KR20020049217A - Manufacturing method of ultrapure water - Google Patents

Manufacturing method of ultrapure water Download PDF

Info

Publication number
KR20020049217A
KR20020049217A KR1020000078331A KR20000078331A KR20020049217A KR 20020049217 A KR20020049217 A KR 20020049217A KR 1020000078331 A KR1020000078331 A KR 1020000078331A KR 20000078331 A KR20000078331 A KR 20000078331A KR 20020049217 A KR20020049217 A KR 20020049217A
Authority
KR
South Korea
Prior art keywords
activated carbon
water
toc
acid
treatment
Prior art date
Application number
KR1020000078331A
Other languages
Korean (ko)
Other versions
KR100689693B1 (en
Inventor
최승걸
김선필
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1020000078331A priority Critical patent/KR100689693B1/en
Publication of KR20020049217A publication Critical patent/KR20020049217A/en
Application granted granted Critical
Publication of KR100689693B1 publication Critical patent/KR100689693B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Abstract

PURPOSE: A method of manufacturing ultrapure water by using acid-treated activated carbon in the first step of manufacturing is provided to prevent increasing of TOC which is occurred when pH is increased of disposed water as change of activated carbon. CONSTITUTION: In manufacturing of ultrapure water, acid-treated activated carbon or ordinary activated carbon rinsed with acid water needs at the first step of manufacturing. The pH of acid-treated activated carbon is 3-7. The acid water that rinses activated carbon is made by mixing withdrawal water and raw water.

Description

초순수의 제조방법{Manufacturing method of ultrapure water}Manufacturing method of ultrapure water {Manufacturing method of ultrapure water}

본 발명은 초순수의 제조방법에 관한 것으로서, 더욱 상세하게는 원수를 전처리한 후 활성탄과 이온교환수지를 포함하는 1차 순수 제조단계 및 2차 순수 제조단계를 거쳐 초순수를 제조하는 데 있어서 활성탄 최초 교체시에 발생되는 pH 상승으로 인한 총유기성 탄소 농도의 증가를 억제할 수 있는 초순수의 제조방법에 관한 것이다.The present invention relates to a method of producing ultrapure water, and more particularly, to first convert activated carbon in the preparation of ultrapure water through preliminary treatment of raw water and through a first pure water production step and a second pure water production step including activated carbon and ion exchange resin. The present invention relates to a method of producing ultrapure water capable of suppressing an increase in total organic carbon concentration due to a rise in pH generated at the time.

반도체 제조 공장에서 사용되고 있는 초순수(ultrapure water)는 반도체 소자의 미세구조 발달에 따라 그 요구조건이 더욱 더 엄격해지고 있다. 특히 64메가비트-DRAM(Dynamic Random-Access Memory) 이상의 집적도를 갖는 반도체 소자를 제조하는 공장에 있어서 초순수의 총유기성 탄소(Total Organic Cabon, 이하 TOC라 한다) 농도는 반도체 소자의 불량률을 좌우하는 요인이 되므로 엄격히 관리되어야 한다. 초순수에 남아있는 TOC 농도는 원수로부터 유래된 유기질소화합물에 의해 야기되는 것으로 알려져 있다.Ultrapure water, which is used in semiconductor manufacturing plants, is becoming more stringent as the microstructure of semiconductor devices develops. Especially in factories that manufacture semiconductor devices with integrated densities of more than 64 megabit-DRAM (Dynamic Random-Access Memory), the concentration of ultrapure total organic carbon (TOC) is a factor that determines the defective rate of semiconductor devices. This must be strictly controlled. The TOC concentration remaining in ultrapure water is known to be caused by organic nitrogen compounds derived from raw water.

일반적으로 초순수를 제조하는 방법은 전처리 단계, 1차 순수 제조단계 및 2차 순수 제조단계로 구성된다. 이때, 각 단계의 구별은 제조업체마다 약간은 다르나, 통상 전처리 단계는 응고 첨전법, 응고여과법 및 응고 압력 부유법과 같은 물리화학적 방법을 통해 피처리수에 함유된 슬러지를 제거하는 단계를 말한다. 여기서, 피처리수라 함은 통상의 광역상수를 의미하며, 이하에서는 '원수'로 칭한다.In general, the method for producing ultrapure water consists of a pretreatment step, a primary pure water production step, and a secondary pure water production step. At this time, the distinction of each step is slightly different for each manufacturer, but the pretreatment step is a step for removing the sludge contained in the water to be treated by physicochemical methods such as coagulation addition method, coagulation filtration method and coagulation pressure flotation method. Here, the water to be treated means a general wide constant, hereinafter referred to as 'raw water'.

그리고, 1차 순수제조단계는 이온교환수지, 탈가스화 및 적외선 멸균 등의 단계를 포함하며, 이온상 물질, 미립자, 유기물, 용존가스 및 생균 등을 제거하는 단계이다.In addition, the primary pure water production step includes an ion exchange resin, degassing, and infrared sterilization, and removes ionic materials, fine particles, organic matter, dissolved gases, and live bacteria.

2차 순수 제조단계는 자외선 산화, 이온교환수지 및 한외여과막 등을 포함하며, 초순수를 얻는 단계이다.The second pure water production step includes ultraviolet oxidation, ion exchange resin, ultrafiltration membrane, and the like, and is a step of obtaining ultrapure water.

이와같은 초순수 제조방법에서 있어서, 1차 순수 제조단계에서 유기질소화합물 및 탄소화합물 제거효율을 향상시키기 위한 일환으로 활성탄을 이용한 처리단계를 포함한다.In such an ultrapure water production method, a treatment step using activated carbon is included as part of improving the removal efficiency of organic nitrogen compounds and carbon compounds in the primary pure water production step.

활성탄 처리장치는 물속의 유기물질을 제거하는 장치로서, 일반적인 정수에서부터 초순수의 제조에까지 널리 이용되고 있다. 활성탄은 물의 생물학적 처리단계에서 호기성이나 혐기성 미생물을 고정화시키는 담체로서의 역할도 한다.Activated charcoal treatment equipment is a device for removing organic substances in water, and is widely used from general water purification to ultrapure water production. Activated carbon also serves as a carrier for immobilizing aerobic or anaerobic microorganisms in biological treatment of water.

활성탄은 다공성으로 세공의 내부표면적이 매우 크고 흡착특성이 높은 고체이다. 활성탄의 흡착성능을 좌우하는 요인은 비표면적, 세공용적, 세공분포 등이라고 알려져 있다. 활성탄의 흡착특성은 활성탄의 내부표면적, 세공구조, 표면화학 등의 흡착제 특성과 분자의 화학적 성질, 분자크기, 친수성, 극성 등의 피흡착질의 특성에 의해서 결정된다. 뿐만 아니라 액상에서의 용질농도, 온도, pH, 용액의 조성과 같은 물리화학적 조건에 의해서도 결정된다.Activated carbon is porous and has a high internal surface area of pores and is a solid having high adsorption characteristics. Factors that determine the adsorption performance of activated carbon are known as specific surface area, pore volume, pore distribution, and the like. Adsorption characteristics of activated carbon are determined by adsorbent properties such as internal surface area, pore structure and surface chemistry of activated carbon and adsorbents such as chemical properties, molecular size, hydrophilicity and polarity of molecules. It is also determined by physicochemical conditions such as solute concentration in liquid phase, temperature, pH, and composition of the solution.

통용되는 활성탄은 pH가 9 정도의 알칼리성이며, 사용하기 전에 물로 세정하여 활성탄 중의 불순물이나 가스를 제거하는 단계를 거친다.Commonly used activated carbon has an alkaline pH of about 9, and is washed with water to remove impurities or gases in activated carbon before use.

이같은 특성을 갖는 활성탄과 이온교환수지 등을 사용하여 전처리된 물을 1차 처리하고, 역삼투막 등을 이용하여 순수를 2차적으로 처리하여 초순수를 얻으며, 얻어진 초순수는 반도체 제조공정에 투입되어 사용되어진다. 반도체 제조공정에서는 불산 등의 산성물질이 다량 함유되며 유기용매로서 이소프로필알콜이나 아세톤 등을 사용하므로 반도체 제조공정을 거친 후의 유기폐수의 pH는 산성을 띈다. 얻어진 유기폐수 중 70% 정도는 회수수(recovery water)로서 다시 원수(광역상수)와 함께 초순수 제조에 사용되고, 나머지 30% 정도는 폐수로서 버려진다.Activated carbon and ion exchange resins having such characteristics are treated first, and pretreated water is first treated, followed by second treatment with pure water using reverse osmosis membrane, etc. to obtain ultrapure water, and the obtained ultrapure water is used in a semiconductor manufacturing process. . The semiconductor manufacturing process contains a large amount of acidic materials such as hydrofluoric acid, and isopropyl alcohol or acetone is used as the organic solvent, so the pH of the organic wastewater after the semiconductor manufacturing process is acidic. About 70% of the obtained organic wastewater is used for ultrapure water production together with raw water (a wide area constant) as recovery water, and the remaining 30% is discarded as wastewater.

이와같은 일련의 과정은 도 1에 나타낸 바와 같다.This series of procedures is shown in FIG.

회수수로서 사용되기 위해서는 TOC가 600ppb 이하일 것이 요구되며, 그 이상이 되면 회수수로서는 부적합하다.In order to be used as recovered water, the TOC is required to be 600 ppb or less.

회수수의 pH는 상기한 바와 같이 산성, 구체적으로 3∼4 정도이다. 따라서, 회수수 70% 정도와 원수(광역상수)를 초순수 제조에 적용하게 되므로 전반적인 분위기는 산성이다.The pH of the recovered water is acidic, specifically about 3 to 4, as described above. Therefore, about 70% of the recovered water and raw water (wide area constant) are applied to the production of ultrapure water, so the overall atmosphere is acidic.

그런데, 활성탄의 처리능력이 다해서 교체하는 경우 교체 이전에 비하여 비정상적으로 활성탄 처리수나 최종 유기폐수의 TOC가 1ppb 이상 증가하는 것을 확인하게 되었다.By the way, when the replacement capacity of activated carbon is replaced, it was confirmed that the TOC of the activated carbon treated water or the final organic wastewater increased by more than 1 ppb compared to before the replacement.

이와같은 TOC의 비정상적 증가는 후속적으로 회수수로서 부적합한 비율을 높이게 되고, 따라서 원수의 사용율을 늘릴 수 밖에 없는 문제를 야기시킨다. 원수는 pH가 7 정도로 중성이므로 그 사용량을 증가시키면 계속적으로 pH는 종전의 것에 비하여 상승하고, 이는 계속적인 TOC의 증가를 초래한다. TOC의 증가는 반도체 제조공정에서의 불량율을 높이는 역할을 하므로 아주 중요한 문제가 아닐 수 없다.This abnormal increase in TOC subsequently raises the unsuitable ratio as the return water, thus causing a problem that can only increase the utilization rate of the raw water. Raw water has a neutral pH of about 7, so increasing the amount of its use continuously increases the pH compared to the previous one, which leads to a continuous increase of TOC. Increasing TOC plays an important role in increasing the defect rate in the semiconductor manufacturing process.

이에 본 발명자들은 상기와 같은 문제점이 계속적인 초순수 제조과정에서는 발생되지 않고 활성탄을 교체한 시점에서부터 발생된다는 점을 확인하고, 이는 결국 교체 활성탄의 pH가 높음으로 인해 발생된다는 것으로 판단하여, 활성탄 처리에 있어서 산처리된 활성탄을 사용하거나 일반 알칼리성의 활성탄을 사용시에 회수수와 원수를 계속적으로 공급하여 린스한 후 사용한 결과, 활성탄 교체에 따른 산도의 변화를 억제하여 결국 회수수의 TOC 증가를 억제 또는 TOC를 낮출 수 있음을 알게되어 본 발명을 완성하게 되었다.Therefore, the present inventors confirm that the above problems are not generated in the continuous ultrapure water production process but occur from the time of replacing activated carbon, which is determined to be caused by the high pH of the replacement activated carbon. As a result of using acid treated activated carbon or general alkaline activated carbon, rinsed by continuously supplying recovered water and raw water and rinsing it, it is possible to suppress the change of acidity due to the replacement of activated carbon, thereby suppressing the increase of TOC of recovered water or TOC It was found that can be lowered to complete the present invention.

따라서, 본 발명의 목적은 산처리된 활성탄을 사용함으로써 활성탄 교체에 따른 처리수의 산도 증가로 인한 TOC 증가를 억제할 수 있는 초순수의 제조방법을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide an ultrapure water production method capable of suppressing an increase in TOC due to the increase in acidity of treated water due to the use of acid-treated activated carbon.

이와같은 목적을 달성하기 위한 본 발명의 초순수 제조방법은 원수를 전처리한 후 활성탄 처리 및 이온교환수지 처리를 포함하는 1차 순수제조 단계를 거친 다음, 2차 순수제조단계를 거쳐 초순수를 제조하는 방법으로, 1차 순수제조단계에 있어서 활성탄 처리는 산처리된 활성탄을 사용하여 수행되는 것임을 그 특징으로 한다.Ultra-pure water production method of the present invention for achieving the above object is a method for producing ultra-pure water after the pre-treatment of the raw water, after the first pure water production step including activated carbon treatment and ion exchange resin treatment, and then through a second pure water production step In the primary pure water production step, the activated carbon treatment is characterized in that it is performed using acid treated activated carbon.

도 1은 일반적인 초순수 제조공정을 개략적으로 나타낸 것이며,Figure 1 schematically shows a general ultrapure water manufacturing process,

도 2는 활성탄을 산성수로 세정함에 따른 pH의 변화를 보여주는 그래프이고,2 is a graph showing a change in pH as the activated carbon is washed with acidic water,

도 3은 활성탄 처리에 따른 TOC 변화량을 측정하기 위한 장치의 개략도이며,3 is a schematic diagram of a device for measuring the amount of change in TOC according to activated carbon treatment,

도 4는 활성탄 처리에 따른 TOC 변화량을 측정한 결과 그래프이고,4 is a graph showing the result of measuring the change in TOC according to activated carbon treatment,

도 5는 활성탄 처리 및 이온교환수지 처리에 따른 TOC 변화량을 측정하기 위한 장치의 개략도이며,5 is a schematic diagram of a device for measuring the amount of change in TOC according to activated carbon treatment and ion exchange resin treatment,

도 6은 활성탄 처리 및 이온교환수지 처리에 따른 TOC 변화량을 측정한 결과 그래프이다.6 is a graph showing the result of measuring the change in TOC according to the activated carbon treatment and the ion exchange resin treatment.

이와같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명에 따른 초순수의 제조과정은 도 1에 나타낸 공지의 방법에 따른다. 다만, 활성탄으로서 산처리된 것을 사용한다.The production process of ultrapure water according to the present invention follows the known method shown in FIG. However, acid treated as activated carbon is used.

활성탄의 산처리는 특별히 한정되는 것은 아닌 바, 일례로 염산이나 황산 등의 용액에 활성탄을 침지시키는 방법으로 수행된다. 산처리 후 얻어진 활성탄의 pH는 3∼7인 것이 적합하다.The acid treatment of the activated carbon is not particularly limited, and for example, the activated carbon is immersed in a solution such as hydrochloric acid or sulfuric acid. The pH of the activated carbon obtained after the acid treatment is preferably 3-7.

만일, 산처리된 활성탄의 pH가 7이상이 되면 알칼리성으로서 일반적인 pH 9이상의 활성탄을 사용한 것과 같이 활성탄 처리수나 최종적으로 반도체 제조공정을 거친 후의 유기폐수의 TOC가 증가한다.If the pH of the acid treated activated carbon is 7 or more, the TOC of the activated carbon treated water or organic wastewater after the semiconductor manufacturing process is increased as in the case of using alkaline activated carbon having a pH of 9 or higher.

활성탄 처리를 거친 후는 통상 탈가스화 단계 및 이온교환수지를 통한 처리를 거치게 되는 바, 활성탄의 pH가 높아지게 되면 탈가스화 단계에서 탄산의 제거효율이 떨어지고 탄산음이온이 과량으로 존재하게 되며 이는 이후로 수행되는 음이온계 이온교환수지를 이용한 이온의 제거에서 과량의 탄산음이온을 제거하지 못해 종국에 가서는 TOC의 증가를 가져오는 것으로 추측된다.After the activated carbon treatment, it is usually subjected to a degassing step and an ion exchange resin. If the pH of the activated carbon is increased, the removal efficiency of carbonic acid decreases and anionic carbonate is present in the degassing step. In the removal of ions using the anion-based ion exchange resin, the excess carbonic anion could not be removed, leading to an increase in TOC.

한편, 본 발명에서는 산처리된 활성탄을 사용하는 것을 대체하여 차선책으로 일반적인 알칼리성의 활성탄을 사용할 수도 있다. 일반적으로 상용화된 KS 공업규격의 활성탄은 pH 9 이상이며, 이를 사용하기 전에 물을 사용하여 세정하여 활성탄 중의 불순물이나 가스를 제거하는 단계를 거친다. 그러나, 물로 세정한 후에도 일반 활성탄은 알칼리성으로서 활성탄 처리수나 유기폐수의 TOC를 증가시키는 요인이 되므로, 본 발명에서는 초순수 제조에 사용되는 전처리된 회수수와 원수의 혼합액으로 24시간 이내로 세정하여 사용한다. 반도체 제조공정에 사용되고 재생된 회수수의 pH는 3∼4이며 원수의 pH는 7 정도이므로 계속적으로 세정하면 활성탄은 산성을 띠게 된다. 따라서, 산처리된 활성탄을 사용한 것과 동등이상의 TOC 제거효율을 나타낼 수 있다.Meanwhile, in the present invention, it is also possible to use general alkaline activated carbon as a second alternative to using acid treated activated carbon. Generally, commercialized activated carbon of KS industrial standard has a pH of 9 or more, and before using it, it is washed with water to remove impurities or gases in activated carbon. However, even after washing with water, general activated carbon is alkaline, which increases the TOC of activated carbon treated water or organic wastewater. Thus, in the present invention, the activated carbon is washed within 24 hours with a mixed solution of pretreated recovered water and raw water used for ultrapure water production. The pH of the recovered water used and recycled in the semiconductor manufacturing process is 3 to 4 and the pH of the raw water is about 7 so that the activated carbon becomes acidic if continuously washed. Therefore, it is possible to exhibit the TOC removal efficiency equal to or higher than that of using acid treated activated carbon.

회수수와 원수의 혼합액으로 세정하는 경우, 원수의 혼합비율에 따라서 pH는 조절될 수 있을 것이다.When washing with a mixture of recovered water and raw water, the pH may be adjusted according to the mixing ratio of raw water.

한편, 본 발명에서 활성탄 처리에 사용할 수 있는 활성탄은 특별히 한정되는것은 아니나, 야자계나 석탄계의 활성탄이 바람직하다.On the other hand, activated carbon that can be used for activated carbon treatment in the present invention is not particularly limited, but activated carbon of palm or coal type is preferable.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.

실시예 1: 일반 활성탄을 산성수로 세정함에 따른 pH 변화 Example 1 : pH change by washing general activated carbon with acidic water

초순수 제조용 활성탄(야자계)이 충진된 장치를 반도체 제조공정에 사용된 이후 재생된 pH 3∼4의 회수수 70부피%와 원수(pH 7) 30부피%의 혼합액으로 계속적으로 세정하여 주었다. 세정시간의 경과에 따른 활성탄의 pH를 도 2에 그래프로 나타내었다.The device filled with activated carbon (palm-based) for ultrapure water was continuously washed with a mixture of 70 vol% of recovered water and 30 vol% of raw water (pH 7) after being used in a semiconductor manufacturing process. The pH of activated carbon with time of washing is shown graphically in FIG. 2.

도 2의 결과에 따르면 상용 활성탄의 초기 pH는 9이상이나, 산성수로 세정후 점차적으로 pH가 낮아져 21시간 이후에는 pH가 7 정도 됨을 알 수 있다.According to the results of FIG. 2, the initial pH of the commercial activated carbon is 9 or more, but the pH is gradually lowered after washing with acidic water so that the pH is about 7 after 21 hours.

실시예 2∼3 및 비교예 1: 활성탄 처리 후의 TOC 농도 변화 Examples 2-3 and Comparative Example 1 : TOC Concentration Change after Activated Carbon Treatment

도 3에는 활성탄이 충진된 시험관을 활용하여 TOC 농도를 측정하기 위한 장치를 개략적으로 나타내었다.3 schematically shows an apparatus for measuring TOC concentration by using a test tube filled with activated carbon.

본 실험에서 활성탄이 충진된 시험관으로 유입되는 수질은 TOC 508ppb인 것을 SV(Space Velocity) 20 되도록 흘려보냈으며, TOC 분석기로는 Sievers-820을 사용하였다.In this experiment, the water quality flowing into the activated carbon filled test tube was TOC 508ppb, and flowed to SV (Space Velocity) 20. Sievers-820 was used as a TOC analyzer.

비교예 1은 상용화된 활성탄을 불순물과 가스 제거를 위해 물에 침지시킨 후의 사용한 결과이고,Comparative Example 1 is a result of using commercially available activated carbon after immersing in water to remove impurities and gases,

실시예 2는 상용화된 활성탄을 5% 염산 100㎖에 침지시켜 산처리한 후 사용한 결과이며,Example 2 is a result of immersion in commercialized activated carbon in 100 ml of 5% hydrochloric acid and acid treatment,

실시예 3은 상용화된 활성탄을 반도체 제조공정에서 사용된 초순수를 재생한 회수수 70부피%와 원수 30부피%의 혼합액으로 24시간 동안 세정한 후 사용한 결과이다.Example 3 is a result of using the commercially available activated carbon after washing for 24 hours with a mixed solution of 70% by volume of recovered water and 30% by volume of raw water from which ultrapure water used in a semiconductor manufacturing process is regenerated.

다시말해, 비교예 1은 종전과 같이 활성탄을 상용의 알칼리성 활성탄으로 교체한 후 발생되는 TOC 증가를 확인하기 위한 예이고, 실시예 2의 경우는 산처리된 활성탄을 사용하여 TOC 증가억제를 확인하기 위한 예이며, 실시예 3의 경우는 산성수로 세정한 활성탄을 사용하여 TOC 증가억제를 확인하기 위한 예이다.In other words, Comparative Example 1 is an example for confirming the increase in TOC generated after replacing activated carbon with commercially available alkaline activated carbon as in the past, and in Example 2 to confirm the inhibition of TOC increase using acid treated activated carbon. For example, Example 3 is an example for confirming the inhibition of TOC increase by using activated carbon washed with acidic water.

각각의 활성탄이 충진된 시험관을 거친 후 처리수의 TOC를 TOC 계측기를 통해 측정한 결과를 도 4에 나타내었다.The result of measuring the TOC of the treated water after passing through the test tube filled with each activated carbon through a TOC meter is shown in FIG. 4.

도 4의 결과로부터, 비교예 1의 경우 최초의 활성탄 처리수의 TOC 농도가 200정도인 반면, 실시예 2나 실시예 3의 경우는 각각 160 내지는 135ppb 정도로 TOC가 낮아짐을 알 수 있다. 그리고, 시간이 경과함에 따라서도 비교예 1의 것에 비하여 실시예 2∼3의 경우에 활성탄 처리수의 TOC 농도가 월등히 낮아짐을 알 수 있다.From the results of FIG. 4, in the case of Comparative Example 1, the TOC concentration of the first activated carbon treated water was about 200, whereas in Examples 2 and 3, the TOC was lowered by about 160 to 135 ppb, respectively. And as time passes, it turns out that the TOC density | concentration of the activated carbon treated water is much lower compared with the case of the comparative example 1 in Examples 2-3.

이로써 활성탄을 종전과 같이 상용화된 pH 9 이상의 것으로 교체하였을 때 보다, 산처리된 활성탄을 사용하거나 일반 활성탄을 산성수로서 린스한 후 사용하는 것이 TOC 제거효율이 높음을 알 수 있다.Thus, it can be seen that the use of acid treated activated carbon or general activated carbon after rinsing with acidic water is higher than that when the activated carbon is replaced with a commercially available pH 9 or higher.

실시예 4 및 비교예 2∼3: 활성탄 처리 및 이온교환수지 처리 후의 TOC 농도변화 Example 4 and Comparative Examples 2-3 : Changes in TOC Concentrations after Activated Carbon Treatment and Ion Exchange Resin Treatment

본 실험은 활성탄 처리 뿐만 아니라 통상 1차 순수 처리단계에서 사용되는이온교환수지 처리를 병용한 후의 TOC 농도변화를 확인하기 위한 실험이다.This experiment is to confirm the change of TOC concentration after using not only activated carbon treatment but also ion exchange resin treatment which is usually used in the first pure water treatment step.

실시예 4는 상기 실시예 3에서와 같이 산처리된 활성탄을 충진하고, 이온교환수지로서 약음이온계/강음이온계 이온교환수지를 충진시킨 시험관을 거친 처리수의 TOC 농도를 계측한 예이다.Example 4 is an example of measuring the TOC concentration of the treated water, which was filled with acid treated activated carbon as in Example 3, and filled with weak anionic / strong anionic ion exchange resin as an ion exchange resin.

비교예 2는 상기 비교예 1에서와 같이 통상의 활성탄을 물로서만 세정한 후 활성탄을 충진하고, 이온교환수지로서 강양이온계 수지와 약음이온계/강음이온계 이온교환수지를 병용하여 수행된 처리수의 TOC 농도를 계측한 예이며,Comparative Example 2 was performed by washing ordinary activated carbon only with water as in Comparative Example 1 and then filling activated carbon, and using a strong cationic resin and a weak anionic / strong anionic ion exchange resin together as an ion exchange resin. It is an example that measured the TOC concentration of the treated water,

비교예 3은 상기 비교예 2에서와 같은 활성탄을 충진하고, 이온교환수지로서 복상식(Mixed bed) 이온교환수지를 사용하여 수행된 처리수의 TOC 농도를 계측한 예이다.Comparative Example 3 is an example in which the TOC concentration of the treated water filled with activated carbon as in Comparative Example 2 and performed using a mixed bed ion exchange resin as the ion exchange resin.

본 실험에서 사용된 처리장치는 도 5에 나타낸 바와 같으며, 활성탄 충진 시험관에 유입되는 수질은 TOC 700ppb인 것을, SV(Space Velocity) 30 되도록 유입시켰으며, TOC 분석기로는 Sievers-820을 사용하였다.The treatment apparatus used in this experiment was as shown in FIG. 5, and the quality of water introduced into the activated carbon filled test tube was TOC 700ppb, SV (Space Velocity) 30 was introduced, and Sievers-820 was used as a TOC analyzer. .

비교예 2∼3 및 실시예 4에 따라 처리된 처리수의 TOC를 측정한 결과를 도 6에 나타내었다.The result of having measured the TOC of the treated water processed by Comparative Examples 2-3 and Example 4 is shown in FIG.

도 6의 결과로부터, 본 발명에 따라 산처리된 활성탄을 사용하였을 때 처리수의 pH가 산성임에도 불구하고 이온교환수지를 거친 후 처리수의 TOC 농도는 낮음을 알 수 있다. 이와같은 사실은 산처리된 활성탄을 사용하였을 때 후속적으로 진행되는 이온교환수지 등의 처리에 각별한 영향을 주지 않음을 확인할 수 있는 것으로, 이를 보다 명확히 확인하기 위해 이온교환수지만 충진된 시험관에 산성수(pH3.3)를 흘려보내 주었을 때 유입수의 TOC 농도가 737ppb였으나 처리수의 TOC 농도는 243ppb(제거율 67%)이었다. 반면에 유입수의 pH가 11.0일 경우에는 TOC 제거율이 64.3% 정도로 낮아졌다.From the results of FIG. 6, it can be seen that when the activated carbon treated with acid according to the present invention is used, despite the acidity of the treated water, the TOC concentration of the treated water after the ion exchange resin is low. This fact can be confirmed that the use of acid treated activated carbon does not significantly affect the subsequent processing of the ion exchange resin, etc., in order to more clearly confirm that the acid in the test tube filled with only ion exchange resin The flow rate of water (pH3.3) was 737 ppb in the influent, but the TOC concentration in the treated water was 243 ppb (67% removal). On the other hand, when the pH of the influent was 11.0, the TOC removal rate was lowered to about 64.3%.

결국, 산처리된 활성탄의 사용은 후속적인 이온교환수지 처리를 통한 TOC 제거효율을 높여주는 역할을 했음을 알 수 있다.As a result, it can be seen that the use of acid treated activated carbon has a role of increasing the TOC removal efficiency through subsequent ion exchange resin treatment.

반면, 도 6으로부터 이온교환수지를 달리하더라도 근본적으로 알칼리성의 활성탄을 적용한 경우(비교예 2, 3)에는 TOC 제거효율이 떨어짐을 알 수 있다. 그런데, 복상식의 이온교환수지를 적용한 경우에는 그 효율이 그렇지 못한 경우에 비해서는 향상됨을 알 수 있었다.On the other hand, even if the ion exchange resin is different from Figure 6, it can be seen that the alkaline TOC removal efficiency is lowered when alkaline activated carbon is applied (Comparative Examples 2 and 3). By the way, when the double-phase ion exchange resin is applied, the efficiency is improved compared to the case where it is not.

결과적으로, 본 발명에서와 같이 산처리된 활성탄을 사용하는 경우에는 활성탄을 거친 처리수의 TOC 농도가 낮아질 뿐만 아니라, 후속적으로 수행되는 이온교환수지를 통한 처리에서도 우수한 제거효율을 나타냄을 알 수 있다.As a result, in the case of using the acid-treated activated carbon as in the present invention, not only does the TOC concentration of the treated water passed through the activated carbon be lowered, but also shows excellent removal efficiency even in the subsequent treatment through the ion exchange resin. have.

이상에서 상세히 설명한 바와 같이, 본 발명에서와 같이 원수를 전처리한 후 활성탄 처리 및 이온교환수지 처리 등을 포함하는 1차 순수 제조단계에서 활성탄으로 산처리된 활성탄을 사용하는 경우 활성탄을 교체함에 따라 발생되는 처리수 및 유기폐수의 TOC 증가를 효과적으로 억제하여 회수수의 사용비율을 증가시킴은 물론 궁극적으로 반도체 제품의 불량율을 낮출 수 있는 효과를 얻을 수 있다.As described in detail above, in the case of using activated carbon acid treated with activated carbon in the primary pure water manufacturing step including pretreatment of raw water and activated carbon treatment and ion exchange resin treatment as in the present invention, the activated carbon is generated by replacing activated carbon. By effectively suppressing the increase in TOC of the treated water and organic wastewater, it is possible to increase the use rate of the recovered water and ultimately lower the defective rate of semiconductor products.

Claims (4)

원수를 전처리한 후 활성탄 처리 및 이온교환수지 처리를 포함하는 1차 순수제조 단계를 거친 다음, 2차 순수제조단계를 거쳐 초순수를 제조하는 방법에 있어서,In the method of producing ultrapure water after the pre-treatment of the raw water and the first pure water production step including the activated carbon treatment and ion exchange resin treatment, and then the second pure water production step, 상기 1차 순수제조단계에 있어서 활성탄 처리는 산처리된 활성탄을 사용하여 수행되는 것임 특징으로 하는 초순수의 제조방법.Activated carbon treatment in the first pure water production step is a method of producing ultrapure water, characterized in that is carried out using acid treated activated carbon. 제 1 항에 있어서, 산처리된 활성탄은 pH가 3∼7인 것임을 특징으로 하는 초순수의 제조방법.The method of claim 1, wherein the acid-treated activated carbon has a pH of 3 to 7. 제 1 항에 있어서, 산처리된 활성탄을 대신하여 산성수로 린스한 일반 활성탄을 사용하는 것임을 특징으로 하는 초순수의 제조방법.The method of producing ultrapure water according to claim 1, wherein general activated carbon rinsed with acidic water is used instead of acid treated activated carbon. 제 3 항에 있어서, 산성수로 린스한 일반 활성탄은 일반 활성탄을 사용전에 pH 3∼4의 회수수와 원수의 혼합액으로 24시간 이내로 세정하여 얻어진 것임을 특징으로 하는 초순수의 제조방법.4. The method for producing ultrapure water according to claim 3, wherein the general activated carbon rinsed with acidic water is obtained by washing the general activated carbon within 24 hours with a mixed solution of recovered water and raw water having a pH of 3 to 4 before use.
KR1020000078331A 2000-12-19 2000-12-19 Manufacturing method of ultrapure water KR100689693B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000078331A KR100689693B1 (en) 2000-12-19 2000-12-19 Manufacturing method of ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000078331A KR100689693B1 (en) 2000-12-19 2000-12-19 Manufacturing method of ultrapure water

Publications (2)

Publication Number Publication Date
KR20020049217A true KR20020049217A (en) 2002-06-26
KR100689693B1 KR100689693B1 (en) 2007-03-08

Family

ID=27683191

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000078331A KR100689693B1 (en) 2000-12-19 2000-12-19 Manufacturing method of ultrapure water

Country Status (1)

Country Link
KR (1) KR100689693B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021154A3 (en) * 2007-08-08 2009-04-09 Honeywell Int Inc Dehydrochlorination of hydrochlorofluorocarbons using pre-treated activated carbon catalysts
CN111115896A (en) * 2019-12-17 2020-05-08 苏州苏净环保工程有限公司 Method for purifying food pure water

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180348B2 (en) * 1993-02-03 2001-06-25 栗田工業株式会社 Pure water production method
JP3200301B2 (en) * 1994-07-22 2001-08-20 オルガノ株式会社 Method and apparatus for producing pure or ultrapure water
JP3370576B2 (en) * 1997-10-09 2003-01-27 シャープ株式会社 Ultrapure water production equipment
JP2000061453A (en) * 1998-08-25 2000-02-29 Nomura Micro Sci Co Ltd Treatment of water and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021154A3 (en) * 2007-08-08 2009-04-09 Honeywell Int Inc Dehydrochlorination of hydrochlorofluorocarbons using pre-treated activated carbon catalysts
US7884254B2 (en) 2007-08-08 2011-02-08 Honeywell International Inc. Dehydrochlorination of hydrochlorofluorocarbons using pre-treated activated carbon catalysts
US8178466B2 (en) 2007-08-08 2012-05-15 Honeywell International Inc. Dehydrochlorination of hydrochlorofluorocarbons using pre-treated activated carbon catalysts
CN111115896A (en) * 2019-12-17 2020-05-08 苏州苏净环保工程有限公司 Method for purifying food pure water

Also Published As

Publication number Publication date
KR100689693B1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
US6267891B1 (en) High purity water production using ion exchange
KR100295399B1 (en) Ultrapure Water Manufacturing Equipment
US6258278B1 (en) High purity water production
US6858145B2 (en) Method of removing organic impurities from water
Lalezary‐Craig et al. Optimizing the removal of geosmin and 2‐methylisoborneol by powdered activated carbon
KR100361799B1 (en) Method and apparatus for regenerating photoresist developing waste liquid
CN1176032C (en) Producing process and technology for electronic grade water by intergrated film process
KR101692212B1 (en) Process and equipment for the treatment of water containing organic matter
KR101354268B1 (en) Preparation method of granular oxide absorbents and water treatment method using the same
JP2007181833A (en) Method for treating tetraalkylammonium ion-containing solution
KR101279695B1 (en) A process and an apparatus for treating waters containing a biologically treated water
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
KR100689693B1 (en) Manufacturing method of ultrapure water
US20060201882A1 (en) Method and system for treating wastewater containing hydrogen peroxide
JP2004181364A (en) Ultrapure water making method and apparatus therefor
JPH07962A (en) Production of pure water
JP2887284B2 (en) Ultrapure water production method
JP3992996B2 (en) Wastewater treatment method and apparatus
WO2023047732A1 (en) Method for treating raw water for producing purified water
KR101495601B1 (en) Membrane regenerating apparatus
JP2013099731A (en) Method and apparatus for treatment of biological wastewater
JPS6336899A (en) Apparatus for producing pure water
JPH01245893A (en) Method for making ultrapure water
JPH11277059A (en) Production of pure water with reduced oxidative substance and apparatus for producing ultrapure water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100216

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee