티탄산(orthotitanic acid: Ti(OH)4)을 생성하여 균일한 핵생성을 저해할 뿐만 아니라 비정질의 이산화티탄이 형성되는 단점이 있다.However, when titanium tetrachloride is dissolved in water in the process of thermal hydrolysis of the metal salt solution, it generates an intense exothermic reaction and generates ortho titanic acid (Ti (OH) 4 ) to inhibit uniform nucleation as well as amorphous. There is a disadvantage in that titanium dioxide is formed.

또한 상기한 종래의 이산화티탄의 제조방법은 상온에서 결정성이 낮거나 비정질상이 얻어지므로 결정성을 높이기 위해서 하소하는 공정이 필요하며, 이때 비표면적이 매우 낮아지게 되는 문제점이 있다.In addition, the conventional method for producing titanium dioxide is a low crystallinity or an amorphous phase is obtained at room temperature, so a calcining process is required to increase the crystallinity, and the specific surface area is very low.

이에 본 발명은 따라서 상온에서 결정성이 우수할 뿐만 아나라 미립자이면서 비표면적이 높아 광촉매로서 유용하게 사용될 수 있도록 한 침전제 적하법을 이용하여 이산화티탄 분말의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for producing titanium dioxide powder by using a precipitant dropping method which is not only excellent in crystallinity at room temperature but also has high specific surface area and high specific surface area.

도 1은 침전제의 적하온도에 따른 이산화티탄 수산화물의 X선 회절분석 결과를 나타낸 도면.1 is a view showing the results of X-ray diffraction analysis of titanium dioxide hydroxide according to the dropping temperature of the precipitant.

도 2는 침전제의 적하온도에 따른 이산화티탄 수산화물의 비표면적을 나타낸 도면.2 is a view showing a specific surface area of titanium dioxide hydroxide according to the dropping temperature of the precipitant.

도 3은 40℃에서 침전제를 적하하여 얻은 이산화티탄 수화물의 열처리 온도에 따른 FT-IR 분석 결과를 나타낸 도면.Figure 3 is a view showing the results of the FT-IR analysis according to the heat treatment temperature of titanium dioxide hydrate obtained by dropping the precipitant at 40 ℃.

도 4는 40℃에서 침전제를 적하하여 얻은 이산화티탄 수화물의 열처리 온도에 따른 X선 회절분석 결과를 나타낸 도면.Figure 4 is a view showing the X-ray diffraction analysis results according to the heat treatment temperature of the titanium dioxide hydrate obtained by dropping the precipitant at 40 ℃.

도 5는 40℃에서 침전제를 적하하여 얻은 이산화티탄 수화물의 열처리 온도에 따른 비표면적을 나타낸 도면.5 is a view showing a specific surface area according to the heat treatment temperature of the titanium dioxide hydrate obtained by dropping the precipitant at 40 ℃.

도 6은 40℃에서 침전제를 적하하여 얻은 이산화티탄 수화물의 열처리 온도에 따른 이산화티탄 분말의 결정크기를 나타낸 도면.6 is a view showing the crystal size of the titanium dioxide powder according to the heat treatment temperature of the titanium dioxide hydrate obtained by dropping the precipitant at 40 ℃.

상기한 목적을 달성하기 위하여 본 발명은The present invention to achieve the above object

사염화티탄(TiCl4)을 염산용액에 적하한 후 증류수를 첨가하여 사염화티탄에 대한 염산의 농도비가 1:2.5몰비 내지 1: 3.5몰비가 되도록한 다음, 여기에 침전제로 중탄산암모늄(NH4HCO3)을 pH6 내지 pH7이 될때까지 적하하면서 교반하여 침전물을 형성시키고, 상기 침전물을 충분히 세척한 후 약 110℃로 유지된 건조기에서 약 48시간 이상 건조한 다음 700℃ 미만으로 열처리함을 특징으로 하는 침전제 적하법을 이용한 이산화티탄 분말의 제조방법을 제공함으로서 달성할 수 있다.Titanium tetrachloride (TiCl 4 ) was added dropwise to the hydrochloric acid solution, and distilled water was added so that the concentration ratio of hydrochloric acid to titanium tetrachloride was 1: 2.5 to 1: 3.5 molar ratio, and then ammonium bicarbonate (NH 4 HCO 3) was used as a precipitant. ) Dropwise to form a precipitate by dropping until pH6 to pH7, and after washing the precipitate sufficiently, it is dried in a drier maintained at about 110 ° C for at least 48 hours and then heat-treated to below 700 ° C. It can achieve by providing the manufacturing method of the titanium dioxide powder using the method.

이하 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 먼저 사염화티탄을 염산용액에 적하한 후 증류수를 일정량 첨가하여 사염화티탄에 대한 염산의 농도비가 1:1.5몰비 내지 1:3.5몰비가 되도록 한다. 이때 염산용액을 사용한 이유는 사염화티탄이 물에 용해될 때 격렬한 발열반응을 일으키면서 오르토티탄산(orthotitanic acid; Ti(OH)4)을 생상하여 균일한 핵생성을 저해하기 때문이다. 따라서 사염화티탄을 염산에 적하한 후 증류수를 일정량 첨가하여 오르토티탄산이 형성되는 것을 억제하는 것이 바람직하다. 이때 증류수를첨가한 직후의 사염화티탄에 대한 염산의 농도비가 1:3.5몰비를 초과할 필요는 없으며, 오히려 침전제를 적하하여 침전물을 형성하는 과정에서 침전제의 양이 과다하게 소요될 뿐만 아니라 침전물 형성시간이 장시간 소요된다는 문제점이 있다. 또한 증류수를 첨가한 직후의 사염화티탄에 대한 염산의 농도비가 1:1.5몰비 미만일 경우 오르토티탄산의 생성으로 인하여 균일한 핵생성을 저해하는 문제점이 있다. 따라서 상기한 범위내로 사염화티탄에 대한 염산의 농도비를 결정하는 것이 바람직하다.In the present invention, titanium tetrachloride is first added dropwise to the hydrochloric acid solution, and then a certain amount of distilled water is added so that the concentration ratio of hydrochloric acid to titanium tetrachloride is 1: 1.5 to 1: 3.5 molar ratio. The reason for using the hydrochloric acid solution is that when the tetrachloride is dissolved in water, it generates a vigorous exothermic reaction and generates ortho titanic acid (Ti (OH) 4 ) to inhibit uniform nucleation. Therefore, it is preferable to add titanium tetrachloride to hydrochloric acid, and then add a certain amount of distilled water to suppress the formation of ortho titanic acid. At this time, the concentration ratio of hydrochloric acid to titanium tetrachloride immediately after adding distilled water does not need to exceed 1: 3.5 molar ratio. Rather, the amount of precipitant is excessively consumed in the course of dropping the precipitant to form a precipitate, and the time for forming the precipitate is There is a problem that it takes a long time. In addition, when the concentration ratio of hydrochloric acid to titanium tetrachloride immediately after adding distilled water is less than 1: 1.5 molar ratio, there is a problem of inhibiting uniform nucleation due to the generation of ortho titanic acid. Therefore, it is preferable to determine the concentration ratio of hydrochloric acid to titanium tetrachloride within the above range.

상기와 같이 사염화티탄에 대한 염산의 농도비를 조정한 다음 여기에 침전제로 중탄산암모늄을 pH6 내지 pH7이 될때까지 적하하면서 교반하여 침전물을 형성시키게 된다. 이때 침전제로 중탄산암모늄을 적하하기 시작하면 pH가 증가함에 따라 침전물이 서서히 형성되게 된다. 상기 침전반응은 이산화티탄의 표면전하가 거의 0에 근접하게 되어 입자 표면에 흡착되어 있는 H+이온과 OH-이온의 농도가 같게 되는 pH6 내지 pH7 범위가 될 때까지 침전제를 적하한 다음 반응을 종료한다.After adjusting the concentration ratio of hydrochloric acid to titanium tetrachloride as described above, ammonium bicarbonate is added dropwise to the pH 6 to pH 7 with a precipitant therein to form a precipitate. At this time, when ammonium bicarbonate is added dropwise as a precipitant, the precipitate is gradually formed as the pH is increased. The precipitation reaction is carried out by dropping the precipitant until the surface charge of titanium dioxide is almost zero, so that the concentration of H + ions and OH - ions adsorbed on the particle surface is in the range of pH6 to pH7 and then terminate the reaction. do.

이때 침전제의 적하시 반응기의 온도는 60℃ 미만의 온도 범위내에서 자유롭게 조절할 수 있는데, 일반적으로 상온에서 부터 60℃ 미만의 온도 범위에서 적하는 것이 바람직하다. 상기 반응기의 온도가 60℃를 초과할 경우 생성된 이산화티탄의 결정구조가 광촉매로서 유용한 아나타제(anatase)결정 대신 루틸(rutil)결정이이 주로 생성되는 단점이 있다. 상기에서 아나타제 결정은 루틸결정보다 그 비표면적이 높아 이산화티탄의 결정중에서 가장 광촉매 특성이 우수한 것으로 알려져 있다. 또한 반응기의 온도가 상온보다 저온인 온도에서 실시할 경우 별도의 냉각시설이 요구될 뿐만 아니라 반응속도가 저하되는 문제점이 있으므로 상기 온도범위내에서 침전제를 적하하여 침전물을 형성시키는 것이 좋다.At this time, the temperature of the reactor can be freely adjusted within the temperature range of less than 60 ℃ when the precipitant is dropped, it is generally preferred to dropwise in the temperature range of less than 60 ℃ from room temperature. If the temperature of the reactor exceeds 60 ℃ has a disadvantage that the crystal structure of the produced titanium dioxide is mainly produced rutile (rutil) crystals instead of anatase (anatase) crystals useful as a photocatalyst. The anatase crystal has a higher specific surface area than rutile crystal and is known to have the best photocatalyst property among the crystals of titanium dioxide. In addition, when the temperature of the reactor is carried out at a temperature lower than room temperature, not only a separate cooling facility is required, but also a problem in that the reaction rate is lowered, so that a precipitate is formed by dropping a precipitant within the above temperature range.

이와 같이 형성된 침전물은 충분히 수세하게 되는데, 본 발명에서는 반응종료 후 0.1마이크로미터의 기공도를 갖는 니트로셀룰로스 멤브레인 필터로 여과하면서 침전물에 함유되어 있는 염소 이온을 완전히 제거할 때까지 세척하였다. 염소이온의 잔류여부를 확인하기 위하여 질산은을 이용하였으며, 염화은 침전이 형성되지 않을 때까지, 즉 염소이온이 검출되지 않을 때까지 세척하였다.The precipitate thus formed is sufficiently washed with water. In the present invention, the filtration was washed with a nitrocellulose membrane filter having a porosity of 0.1 micrometer until the chlorine ions contained in the precipitate were completely removed. Silver nitrate was used to confirm the remaining chlorine ions, and the silver chloride was washed until no precipitate was formed, that is, until no chlorine ion was detected.

상기 세척한 침전물을 약 110℃로 유지되는 건조기에서 약 48이상 시간 건조하게 되면 이산화티탄 수산화물 분말을 얻을 수 있다.When the washed precipitate is dried for about 48 hours or more in a drier maintained at about 110 ° C., titanium dioxide hydroxide powder may be obtained.

이렇게 얻어진 이산화티탄 수산화물 분말은 최종적인 이산화티탄 분말을 얻기 위하여 700℃미만에서 열처리하게 된다. 이때, 이산화티탄 수화물내의 OH기의 경우 광촉매 특성에 영향을 미치지 않는 것으로 보고되어 있으므로 반드시 OH기를 제거한 다음 사용할 필요는 없다. 즉, 필요에 따라서 적당한 온도로 열처리하여 이산화티탄 수산화물내의 OH기가 제거된 이산화티탄을 사용할 수 있다. 이때 이산화티탄 수화물내의 OH기를 제거하기 위해서는 400℃를 초과한 온도에서 열처리 하면된다. 즉, 이산화티탄 수화물 대신 이산화티탄을 얻기 위해서는 400℃이상의 온도에서 열처리하면 이산화티탄 분말을 얻을 수 있다. 그러나 열처리 온도가 700℃를 초과할 경우 이산화티탄의 결정구조가 광촉매로서 유용한 아나타제(anatase)결정 대신 루틸(rutil)결정이 생성되어 이산화티탄 분말의 비표면적이 줄어드는 문제점이 있다. 뿐만 아니라 열처리 온도가 증가함에 따라 결정의 크기가 커지는 단점이 있다. 따라서 700℃ 미만의 온도에서 열처리하는 것이 바람직하다.The titanium dioxide hydroxide powder thus obtained is heat treated at less than 700 ° C. in order to obtain the final titanium dioxide powder. In this case, since the OH group in the titanium dioxide hydrate is reported to have no effect on the photocatalytic properties, it is not necessary to remove the OH group before use. That is, titanium dioxide from which the OH group in the titanium dioxide hydroxide is removed by heat treatment at an appropriate temperature can be used as necessary. At this time, in order to remove the OH group in the titanium dioxide hydrate may be heat treatment at a temperature exceeding 400 ℃. That is, in order to obtain titanium dioxide instead of titanium dioxide hydrate, the titanium dioxide powder may be obtained by heat treatment at a temperature of 400 ° C. or higher. However, when the heat treatment temperature exceeds 700 ℃, the crystal structure of titanium dioxide is a rutile (rutil) crystals are produced instead of the anatase crystals useful as a photocatalyst, there is a problem that the specific surface area of the titanium dioxide powder is reduced. In addition, there is a disadvantage that the size of the crystal increases as the heat treatment temperature increases. Therefore, it is preferable to heat-process at the temperature below 700 degreeC.

이하 본 발명을 하기한 실시예를 통하여 보다 상세하게 설명하기로 하나 이는 본 발명의 이해를 돕기 위하여 제시된 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, which are presented to aid the understanding of the present invention, but the present invention is not limited thereto.

<실시예 1><Example 1>

0.05mol의 사염화티탄(99%, Wako Pure Chem.Ind., Japan)을 염산용액(36%, Wako Pure Chem.Ind., Japan)에 적하한 후 증류수를 첨가하여 사염화티탄에 대한 염산의 농도비가 1:3.0몰비가 되도록 한 다음, 여기에 침전제로 0.06mol/ℓ의 중탄산암모늄을 pH6.7이 될때까지 적하하면서 교반하여 침전물을 형성시켰다. 이때 적하시의 온도를 상온인 25℃, 40℃, 60℃ 및 80℃에서 적하하여 침전물을 얻었다. 상기 침전물을 충분히 세척한 후 약 110℃로 유지된 건조기에서 48시간동안 건조하여 이산화티탄 수산화물을 얻었다.0.05 mol of titanium tetrachloride (99%, Wako Pure Chem.Ind., Japan) was added dropwise to hydrochloric acid solution (36%, Wako Pure Chem.Ind., Japan), and distilled water was added to increase the concentration ratio of hydrochloric acid to titanium tetrachloride. It was made to be a 1: 3.0 molar ratio, and it stirred by adding dropwise 0.06 mol / L ammonium bicarbonate with a precipitant here until it became pH6.7, and formed the precipitate. At this time, the temperature at the time of dripping was dripped at 25 degreeC, 40 degreeC, 60 degreeC, and 80 degreeC which are normal temperature, and the precipitate was obtained. The precipitate was sufficiently washed and dried in a drier maintained at about 110 ° C. for 48 hours to obtain titanium dioxide hydroxide.

이렇게 얻어진 이산화티탄 수산화물의 결정구조를 확인하기 위하여 X선 회절분석장치(Philips. Co. Pw1720, Holland)로 CuKα, Ni 필터, 30kV, 20mA의 조건으로 측정하여 그 결과를 도1에 나타내었다.In order to confirm the crystal structure of the titanium dioxide hydroxide thus obtained, an X-ray diffraction analyzer (Philips. Co. Pw1720, Holland) was measured under conditions of CuKα, a Ni filter, 30 kV, 20 mA, and the results are shown in FIG. 1.

또한 얻어진 이산화티탄 수산화물의 비표면적을 측정하기 위하여 기공률 측정기(Quantachrome co., Autosorb 1, USA)로 200℃에서 1시간동안 전처리하여 통상적인 BET법을 이용하여 측정하고 그 결과를 도2에 나타내었다.In addition, in order to measure the specific surface area of the obtained titanium dioxide hydroxide was pre-treated at 200 ℃ for 1 hour with a porosity measuring instrument (Quantachrome co., Autosorb 1, USA) and measured using a conventional BET method and the results are shown in Figure 2 .

상기 도1 및 도2에서 보는 바와 같이 비교적 비표면적이 작아 광촉매 특성이적은 루틸상은 60℃에서부터 나타나기 시작하였으며, 80℃에서는 완전히 루틸상이 나타남을 알 수 있다. 또한 비표면적은 25℃에서 제조된 이산화티탄 수산화물의 경우 452㎡/g에서 루틸상이 생성되는 80℃에서는 164㎡/g으로 감소하였다. 이것은 아나타제와 같이 작고 개방구조를 가지는 핵은 그 안정성이 반응온도의 증가와 함께 감소하여 입자들이 더욱 규칙적인 루틸 구조를 가지게 됨에 따라 침전물의 비표면적이 감소하기 때문으로 판단된다.As shown in FIG. 1 and FIG. 2, the rutile phase having a relatively small specific surface area and having low photocatalytic properties began to appear at 60 ° C., and the rutile phase appeared completely at 80 ° C. FIG. In addition, the specific surface area decreased from 452 m 2 / g in the case of titanium dioxide hydroxide prepared at 25 ° C. to 164 m 2 / g at 80 ° C. in which the rutile phase was produced. This is because the small surface area such as anatase has an open structure whose stability decreases with increasing reaction temperature, and thus the specific surface area of the precipitate decreases as the particles have a more regular rutile structure.

상기 실시예1에서 확인한 바와 같이 60℃를 초과한 온도에서 침전제를 적하시에는 루틸상이 관찰되는 것을 알 수 있다. 상기한 자료를 토대로 얻어진 이산화티탄 수화물을 열처리에 따른 결정상의 변화 및 비표면적을 확인하기 위하여 하기한 실시예를 실시하였다.As confirmed in Example 1 it can be seen that the rutile phase is observed when dropping the precipitant at a temperature exceeding 60 ℃. Titanium dioxide hydrate obtained on the basis of the above data was carried out in order to confirm the change in the crystal phase and the specific surface area according to the heat treatment.

<실시예 2><Example 2>

상기 실시예1중 40℃에서 침전제를 적하하여 얻은 이산화티탄 수화물을 이용하여 열처리 온도에 구조상의 변화를 관찰하기 200, 300, 400, 500℃에서 각각 1시간동안 열처리하여 FT-IR 분석을 실시하고 그 결과를 4에 나타내었다.In order to observe the structural change in the heat treatment temperature using titanium dioxide hydrate obtained by dropping the precipitant at 40 ℃ in Example 1 by performing a FT-IR analysis by heat treatment at 200, 300, 400, 500 ℃ for 1 hour each The results are shown in 4.

상기 도3에서 보는 바와 같이 3380cm-1부근에서는 H-OH와 Ti-OH 결합에서 OH에 의한 신축진동과 1630cm-1부근에서는 H-O-H와 Ti-OH, 530cm-1부근에서는 Ti-O 결합에 의한 변각진동이 나타남을 알 수 있다. 상기에서 3380cm-1의 넓은 흡수피크와 1630cm-1부근의 흡수피크는 수소결합을 하고 있는 물분자와 결합한 Ti-OH 결합의 OH 신축 진동과 연관된 것으로 열처리 온도가 증가함에 따라 1415cm-1과 1630cm-1부근의 피크와 3380cm-1부근의 피크는 감소함을 알 수 있다. 이것은 열처리 온도가 증가함에 따라 OH기가 제거됨을 의미하며, 400℃ 이상의 온도에서 OH기가 거의 제거됨을 알 수 있다.FIG 3380cm -1 in the vicinity, as shown in 3, HOH in the Ti-OH bonding and stretching vibration 1630cm -1 vicinity by OH HOH and Ti-OH, 530cm -1 near the byeongak by the Ti-O bond It can be seen that vibration appears. As the broad absorption peak and the absorption peak of 1630cm -1 in the vicinity of 3380cm -1 is combines with the water molecules and the hydrogen bonding associated with the OH stretching vibration of the Ti-OH bonding increases the heat treatment temperature 1415cm -1 and 1630cm - the first peak and the peak of 3380cm -1 in the vicinity of the vicinity is found to be reduced. This means that the OH group is removed as the heat treatment temperature increases, and it can be seen that the OH group is almost removed at a temperature of 400 ° C. or higher.

<실시예 3><Example 3>

상기 실시예1중 40℃에서 침전제를 적하하여 얻은 이산화티탄 수화물을 이용하여 열처리 온도에 결정상의 변화를 관찰하기 위하여 400℃, 500℃, 600℃, 700℃ 및 800℃에서 열처리하여 이산화티탄 분말을 얻은 다음 X선 회절분석장치(Philips. Co. Pw1720, Holland)로 CuKα, Ni 필터, 30kV, 20mA의 조건으로 측정하여 그 결과를 도4에 나타내었다.Titanium dioxide powder was heat-treated at 400 ° C., 500 ° C., 600 ° C., 700 ° C. and 800 ° C. in order to observe the change of crystal phase in the heat treatment temperature using the titanium dioxide hydrate obtained by dropping the precipitant at 40 ° C. in Example 1. The obtained X-ray diffractometer (Philips. Co. Pw1720, Holland) was measured under the conditions of CuKα, Ni filter, 30kV, 20mA and the results are shown in FIG.

또한 얻어진 이산화티탄 분말의 비표면적을 측정하기 위하여 기공률 측정기(Quantachrome co., Autosorb 1, USA)로 200℃에서 1시간동안 전처리하여 통상적인 BET법을 이용하여 측정하고 그 결과를 도5에 나타내었다.In addition, in order to measure the specific surface area of the obtained titanium dioxide powder, it was pretreated at 200 ° C. for 1 hour with a porosity measuring instrument (Quantachrome co., Autosorb 1, USA) and measured using a conventional BET method. The results are shown in FIG. 5. .

또, 얻어진 이산화티탄 분말의 결정크기를 관찰하기 위하여 아나타제의 회절선의 반가폭을 규소 표준시료로 보정하여 Scherrer식을 이용하여 측정하고, 그 결과를 도6에 나타내었다.In order to observe the crystal size of the obtained titanium dioxide powder, the half width of the anatase diffraction line was corrected with a silicon standard sample and measured using the Scherrer equation. The results are shown in FIG.

도4에서 보는 바와 같이 각각의 온도에서 1시간 동안 열처리한 경우 아나타제상으로 존재하는 임계온도 영역은 600℃이며, 700℃에서 열처리한 이산화티탄 분말의 경우 루틸상의 회절 피크가 관찰되기 시작하여 800℃에서는 거의 루틸로 전이가 일어나고 있음을 확인할 수 있다.As shown in Fig. 4, when the heat treatment is performed for 1 hour at each temperature, the critical temperature region present in the anatase phase is 600 ° C. In the case of the titanium dioxide powder heat-treated at 700 ° C, the diffraction peak of the rutile phase begins to be observed and 800 ° C. It can be seen that the transition to rutile is almost occurring at.

또한 도5에서 보는 바와 같이 아나타제 결정구조를 갖는 이산화티탄을 100℃ 간격으로 400℃에서 800℃까지 각각 1시간 열처리한 시료의 비표면적은 열처리 온도가 증가함에 따라 비표면적이 감소함을 알 수 있다. 이것은 비교적 불규칙한 아나타제 결정구조에서 규칙적인 루틸구조로 전이됨에 따라 비표면적이 감소한 것임을 알 수 있다.In addition, as shown in FIG. 5, the specific surface area of the sample obtained by heat-treating the titanium dioxide having an anatase crystal structure at 400 ° C. to 800 ° C. at 100 ° C. for 1 hour, respectively, shows that the specific surface area decreases as the heat treatment temperature increases. . It can be seen that the specific surface area decreases as the transition from the relatively irregular anatase crystal structure to the regular rutile structure.

또, 도6에서 보는 바와 같이 열처리 온도에 따른 입자의 크기는 온도가 증가함에 따라 결정이 성장하여 루틸로 전이가 일어나는 700℃ 이상에서는 결정자 크기가 급격히 증가함을 알 수 있다.In addition, as shown in Figure 6, the size of the particles according to the heat treatment temperature can be seen that the crystallite size is rapidly increased at 700 ℃ or more when the crystal grows as the temperature increases and rutile transition occurs.

<실험예 1>Experimental Example 1

본 발명에 의해 제조된 이산화티탄 분말의 광촉매 특성을 알아보기 위하여 상기 실시예3에서 제조한 이산화티탄 분말 1g과 에탄올 0.05m몰이 첨가된 100g의 현택액을 상온에서 교반하면서 30ml/min의 속도로 흘려주었다. 이때 여기에 100W 고압 수은등을 조사하였으며, 4시간 후의 에탄올이 함유된 유기용액을 약 1ml 채취하여 GC로 정량분석을 하여 감소된 에탄올양을 측정하여 그 결과를 표1에 나타내었다.In order to examine the photocatalytic properties of the titanium dioxide powder prepared according to the present invention, 1 g of the titanium dioxide powder prepared in Example 3 and 100 g of a suspension added with 0.05 mmol of ethanol were flowed at a rate of 30 ml / min while stirring at room temperature. gave. At this time, 100W high pressure mercury lamp was investigated, and about 1ml of the ethanol-containing organic solution after 4 hours was collected and quantitatively analyzed by GC, and the result was shown in Table 1 below.

온도(℃)Temperature (℃) 400400 500500 600600 700700 800800 에탄올감소량(%)Ethanol Reduction (%) 4444 51.251.2 6666 68.868.8 4848

상기 표1에서 보는 바와 같이 600℃와 700℃에서 열처리한 이산화티탄의 에탄올 분해율이 각각 66%와 68.8%로 가장 높은 광촉매 활성을 나타내었으며, 루틸상이 증가함으로 인하여 800℃에서 열처리한 분말의 광촉매 활성은 감소함을 알 수 있다.As shown in Table 1, the ethanol decomposition rate of titanium dioxide heat-treated at 600 ° C and 700 ° C showed the highest photocatalytic activity of 66% and 68.8%, respectively, and the photocatalytic activity of the powder heat-treated at 800 ° C due to the increase in the rutile phase It can be seen that decreases.

상기에서 설명한 바와 같이 본 발명은 비교적 낮은 온도에서 침전물의 결정성 제어가 용이할 뿐만 아니라 상온에서의 결정성이 우수함과 동시에 비표면적이 높아 광촉매로 유용하게 사용될 수 있도록 한 침전제 적하법을 이용항 이산화티탄 분말의 제조방법을 제공하는 유용한 발명이다.As described above, the present invention is not only easy to control the crystallinity of the precipitate at a relatively low temperature, but also has excellent crystallinity at room temperature and a high specific surface area. It is a useful invention to provide a method for producing titanium powder.

Claims (3)

사염화티탄(TiCl4)을 염산용액에 적하한 후 증류수를 첨가하여 사염화티탄에 대한 염산의 농도비가 1:2.5몰비 내지 1: 3.5몰비가 되도록한 다음, 여기에 침전제로 중탄산암모늄(NH4HCO3)을 pH6 내지 pH7이 될때까지 적하하면서 교반하여 침전물을 형성시키고, 상기 침전물을 충분히 세척한 후 약 110℃로 유지된 건조기에서 약 48시간 이상 건조한 다음 700℃ 미만으로 열처리함을 특징으로 하는 침전제 적하법을 이용한 이산화티탄 분말의 제조방법.Titanium tetrachloride (TiCl 4 ) was added dropwise to the hydrochloric acid solution, and distilled water was added so that the concentration ratio of hydrochloric acid to titanium tetrachloride was 1: 2.5 to 1: 3.5 molar ratio, and then ammonium bicarbonate (NH 4 HCO 3) was used as a precipitant. ) Dropwise to form a precipitate by dropping until pH6 to pH7, and after washing the precipitate sufficiently, it is dried in a drier maintained at about 110 ° C for at least 48 hours and then heat-treated to below 700 ° C. Method for producing titanium dioxide powder using the method. 제 1항에 있어서, 침전제의 적하시 반응기의 온도는 60℃ 미만에서 적하하는 것을 특징으로 하는 침전제 적하법을 이용한 이산화티탄 분말의 제조방법.The method for producing titanium dioxide powder using the precipitant dropping method according to claim 1, wherein the temperature of the reactor during the dropping of the precipitant is dropped below 60 ° C. 제1항 또는 제2항에 있어서, 열처리 온도가 400℃ 내지 700℃임을 특징으로 하는 침전제 적하법을 이용한 이산화티탄 분말의 제조방법.The method for producing titanium dioxide powder using a precipitant dropping method according to claim 1 or 2, wherein the heat treatment temperature is 400 ° C to 700 ° C.
KR10-2001-0007836A 2001-02-16 2001-02-16 The manufacturing method of titanium oxide powder by dropping precipitant KR100404449B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0007836A KR100404449B1 (en) 2001-02-16 2001-02-16 The manufacturing method of titanium oxide powder by dropping precipitant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0007836A KR100404449B1 (en) 2001-02-16 2001-02-16 The manufacturing method of titanium oxide powder by dropping precipitant

Publications (2)

Publication Number Publication Date
KR20020067314A true KR20020067314A (en) 2002-08-22
KR100404449B1 KR100404449B1 (en) 2003-11-05

Family

ID=27694632

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0007836A KR100404449B1 (en) 2001-02-16 2001-02-16 The manufacturing method of titanium oxide powder by dropping precipitant

Country Status (1)

Country Link
KR (1) KR100404449B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413720B1 (en) * 2001-06-04 2003-12-31 (주)아해 Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
KR100420275B1 (en) * 2001-04-06 2004-03-02 (주)아해 Preparation of TiO2 fine powder from titanium tetrachloride with inorganic acid
KR100424069B1 (en) * 2001-06-04 2004-03-22 (주)아해 Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method
KR100435080B1 (en) * 2001-02-20 2004-06-09 한상목 The manufacturing method of titanium oxide photocatalyst
KR100475551B1 (en) * 2002-10-08 2005-03-10 (주)아해 Preparation of Nanosized brookite-phase Titanium Dioxide Powder from Titanium Tetrachloride and Aqueous Hydrochloric Acid
CN102786086A (en) * 2012-08-07 2012-11-21 石家庄学院 Preparation method for high temperature-resistant anatase micron/nanometer-structured TiO2
CN103523821A (en) * 2013-05-04 2014-01-22 陕西华龙敏感电子元件有限责任公司 Preparation method of titanium dioxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207718A (en) * 1986-03-06 1987-09-12 Taki Chem Co Ltd Sol of crystalline titanium oxide and its preparation
JP3537885B2 (en) * 1994-09-14 2004-06-14 石原産業株式会社 Method for producing anatase-type titanium oxide
KR100224732B1 (en) * 1996-08-07 1999-10-15 김성년 Process for producing a micropowder type crystalline titanium oxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435080B1 (en) * 2001-02-20 2004-06-09 한상목 The manufacturing method of titanium oxide photocatalyst
KR100420275B1 (en) * 2001-04-06 2004-03-02 (주)아해 Preparation of TiO2 fine powder from titanium tetrachloride with inorganic acid
KR100413720B1 (en) * 2001-06-04 2003-12-31 (주)아해 Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
KR100424069B1 (en) * 2001-06-04 2004-03-22 (주)아해 Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method
KR100475551B1 (en) * 2002-10-08 2005-03-10 (주)아해 Preparation of Nanosized brookite-phase Titanium Dioxide Powder from Titanium Tetrachloride and Aqueous Hydrochloric Acid
CN102786086A (en) * 2012-08-07 2012-11-21 石家庄学院 Preparation method for high temperature-resistant anatase micron/nanometer-structured TiO2
CN102786086B (en) * 2012-08-07 2013-11-13 石家庄学院 Preparation method for high temperature-resistant anatase micron/nanometer-structured TiO2
CN103523821A (en) * 2013-05-04 2014-01-22 陕西华龙敏感电子元件有限责任公司 Preparation method of titanium dioxide

Also Published As

Publication number Publication date
KR100404449B1 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
EP3656740B1 (en) Method for producing titanium oxide fine particles
JPH1095617A (en) Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same
AU2010292604A1 (en) Methods of producing titanium dioxide nanoparticles
Pulišová et al. Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions
EP1492729B1 (en) Method for preparing a photocatalyst containing titanium dioxide
KR100404449B1 (en) The manufacturing method of titanium oxide powder by dropping precipitant
CN1197780C (en) Low temperature preparing process for anatase phase nano crystal titanium dioxide of light catalystic activity
KR101764016B1 (en) Method for preparation of pure anatase type TiO2 powders
RU2435733C1 (en) Method of producing photocatalytic nanocomposite containing titanium dioxide
RU2317947C1 (en) Method of preparing photocatalytic titanium dioxide
JP2972881B1 (en) Method for producing titanium dioxide
KR100756199B1 (en) Synthesis method of nanocrystalline anatase titanium oxide powders from titanium oxysulfate
KR100558337B1 (en) A process for preparing an ultrafine particle of substantial brookite-type titanium oxide, using titanium tetrachloride and aqueous nitric acid
KR100523451B1 (en) Production Method of Nano-sized Crystalline Titania Powders
KR101825137B1 (en) Preparing method of titanium oxide derivative
KR100500305B1 (en) Method for preparing nano-size anatase titania powder and sol by glycol process
KR100396085B1 (en) A Titanium Dioxide powder and The method for preparation thereof
KR20020050977A (en) Method of preparing titanium oxide
KR20010025628A (en) Preparation of Titanium oxide Nanocrystalline Powder at Low Temperature
JP5275091B2 (en) Method for producing titanium oxide powder
JP4829771B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide
JP2008273815A (en) Method for producing metal oxide powder, method for producing anatase-type titanium oxide powder, and method for producing sulfur-containing anatase-type titanium oxide powder
KR20000039147A (en) Preparation of titanium dioxide powder for photo-catalysis
KR100385903B1 (en) Method for making titanium dioxide powder
CN107531506B (en) Process for producing titanium oxide derivative

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111010

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee