KR20020048653A - Diffcult Combustibility Hi-Intensity Epoxy Composition For Insulator - Google Patents

Diffcult Combustibility Hi-Intensity Epoxy Composition For Insulator Download PDF

Info

Publication number
KR20020048653A
KR20020048653A KR1020000077865A KR20000077865A KR20020048653A KR 20020048653 A KR20020048653 A KR 20020048653A KR 1020000077865 A KR1020000077865 A KR 1020000077865A KR 20000077865 A KR20000077865 A KR 20000077865A KR 20020048653 A KR20020048653 A KR 20020048653A
Authority
KR
South Korea
Prior art keywords
epoxy resin
resin composition
thpa
retardant high
high strength
Prior art date
Application number
KR1020000077865A
Other languages
Korean (ko)
Other versions
KR100393410B1 (en
Inventor
최영균
Original Assignee
유 택 상
정도화성 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유 택 상, 정도화성 주식회사 filed Critical 유 택 상
Priority to KR10-2000-0077865A priority Critical patent/KR100393410B1/en
Publication of KR20020048653A publication Critical patent/KR20020048653A/en
Application granted granted Critical
Publication of KR100393410B1 publication Critical patent/KR100393410B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • C08K2003/2282Antimonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/66Substances characterised by their function in the composition
    • C08L2666/84Flame-proofing or flame-retarding additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: Provided are fire retardant high strength epoxy resin compositions which can provide fire retardancy for an insulator while not reducing flexural strength of the insulator. CONSTITUTION: The fire retardant high strength epoxy resin composition include an epoxy resin, dimeric acid modified epoxy resin as a plasticizer, brominated epoxy resin and antimony trioxide as a fire retarding agent, glass fiber, silica, aluminum hydroxide as an inorganic filler, Me-THPA and propylene glycol modified Me-THPA as a curing agent and tertiary amine compound as a curing promoter. The epoxy resin is a compound having at least two epoxy groups in one molecule and bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, epoxy resins obtainable by epoxidation of polycarbonic acid glycidylether, cyclohexane derivatives, liquid mono epoxy or mixtures of two or more thereof.

Description

난연성 고강도 에폭시 수지 조성물{Diffcult Combustibility Hi-Intensity Epoxy Composition For Insulator}Diffcult Combustibility Hi-Intensity Epoxy Composition For Insulator

본 발명은 난연성 고강도 에폭시 수지 조성물에 관 한 것으로, 특히 전기적인 특성 및 기계적인 특성 유지와 동시에 난연성을 갖게 한 고강도 에폭시 수지 조성물에 관한 것이다.The present invention relates to a flame-retardant high-strength epoxy resin composition, and more particularly to a high-strength epoxy resin composition that has a flame retardancy while maintaining electrical and mechanical properties.

종래 에폭시수지 조성물은 자동차, TV 등 전자부품의 고압트랜스 및 애자, CT(Current Transformer), PT(Potential Transformer), 부싱(Bushing)등 전기부품의 전기절연 처리를 목적으로 사용되고 있다. 이러한 용도의 에폭시수지 조성물은 내 크랙성, 가소성, 난연성, 고온시의 체적 저항율, 부분 방전성, 접착성, 내습 특성, 내열 충격성 등이 요구 되고 있다. 특히 애자의 경우에는 제품 특성상 상기 특성 외에 기계적 강도가 매우 중요시 되고 있다.Conventional epoxy resin composition is used for the electrical insulation treatment of electrical components such as high-voltage transformer and insulator, CT (Current Transformer), PT (Potential Transformer), bushing (Bushing) of electronic components such as automobiles, TVs. The epoxy resin composition for such a use requires crack resistance, plasticity, flame retardancy, volume resistivity at high temperature, partial discharge resistance, adhesiveness, moisture resistance, heat shock resistance, and the like. In particular, in the case of insulators, mechanical strength is very important in addition to the above characteristics.

또한 현재 국내에서 사용되고 있는 애자의 경우 난연처리가 되어있지 않아 화재시 재산상,인명상의 피해를 입히고 있어 최근에는 안전성 측면에서 난연성을 지닌 애자의 특성이 절실히 요구되고 있는 실정이다.In addition, insulators currently used in Korea are not flame retardant, causing fire and property damage in the event of fire. In recent years, the characteristics of insulators having flame retardancy are urgently required in terms of safety.

종래 에폭시수지 조성물의 난연화 기술에는 할로겐계·인계·질소계 등의 유기화합물과 삼산화안티몬, 수산화알루미늄 분말, 수산화마그네슘 분말 등의 무기화합물을 사용하여 성형물에 난연성을 부여하는 방법이 있다.Conventional flame retardant techniques for epoxy resin compositions include a method of imparting flame retardancy to molded articles using organic compounds such as halogen-based, phosphorus-based, nitrogen-based, and inorganic compounds such as antimony trioxide, aluminum hydroxide powder, and magnesium hydroxide powder.

그러나 이런 난연제가 첨가된 에폭시수지 조성물은 입자의 형상이나 원료의 특성상 난연성은 부여되는 반면 성형물의 굴곡강도를 현저히 저하시키고, 또 다량 사용시에는 전기적 특성이 저하되는 문제점이 발생하고 있다.However, the epoxy resin composition to which the flame retardant is added, while the flame retardancy is imparted due to the shape of the particles and the characteristics of the raw material, significantly lowers the bending strength of the molded product, and when a large amount of use, the electrical properties are deteriorated.

본 발명의 목적은 상기 결점을 해소 하기 위한 것으로, 난연처리가 되어있지 않은 애자에 난연성을 부여하는 것이며, 난연성 부여에 따른 애자의 굴곡강도가 저하되는 문제점을 해결 하여 기존 애자의 특성은 그대로 유지하면서 난연성을 갖게 한 난연성 고강도 애자용 에폭시 수지 조성물을 제공하는 데 있다.An object of the present invention is to solve the above-mentioned drawbacks, to impart flame retardancy to insulators that are not flame retardant, and to solve the problem that the flexural strength of insulators decreases due to imparting flame retardancy while maintaining the characteristics of existing insulators. It is providing the flame-retardant high strength insulator epoxy resin composition which gave flame retardancy.

상기 목적을 달성하기 위해, 에폭시수지 조성물을 여러 가지로 검토한 결과 난연성을 부여하기 위하여 브롬화 에폭시수지, 삼산화안티몬, 수산화알루미늄을 첨가하였으며, 난연성 부여에 의해 저하된 굴곡강도의 향상을 위해 유리 섬유(Fiber glass),다이머(Dimer)산 변성 에폭시수지를 사용하였다.In order to achieve the above object, as a result of examining various kinds of epoxy resin composition, epoxy bromide resin, antimony trioxide, aluminum hydroxide was added to impart flame retardancy, and glass fiber ( Fiber glass), dimer acid modified epoxy resin was used.

상기 에폭시 성형물에 사용된 원료 및 그 특성에 대하여 상세히 설명 하면, 사용된 에폭시수지는 1분자 중에 2개 이상의 에폭시기를 가진 화합물로서 비스페놀 A형 에폭시수지, 비스페놀F형 에폭시수지, 비스페놀AD형 에폭시수지, 폴리카본산 글리시딜에테르, 사이클로 헥산 유도체의 에폭시화에 의하여 얻을 수 있는 에폭시수지 등을 사용할 수 있으며, 이들은 단독 또는 2개 이상을 혼합해서 사용할 수 있다. 이것 외에 필요에 따라서는 액상의 모노에폭시 등을 사용할 수도 있다.When the raw material used in the epoxy molding and the characteristics thereof are described in detail, the epoxy resin used is a compound having two or more epoxy groups in one molecule, such as bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AD epoxy resin, Epoxy resins obtained by epoxidation of polycarboxylic acid glycidyl ethers and cyclohexane derivatives can be used, and these can be used alone or in combination of two or more thereof. In addition to this, liquid monoepoxy etc. can also be used as needed.

가소성부여제로는 다이머(Dimer)산 변성 에폭시수지를 사용하며, 이것은 글리시딜에테르 타입의 고분자 화합물로 당량이 200∼900g/eq이고, 다이머산의 산가가 100 ∼ 300mg KOH/g인 것으로, 예를들면 YD-171, YD-172(국도화학제품 상품명), 또는 E-871, E-872 (SHELL사 에폭시제품 상품명)을 사용할 수 있다. 다이머산 변성 에폭시수지는 분자량이 크고 분자 사슬이 길기 때문에 성형물의 유연성을 증가시켜 성형시 발생하는 경화수축 및 내부 응력을 현저히 줄여 충격강도, 굴곡강도 및 내열 충격성을 향상시키는 효과를 나타난다. 다이머산 변성 에폭시수지의 배합량은 주제 100 wt%에 대하여 3∼20 wt%를 사용한다. 배합량이 3 wt% 미만이면 가소성이 불충분하고, 반대로 20 wt% 초과하면 전기적인 특성이 현저히 저하되므로 적절한 배합량의 선정이 중요하다.A dimer acid-modified epoxy resin is used as the plasticizer, and it is a glycidyl ether type of high molecular compound having an equivalent weight of 200 to 900 g / eq and an acid value of dimer acid of 100 to 300 mg KOH / g. For example, YD-171, YD-172 (trade name of Kukdo Chemical Co., Ltd.), or E-871, E-872 (trade name of epoxy product of SHELL Corporation) can be used. Since the dimer acid modified epoxy resin has a high molecular weight and a long molecular chain, it increases the flexibility of the molding to significantly reduce the hardening shrinkage and internal stress generated during molding, thereby improving the impact strength, flexural strength and thermal shock resistance. The blending amount of the dimer acid-modified epoxy resin is 3 to 20 wt% based on 100 wt% of the main ingredient. If the blending amount is less than 3 wt%, the plasticity is insufficient. On the contrary, if the blending amount is more than 20 wt%, the electrical properties are significantly lowered. Therefore, it is important to select an appropriate blending amount.

난연제로는 브롬화 에폭시수지에 삼산화안티몬을 혼용하여 사용하여야 한다. 분말 타입의 브롬계 난연제의 경우 예를들면 DBDPE(Decabromodiphenylether)와 같은 유기질 화합물은 브롬함량(약83%이상)이 높기 때문에 난연성 면에서는 가장 우수하나 성형물의 굴곡강도를 저하시키는 단점이 있으므로 에폭시수지 자체에 브롬을 함유한 타입의 난연성 에폭시수지를 사용한다. 브롬화에폭시 수지는 TBBA (Tetrabromobisphenol A)와 ECH(Epichlorohydrin)을 반응시켜 얻어진 당량이 150 ∼ 700g/eq이고, 브롬함량이 약 5∼80 wt%인 것을 사용한다. 브롬화 에폭시수지의 배합량은 주제100 wt%에 대하여 3∼20 wt%를 사용하며, 배합량이 3 wt% 미만이면 난연효과가 없고, 20 wt%를 초과하면 전기적 특성이 저하되므로 적절한 배합량의 선정이 중요하다. 또한 삼산화안티몬은 평균입도가 0.5∼20㎛인 무기질난연제로 단독으로 사용하는 것 보다 브롬계 난연제와 병용시 브롬과의 라디칼 반응에 의하여 난연효과를 상승 시키는 작용을 하므로 브롬계 난연제와 혼용하여 사용한다.삼산화안티몬의 배합량은 주제100 wt%에 대하여 3∼20 wt%를 사용하며, 배합량이 3 wt% 미만이면 난연 효과가 없고, 20 wt% 초과하면 전기적 특성이 저하 되므로 적절한 배합량의 선정이 중요하다.As flame retardant, antimony trioxide should be used mixed with epoxy bromide. In the case of powder-type brominated flame retardants, for example, organic compounds such as DBDPE (Decabromodiphenylether) have the highest bromine content (over 83%), so they are excellent in terms of flame retardancy. Flame retardant epoxy resins containing bromine are used. Epoxy bromide resins having a equivalent weight of 150 to 700 g / eq and a bromine content of about 5 to 80 wt% are obtained by reacting TBBA (Tetrabromobisphenol A) with ECH (Epichlorohydrin). The blending amount of brominated epoxy resin is 3-20 wt% based on the main 100 wt%, and if the blending amount is less than 3 wt%, there is no flame retardant effect. Do. In addition, antimony trioxide is used in combination with bromine-based flame retardant because it acts to increase the flame retardant effect by radical reaction with bromine when used in combination with bromine-based flame retardant rather than inorganic flame retardant with average particle size of 0.5 ~ 20㎛. Antimony trioxide is used in the amount of 3 to 20 wt% based on 100 wt% of the main ingredient. If the amount is less than 3 wt%, the flame retardant effect is not. .

무기질 충진제는 실리카분말, 유리섬유 및 수산화알루미늄 분말을 혼합하여 사용한다. 수산화알루미늄은 평균입도가 1 ∼ 50㎛인 것으로 열 분해시 2Al(OH)3가 Al2O3와 3H2O로 분해되는 탈수 반응에 의하여 난연효과가 나타난다. 브롬계 난연제가 약 300℃에서 열 분해되어 자기 소화성을 지니는 반면, 수산화 알루미늄은 그보다 낮은 약200℃에서 난연효과를 나타내므로 연소시 브롬계 난연제보다 연소 초기의 난연 효과를 나타내기 위하여 사용한다. 수산화알루미늄의 배합량은 주제 100 wt%에 대하여 3∼37 wt%를 사용한다. 배합량이 3wt% 미만이면 난연효과가 없고, 37 wt% 를 초과하면 굴곡강도가 현저히 저하되므로 적절한 배합량의 선정이 중요하다. 상기 수산화 알루미늄은 입자를 실란커플링제 등으로 표면 처리한 타입의 수산화 알루미늄도 사용할 수 있으며, 이들은 단독 또는 혼합해서 사용할수 있다.Inorganic fillers are used by mixing silica powder, glass fiber and aluminum hydroxide powder. Aluminum hydroxide has an average particle size of 1 to 50㎛ and a flame retardant effect is exhibited by a dehydration reaction in which 2Al (OH) 3 is decomposed into Al 2 O 3 and 3H 2 O during thermal decomposition. Bromine-based flame retardants are thermally decomposed at about 300 ° C. to be self-extinguishing, while aluminum hydroxide has a flame retardant effect at about 200 ° C., which is lower than that of bromine-based flame retardants. The compounding quantity of aluminum hydroxide is 3-37 wt% with respect to 100 wt% of main materials. If the blending amount is less than 3wt%, there is no flame retardant effect, and if the blending amount is more than 37wt%, the bending strength is significantly lowered, so it is important to select an appropriate blending amount. The said aluminum hydroxide can also use aluminum hydroxide of the type which surface-treated the particle | grains with a silane coupling agent, etc., These can be used individually or in mixture.

유리섬유는 평균섬유입도가 1∼50㎛인 것으로 입자 형상이 섬유상이고 전기절연성, 내열성, 내습성, 내구성 특히 굴곡강도 특성이 우수하므로 난연성을 부여하기 위하여 첨가한 수산화알루미늄의 굴곡강도 저하 현상을 유리섬유를 사용함으로써 굴곡강도를 보완 향상시키기 위하여 사용한다. 유리섬유의 배합량은 주제 100wt%에 대하여 3∼59 wt%를 사용한다. 배합량이 3 wt% 미만이면 굴곡강도 향상 효과가 없고 59 wt%를 초과하면 조성물의 점도가 증가하여 작업성이 저하되므로 적절한 배합량의 선정이 중요하다.Glass fiber has an average fiber particle size of 1 ~ 50㎛, and it is a fibrous particle, and has excellent electrical insulation, heat resistance, moisture resistance, durability, especially flexural strength characteristics. Therefore, it is possible to reduce the bending strength of aluminum hydroxide added to impart flame retardancy. It is used to supplement and improve flexural strength by using fiber. The blending amount of glass fiber is 3 to 59 wt% based on 100 wt% of the main ingredient. If the blending amount is less than 3 wt%, there is no effect of improving the flexural strength, and if the blending amount is more than 59 wt%, the viscosity of the composition increases and workability is lowered, so the selection of an appropriate blending amount is important.

실리카 분말은 평균 입도가 1∼50㎛인 것으로 입자형상이 침상이고 전기절연성, 내열성, 내습성, 내구성, 내 크랙성 및 굴곡강도 특성이 우수하므로 사용한다. 실리카의 배합량은 주제 100 wt%에 대하여 3∼57 wt%를 사용한다. 배합량이 3 wt% 미만 이면 굴곡강도 효과가 없고 57wt%를 초과하면 조성물의 점도가 증가하여 작업성이 저하되므로 적절한 배합량의 선정이 중요하다. 상기 실리카는 입자를 실란커플링제 등으로 표면 처리한 타입의 실리카도 사용할수 있으며,이들은 단독 또는 혼합해서 사용할 수 있다.Silica powder has an average particle size of 1 to 50㎛ and is used because it has a needle shape and excellent electrical insulation, heat resistance, moisture resistance, durability, crack resistance and flexural strength characteristics. The blending amount of silica is used in the range of 3 to 57 wt% based on the main 100 wt%. If the blending amount is less than 3 wt%, there is no flexural strength effect, and if the blending amount is more than 57 wt%, the viscosity of the composition increases and workability is lowered, so the selection of an appropriate blending amount is important. The silica may also be used a type of silica surface-treated particles, such as a silane coupling agent, these may be used alone or mixed.

경화제로는 Me-THPA(Methyl-tetrahydrophthalic anhydride) 또는 Me-THPA를 프로필렌글리콜(Propyleneglycol)과의 에스테르화 반응에 의하여 변성시킨 제품을 사용 한다. Me-THPA를 프로필렌글리콜로 변성하여 사용하면 성형물의 내 크랙성이 증가하고 성형시 발생하는 경화수축 및 내부 응력이 감소한다. 프로필렌글리콜의 배합 비율은 Me-THPA와 프로필렌글리콜을 2:1의 비율 이하로 사용하며, 배합비율이 2:1을 초과하면 조성물의 점도가 증가하여 작업성이 저하되고, 전기적인 특성도 저하되므로 적절한 배합량의 선정이 중요하다. 상기 Me-THPA 변성시에는 프로필렌 글리콜을 사용하여 변성하나, 이것 외에 EG(Ethylene glycol), DEG(Diethylene glycol), PEG(Polyethylene glycol), PPG(Polypropylene glycol), NPG(Neopentyl glycol)등 다가 알콜을 사용하여 Me-THPA를 변성할 수도 있다. 또한 상기 경화제외에 Me-HHPA(Methyl-hexahydrophthalic anhydride),THPA(Tetrahydrophthalic anhydride),HHPA(Hexahydrophthalic anhydride), MHAC(무수메틸하이믹산), MNA(무수메틸나딕산),DDSA(Dodecenyl sussinic anhydride)등의 산무수물 경화제를 사용 할수 있으며, 이들은 단독 또는 2개 이상을 혼합해서 사용할 수도 있다.As a curing agent, a product obtained by modifying Me-THPA (Methyl-tetrahydrophthalic anhydride) or Me-THPA by esterification with propylene glycol (Propyleneglycol) is used. When Me-THPA is modified with propylene glycol, the crack resistance of moldings is increased and hardening shrinkage and internal stress generated during molding are reduced. The mixing ratio of propylene glycol uses Me-THPA and propylene glycol at a ratio of 2: 1 or less, and when the mixing ratio exceeds 2: 1, the viscosity of the composition increases and workability is lowered, and electrical characteristics are also lowered. It is important to choose the right amount. When Me-THPA is modified, propylene glycol is used to denature, but in addition, polyhydric alcohols such as ethylene glycol (EG), polyethylene glycol (DEG), polyethylene glycol (PEG), polypropylene glycol (PPG) and neopentyl glycol (NPG) are used. May be used to denature Me-THPA. In addition to the hardener, Me-HHPA (Methyl-hexahydrophthalic anhydride), THPA (Tetrahydrophthalic anhydride), HHPA (Hexahydrophthalic anhydride), MHAC (methyl anhydride anhydride), MNA (methyl anhydride anhydride), DDSA (Dodecenyl sussinic anhydride), etc. Acid anhydride hardeners may be used, and these may be used alone or in combination of two or more.

경화 촉진제로는 제3급 아민계인 벤질디메틸아민(Benzyldimethylamine)을 사용하며, 벤질디메틸아민의 배합량은 경화제 20wt%에 대하여 0.05 ~1wt%를 사용한다. 배합량이 0.05wt% 미만이면 경화촉진 효과가 없어 경화속도가 늦어져 작업성이 저하되며, 1wt%를 초과하면 경화속도가 너무 빨라 작업성이 저하하고 경화시 내부응력이 발생하여 굴곡강도가 저하하므로 적절한 배합량의 선정이 중요하다. 이것이외에도 DMP-10(2-(Dimethylaminomethyl)phenol), DMP-30(2,4,6-Tris(Dimethylam inomethyl)phenol), DBU(1,8-Diazabiscyclo(5,4,0)undecan),K-61B(DMP-30의 Tri-2-ethylhexyl산염), Pyrrolidine,Pyridine, Piperidine, Triethanolamine, N,N'-Dimethylpyperazine 등의 제3급 아민계와 이미다졸계 및 그 유도체, Lewis산 및 Bronsted산염,제4급 암모늄염 등을 경화촉진제로 사용할 수 있으며, 이들은 단독 또는 2개 이상을 혼합해서 사용할수도 있다.Benzyldimethylamine, a tertiary amine, is used as a curing accelerator, and the blending amount of benzyldimethylamine is 0.05 to 1 wt% based on 20 wt% of the curing agent. If the blending amount is less than 0.05wt%, there is no hardening effect, so the curing speed is slowed down, and workability is lowered. If it exceeds 1wt%, the curing speed is too fast. It is important to choose the right amount. In addition to this, DMP-10 (2- (Dimethylaminomethyl) phenol), DMP-30 (2,4,6-Tris (Dimethylam inomethyl) phenol), DBU (1,8-Diazabiscyclo (5,4,0) undecan), K Tertiary amines such as -61B (Tri-2-ethylhexyl acid salt of DMP-30), Pyrrolidine, Pyridine, Piperidine, Triethanolamine, N, N'-Dimethylpyperazine, imidazoles and derivatives thereof, Lewis acid and Bronsted acid salt, A quaternary ammonium salt etc. can be used as a hardening accelerator, These can also be used individually or in mixture of 2 or more.

커플링제로는 유기관능기가 에폭시기인 실란커플링제를 사용한다. 실란커플링제의 배합량은 주제 100wt%에 대하여 3wt% 이하를 사용한다. 배합량이 3wt%를 초과하면 더 이상 굴곡강도가 향상되지 않고 실란커플링제가 가수 분해되어 전기적 특성이 저하될 수 있으므로 적절한 배합량의 선정이 중요하다. 이것 외에도 유기 관능기가 Amino, Mercapto, Methacryloxy,Vinyl 타입의 실란커플링제도 사용할수있다. 이밖에 소포제, 안료 등을 성형물의 특성에 영향을 주지 않는 범위 내에서 사용할 수 있다.As a coupling agent, the silane coupling agent whose organic functional group is an epoxy group is used. The compounding quantity of a silane coupling agent uses 3 weight% or less with respect to 100 weight% of main materials. When the blending amount is more than 3wt%, the flexural strength is not improved any more, and the silane coupling agent may be hydrolyzed to degrade the electrical properties, so it is important to select an appropriate blending amount. In addition to these, organic functional groups such as Amino, Mercapto, Methacryloxy, and Vinyl type silane coupling agents can also be used. In addition, an antifoamer, a pigment, etc. can be used within the range which does not affect the characteristic of a molded object.

이하, 본 발명에 따른 난연성 고강도 애자용 에폭시 수지 조성물의 보다 바람직한 실시 예를 상세하게 설명한다. 이하의 각 조성물에 대한 배합예를 표1에 표기하였다. 이하 실시 예에서의「%」는「wt%」를 의미한다.Hereinafter, a more preferable embodiment of the flame retardant high strength insulator epoxy resin composition according to the present invention will be described in detail. Table 1 shows a compounding example for each of the following compositions. In the following examples, "%" means "wt%".

<실시예1>Example 1

에폭시수지10%, 브롬화 에폭시수지 20%, 다이머산 변성 에폭시수지 3%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 3%, 수산화알루미늄 3%, 유리섬유 3%, 실리카 57%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 애자 금형에서 120 ∼ 140℃의 온도 조건에서 10∼20분 동안 성형한 후, 160∼180℃의 온도 조건에서 8시간 동안 경화하여 애자를 성형하였다.10% epoxy resin, 20% brominated epoxy resin, 3% dimer acid modified epoxy resin, silane coupling agent 0.7%, antifoaming agent 0.3%, antimony trioxide 3%, aluminum hydroxide 3%, glass fiber 3%, silica 57%, Me- A mixture of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded in an insulator mold for 10 to 20 minutes at a temperature of 120 to 140 ° C, and then for 8 hours at a temperature of 160 to 180 ° C. Cured to form insulators.

<실시예2>Example 2

에폭시수지 8%, 브롬화 에폭시수지 23%, 다이머산 변성 에폭시수지 3%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 3%, 수산화알루미늄 3%, 유리섬유 10%, 실리카 49%, Me-THPA(Methyl tetrahydrophthalic anhydride)19.8%, 벤질디메 틸아민0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 8%, Brominated epoxy resin 23%, Dimer acid modified epoxy resin 3%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 3%, Aluminum hydroxide 3%, Glass fiber 10%, Silica 49%, Me- The mixture composed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyl dimethylamine was molded under the same conditions as in <Example 1>.

<실시예3>Example 3

에폭시수지 15%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시수지 10%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 36%, Me-THPA(Methyltetrahydrophthalic anhydride) 19.8%, 벤질디메틸 아민 0.2%로 조성된 혼합물을 상기〈실시예1〉과 동일한 조건으로 애자를 성형 하였다.Epoxy resin 15%, Brominated epoxy resin 3%, Dimer acid-modified epoxy resin 10%, Silane coupling agent 0.7%, Defoamer 0.3%, Antimony trioxide 20%, Aluminum hydroxide 5%, Glass fiber 10%, Silica 36%, Me- The mixture composed of 19.8% of methyltetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예4>Example 4

에폭시수지 16%, 브롬화 에폭시수지 2%, 다이머산 변성 에폭시수지 10%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 20%, 수산화알루미늄 10%, 유리섬유 15%, 실리카 26%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기<실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 16%, Brominated epoxy resin 2%, Dimer acid-modified epoxy resin 10%, Silane coupling agent 0.7%, Defoamer 0.3%, Antimony trioxide 20%, Aluminum hydroxide 10%, Glass fiber 15%, Silica 26%, Me- The mixture composed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예5>Example 5

에폭시수지 10%, 브롬화 에폭시수지 15%, 다이머산 변성 에폭시수지 5%, 실란 커플링제0.7%, 소포제0.3%, 삼산화안티몬 5%, 수산화알루미늄 10%, 유리섬유 5%, 실리카 49%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.10% epoxy resin, 15% brominated epoxy resin, 5% dimer acid-modified epoxy resin, silane coupling agent 0.7%, antifoaming agent 0.3%, antimony trioxide 5%, aluminum hydroxide 10%, glass fiber 5%, silica 49%, Me- The mixture formed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예6>Example 6

에폭시수지 11%, 브롬화 에폭시수지 20%, 다이머산 변성 에폭시수지 2%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 3%, 수산화알루미늄 3%, 유리섬유 3%, 실리카 57%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸 아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형 하였다.Epoxy Resin 11%, Brominated Epoxy Resin 20%, Dimer Acid Modified Epoxy Resin 2%, Silane Coupling Agent 0.7%, Antifoaming Agent 0.3%, Antimony Trioxide 3%, Aluminum Hydroxide 3%, Glass Fiber 3%, Silica 57%, Me- A mixture of 19.8% methyl tetrahydrophthalic anhydride (THPA) and 0.2% benzyldimethyl amine was formed under the same conditions as in <Example 1>.

<실시예7>Example 7

에폭시수지 10%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시수지 20%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 10%, 수산화알루미늄 20%, 유리섬유 15%,실리카 21%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.10% epoxy resin, 3% brominated epoxy resin, 20% dimer acid-modified epoxy resin, 0.7% silane coupling agent, 0.7% antifoaming agent, 0.3% antimony trioxide, 10% aluminum hydroxide, 15% glass fiber, 21% silica, Me- The mixture formed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예8>Example 8

에폭시수지 7%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시수지 23%, 실란 커플링제0.7%, 소포제0.3%, 삼산화안티몬 10%, 수산화알루미늄 20%, 유리섬유 12%, 실리카 24%, Me-THPA(Methyltetrahydrophthalic anhydride)19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 7%, Brominated epoxy resin 3%, Dimer acid modified epoxy resin 23%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 10%, Aluminum hydroxide 20%, Glass fiber 12%, Silica 24%, Me- The mixture composed of 19.8% of methyltetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예9>Example 9

에폭시수지 13%, 브롬화 에폭시수지 5%, 다이머산 변성 에폭시수지 12%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 7%, 수산화알루미늄 30%, 유리섬유 23%, 실리카 9%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형 하였다.Epoxy resin 13%, Brominated epoxy resin 5%, Dimer acid modified epoxy resin 12%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 7%, Aluminum hydroxide 30%, Glass fiber 23%, Silica 9%, Me- The mixture composed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예10>Example 10

에폭시수지 10%, 브롬화 에폭시수지 20%, 다이머산 변성 에폭시수지 3%, 실란 커플링제0.7%, 소포제0.3%, 삼산화안티몬 2%, 수산화알루미늄 8%, 유리섬유 3%, 실리카 53%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸 아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형 하였다.10% epoxy resin, 20% brominated epoxy resin, 3% dimer acid modified epoxy resin, silane coupling agent 0.7%, antifoaming agent 0.3%, antimony trioxide 2%, aluminum hydroxide 8%, glass fiber 3%, silica 53%, Me- A mixture of 19.8% methyl tetrahydrophthalic anhydride (THPA) and 0.2% benzyldimethyl amine was formed under the same conditions as in <Example 1>.

<실시예11>Example 11

에폭시수지 15%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시수지 10%, 실란 커플링제0.7%, 소포제0.3%, 삼산화안티몬 25%, 수산화알루미늄 3%, 유리섬유 10%, 실리카 33%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸 아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형 하였다.15% epoxy resin, 3% brominated epoxy resin, 10% dimer acid-modified epoxy resin, silane coupling agent 0.7%, antifoaming agent 0.3%, antimony trioxide 25%, aluminum hydroxide 3%, glass fiber 10%, silica 33%, Me- A mixture of 19.8% methyl tetrahydrophthalic anhydride (THPA) and 0.2% benzyldimethyl amine was formed under the same conditions as in <Example 1>.

<실시예12>Example 12

에폭시수지 10%, 브롬화 에폭시수지 5%, 다이머산 변성 에폭시수지 13%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 3%, 수산화알루미늄 37%, 유리섬유 28%, 실리카 3%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 10%, Brominated epoxy resin 5%, Dimer acid-modified epoxy resin 13%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 3%, Aluminum hydroxide 37%, Glass fiber 28%, Silica 3%, Me- The mixture formed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예13>Example 13

에폭시수지10%, 브롬화 에폭시수지 20%, 다이머산 변성 에폭시수지 3%, 실란 커플링제0.7%, 소포제 0.3%, 삼산화안티몬 5%, 수산화알루미늄 2%, 유리섬유 3%,실리카 56%, Me-THPA(Methyltetrahydrophthalic anhydride) 19.8%, 벤질디메틸 아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형 하였다.10% epoxy resin, 20% brominated epoxy resin, 3% dimer acid-modified epoxy resin, silane coupling agent 0.7%, antifoaming agent 0.3%, antimony trioxide 5%, aluminum hydroxide 2%, glass fiber 3%, silica 56%, Me- A mixture of 19.8% Methyltetrahydrophthalic anhydride (THPA) and 0.2% benzyldimethyl amine was formed under the same conditions as in <Example 1>.

<실시예14>Example 14

에폭시수지 10%, 브롬화 에폭시수지 5%, 다이머산 변성 에폭시수지 13%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 3%, 수산화알루미늄 42%, 유리섬유 23%, 실리카 3%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸 아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형 하였다.10% epoxy resin, 5% epoxy brominated resin, 13% dimer acid modified epoxy resin, 0.7% silane coupling agent, 0.7% antifoaming agent, 0.3% antimony trioxide, 3% aluminum hydroxide, 23% glass fiber, 3% silica, Me- A mixture of 19.8% methyl tetrahydrophthalic anhydride (THPA) and 0.2% benzyldimethyl amine was formed under the same conditions as in <Example 1>.

<실시예15>Example 15

에폭시수지13%, 브롬화 에폭시수지 15%, 다이머산 변성 에폭시수지 3%, 실란커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 3%, 수산화알루미늄 3%, 유리섬유 59%, 실리카 3%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.13% epoxy resin, 15% brominated epoxy resin, 3% dimer acid-modified epoxy resin, 0.7% silane coupling agent, 0.7% antifoaming agent, 0.3% antimony trioxide, 3% aluminum hydroxide, 59% glass fiber, 3% silica, Me- The mixture formed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예16>Example 16

에폭시수지 10%, 브롬화 에폭시수지 20%, 다이머산 변성 에폭시수지 3%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 4%, 수산화알루미늄 3%, 유리섬유 2%, 실리카 57%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.10% epoxy resin, 20% brominated epoxy resin, 3% dimer acid-modified epoxy resin, silane coupling agent 0.7%, antifoaming agent 0.3%, antimony trioxide 4%, aluminum hydroxide 3%, glass fiber 2%, silica 57%, Me- The mixture formed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예17>Example 17

에폭시수지 13%, 브롬화 에폭시수지 13%, 다이머산 변성 에폭시수지 5%, 실란 커플링제 0.7%, 소포제0.3%, 삼산화안티몬3%, 수산화알루미늄5%, 유리섬유 47%, 실리카 13%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.13% epoxy resin, 13% brominated epoxy resin, 5% dimer acid-modified epoxy resin, silane coupling agent 0.7%, antifoaming agent 0.3%, antimony trioxide 3%, aluminum hydroxide 5%, glass fiber 47%, silica 13%, Me- The mixture composed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예18>Example 18

에폭시수지 12%, 브롬화 에폭시수지 13%, 다이머산 변성 에폭시수지 3%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 3%, 수산화알루미늄 3%, 유리섬유 62%, 실리카3%, Me-THPA(Methyl tetrahydrophthalic anhydride)19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.12% epoxy resin, 13% brominated epoxy resin, 3% dimer acid-modified epoxy resin, 0.7% silane coupling agent, 0.7% antifoaming agent, 0.3% antimony trioxide, 3% aluminum hydroxide, 62% glass fiber, 3% silica, Me- The mixture composed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예19>Example 19

에폭시수지 13%, 브롬화 에폭시수지 15%, 다이머산 변성 에폭시수지 4%, 실란 커플링제 0.7%, 소포제0.3%, 삼산화안티몬 3%, 수산화알루미늄 3%, 유리섬유 59%, 실리카 2%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy Resin 13%, Brominated Epoxy Resin 15%, Dimer Acid Modified Epoxy Resin 4%, Silane Coupling Agent 0.7%, Antifoaming Agent 0.3%, Antimony Trioxide 3%, Aluminum Hydroxide 3%, Glass Fiber 59%, Silica 2%, Me- The mixture formed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예 20>Example 20

에폭시수지 8%, 브롬화 에폭시수지 17%, 다이머산 변성 에폭시수지 3%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 3%, 수산화알루미늄 3%, 유리섬유 3%,실리카 62%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 8%, Brominated epoxy resin 17%, Dimer acid modified epoxy resin 3%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 3%, Aluminum hydroxide 3%, Glass fiber 3%, Silica 62%, Me- The mixture formed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예21>Example 21

에폭시수지 15%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시수지 10%, 실란 커플링제0.7%, 소포제0.3%, 삼산화안티몬20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 36%, Me-THPA(Methyl tetrahydrophthalic anhydride) 14.8%, 프로필렌글리콜 5.0%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.15% epoxy resin, 3% brominated epoxy resin, 10% dimer acid modified epoxy resin, silane coupling agent 0.7%, antifoaming agent 0.3%, antimony trioxide 20%, aluminum hydroxide 5%, glass fiber 10%, silica 36%, Me- The mixture formed of 14.8% of methyl tetrahydrophthalic anhydride (THPA), 5.0% of propylene glycol, and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예22>Example 22

에폭시수지 15%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시 수지 10%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 36%, Me-THPA(Methyl tetrahydrophthalic anhydride) 13.2%, 프로필렌글리콜 6.6%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 15%, Brominated epoxy resin 3%, Dimer acid-modified epoxy resin 10%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 20%, Aluminum hydroxide 5%, Glass fiber 10%, Silica 36%, Me- The mixture formed of 13.2% of methyl tetrahydrophthalic anhydride (THPA), 6.6% of propylene glycol, and 0.2% of benzyldimethylamine was formed under the same conditions as in <Example 1>.

<실시예23>Example 23

에폭시수지 15%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시 수지 10%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 36%, Me-THPA(Methyl tetrahydrophthalic anhydride) 9.9%, 프로필렌글리콜 9.9%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 15%, Brominated epoxy resin 3%, Dimer acid-modified epoxy resin 10%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 20%, Aluminum hydroxide 5%, Glass fiber 10%, Silica 36%, Me- The mixture formed of 9.9% of methyl tetrahydrophthalic anhydride (THPA), 9.9% of propylene glycol, and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예24>Example 24

에폭시수지 15%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시 수지 10%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 36%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.97%, 벤질디메틸아민 0.03%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 15%, Brominated epoxy resin 3%, Dimer acid-modified epoxy resin 10%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 20%, Aluminum hydroxide 5%, Glass fiber 10%, Silica 36%, Me- The mixture composed of 19.97% of methyl tetrahydrophthalic anhydride (THPA) and 0.03% of benzyldimethylamine was formed under the same conditions as in <Example 1>.

<실시예25>Example 25

에폭시수지 15%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시 수지 10%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 36%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.95%, 벤질디메틸아민 0.05%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 15%, Brominated epoxy resin 3%, Dimer acid-modified epoxy resin 10%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 20%, Aluminum hydroxide 5%, Glass fiber 10%, Silica 36%, Me- A mixture formed of 19.95% of methyl tetrahydrophthalic anhydride (THPA) and 0.05% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예26>Example 26

에폭시수지 15%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시 수지 10%, 실란 커플링제 0.7%, 소포제 0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 36%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.0%, 벤질디메틸아민 1.0%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 15%, Brominated epoxy resin 3%, Dimer acid-modified epoxy resin 10%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 20%, Aluminum hydroxide 5%, Glass fiber 10%, Silica 36%, Me- The mixture composed of 19.0% of methyl tetrahydrophthalic anhydride (THPA) and 1.0% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예27>Example 27

에폭시수지 15%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시 수지 10%, 실란 커플링제 0.7%, 소포제0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 36%, Me-THPA(Methyl tetrahydrophthalic anhydride) 18.5%, 벤질디메틸아민 1.5%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 15%, Brominated epoxy resin 3%, Dimer acid-modified epoxy resin 10%, Silane coupling agent 0.7%, Antifoaming agent 0.3%, Antimony trioxide 20%, Aluminum hydroxide 5%, Glass fiber 10%, Silica 36%, Me- The mixture composed of 18.5% of methyl tetrahydrophthalic anhydride (THPA) and 1.5% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예28>Example 28

에폭시수지 15.7%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시 수지 10%, 소포제0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 36%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다Epoxy resin 15.7%, Brominated epoxy resin 3%, Dimer acid modified epoxy resin 10%, Antifoam 0.3%, Antimony trioxide 20%, Aluminum hydroxide 5%, Glass fiber 10%, Silica 36%, Me-THPA (Methyl tetrahydrophthalic anhydride) The mixture composed of 19.8% and benzyldimethylamine 0.2% was molded under the same conditions as in <Example 1>.

<실시예29>Example 29

에폭시수지 15.7%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시 수지 10%, 실란 커플링제 1%, 소포제0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 35%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 15.7%, brominated epoxy resin 3%, dimer acid-modified epoxy resin 10%, silane coupling agent 1%, antifoaming agent 0.3%, antimony trioxide 20%, aluminum hydroxide 5%, glass fiber 10%, silica 35%, Me- The mixture formed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예30>Example 30

에폭시수지 15.7%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시 수지 10%, 실란 커플링제 3%, 소포제0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 38%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 15.7%, brominated epoxy resin 3%, dimer acid modified epoxy resin 10%, silane coupling agent 3%, antifoaming agent 0.3%, antimony trioxide 20%, aluminum hydroxide 5%, glass fiber 10%, silica 38%, Me- The mixture formed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<실시예31>Example 31

에폭시수지 15.7%, 브롬화 에폭시수지 3%, 다이머산 변성 에폭시 수지 10%, 실란 커플링제 5%, 소포제0.3%, 삼산화안티몬 20%, 수산화알루미늄 5%, 유리섬유 10%, 실리카 31%, Me-THPA(Methyl tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <실시예1>과 동일한 조건으로 애자를 성형하였다.Epoxy resin 15.7%, brominated epoxy resin 3%, dimer acid modified epoxy resin 10%, silane coupling agent 5%, antifoaming agent 0.3%, antimony trioxide 20%, aluminum hydroxide 5%, glass fiber 10%, silica 31%, Me- The mixture formed of 19.8% of methyl tetrahydrophthalic anhydride (THPA) and 0.2% of benzyldimethylamine was molded under the same conditions as in <Example 1>.

<단위:wt%><Unit: wt%> 실시예원료명Example 실 시 예Example 1One 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 주제subject 에폭시수지Epoxy resin 1010 88 1515 1616 1010 1111 1010 77 1313 1010 1515 1010 1010 1010 1313 브롬화에폭시수지Brominated epoxy resin 2020 2323 33 22 1515 2020 33 33 55 2020 33 55 2020 55 1515 다이머산변성에폭시수지Dimer Acid Modified Epoxy Resin 33 33 1010 1010 55 22 2020 2323 1212 33 1010 1313 33 1313 33 실란커플링제Silane coupling agent 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 소포제Antifoam 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 삼산화안티몬Antimony trioxide 33 33 2020 2020 55 33 1010 1010 77 22 2525 33 55 33 33 수산화알루미늄Aluminum hydroxide 33 33 55 1010 1010 33 2020 2020 3030 88 33 3737 22 4242 33 유리섬유Fiberglass 33 1010 1010 1515 55 33 1515 1212 2323 33 1010 2828 33 2323 5959 실리카Silica 5757 4949 3636 2626 4949 5757 2121 2424 99 5353 3333 33 5656 33 33 합 계Sum 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 경화제Hardener Me-THPAMe-THPA 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 프로필렌글리콜Propylene glycol -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 벤질디메틸아민Benzyldimethylamine 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 합 계Sum 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020

<단위:wt%><Unit: wt%> 실시예원료명Example 실 시 예Example 1616 1717 1818 1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030 3131 주제subject 에폭시수지Epoxy resin 1010 1313 1212 1313 88 1515 1515 1515 1515 1515 1515 1515 15.715.7 15.715.7 15.715.7 15.715.7 브롬화에폭시수지Brominated epoxy resin 2020 1313 1313 1515 1717 33 33 33 33 33 33 33 33 33 33 33 다이머산변성에폭시수지Dimer Acid Modified Epoxy Resin 33 55 33 44 33 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 실란커플링제Silane coupling agent 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 -- 1One 33 55 소포제Antifoam 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 삼산화안티몬Antimony trioxide 44 33 33 33 33 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 수산화알루미늄Aluminum hydroxide 33 55 33 33 33 55 55 55 55 55 55 55 55 55 55 55 유리섬유Fiberglass 22 4747 6262 5959 33 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 실리카Silica 5757 1313 33 22 6262 3636 3636 3636 3636 3636 3636 3636 3636 3535 3333 3131 합 계Sum 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 경화제Hardener Me-THPAMe-THPA 19.819.8 19.819.8 19.819.8 19.819.8 19.819.8 14.814.8 13.213.2 9.99.9 19.9719.97 19.9519.95 19.019.0 18.518.5 19.819.8 19.819.8 19.819.8 19.819.8 프로필렌글리콜Propylene glycol -- -- -- -- -- 5.05.0 6.66.6 9.99.9 -- -- -- -- -- -- -- -- 벤질디메틸아민Benzyldimethylamine 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.20.2 0.030.03 0.050.05 1.01.0 1.51.5 0.20.2 0.20.2 0.20.2 0.20.2 합 계Sum 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020

다음은 상기 실시예에서 설명한 각 조성물들의 제품특성을 비교하기 위한 비교예를 하기에 상세히 설명하였으며, 각 조성물에 대한 배합예를 표2에 표기 하였다. 이하 비교예에서의「%」는「wt%」를 의미한다.Next, a comparative example for comparing the product characteristics of each composition described in the above embodiment was described in detail below, and the compounding examples for each composition are shown in Table 2. "%" In the following comparative example means "wt%".

<비교예1>Comparative Example 1

에폭시수지 24.2%, 모노에폭시수지 5%, 실란커플링제 0.5%, 소포제 0.3%, 실리카분말 70%, Me-THPA(Methyl-tetrahydrophthalic anhydride) 19.8%, 벤질디메틸아민0.2%로 조성된 혼합물을 애자 금형에서 120∼140℃의 온도조건에서 10∼20분A mixture of epoxy resin 24.2%, mono epoxy resin 5%, silane coupling agent 0.5%, antifoaming agent 0.3%, silica powder 70%, Me-THPA (Methyl-tetrahydrophthalic anhydride) 19.8%, and benzyldimethylamine 0.2% 10 to 20 minutes at 120-140 ℃

동안 동안 성형한 후, 160∼180℃의 온도조건에서 8시간 동안 경화하여 애자를 성형하였다.After molding for a while, the insulator was formed by curing for 8 hours at a temperature of 160 ~ 180 ℃.

<비교예2>Comparative Example 2

에폭시수지 19.2%, 모노에폭시수지 5%, 브롬화에폭시 5%, 실란커플링제 0.5%, 소포제 0.3%, 삼산화안티몬 5%, 수산화알루미늄 25%, 실리카 40%, Me-THPA 19.8%, 벤질디메틸아민 0.2%로 조성된 혼합물을 상기 <비교예1>과 동일한 조건으로 애자를 성형 하였다.Epoxy resin 19.2%, Mono epoxy resin 5%, Brominated epoxy 5%, Silane coupling agent 0.5%, Antifoaming agent 0.3%, Antimony trioxide 5%, Aluminum hydroxide 25%, Silica 40%, Me-THPA 19.8%, Benzyldimethylamine 0.2 The mixture composed of% was molded under the same conditions as in <Comparative Example 1>.

<단위:wt%><Unit: wt%> 비교예원료명Comparative Raw Material Name 비교예1Comparative Example 1 비교예2Comparative Example 2 주제subject 에폭시수지Epoxy resin 24.224.2 19.219.2 모노 에폭시수지Mono epoxy resin 55 55 브롬화에폭시Brominated Epoxy -- 55 실란커플링제Silane coupling agent 0.50.5 0.50.5 소포제Antifoam 0.30.3 0.30.3 삼산화안티몬Antimony trioxide -- 55 수산화알루미늄Aluminum hydroxide -- 2525 실리카Silica 7070 4040 합 계Sum 100100 100100 경화제Hardener Me-THPAMe-THPA 19.819.8 19.819.8 벤질디메틸아민Benzyldimethylamine 0.20.2 0.20.2 합 계Sum 2020 2020

상기 실시예 및 비교예의 조성물로 성형된 애자의 난연성, 굴곡강도, 부분 방전 소멸전압 및 작업성 시험 결과를 표3에 표시하였다.Table 3 shows the results of flame retardancy, flexural strength, partial discharge extinction voltage, and workability test of the insulators formed by the compositions of Examples and Comparative Examples.

시험한 애자는 원자력 발전소용의 배전반에 내장되는 애자제품으로 지름(Φ)이 91mm, 높이(H)가 95mm, 정격 전압이 7.2kV, 굴곡 강도가 1,071kg/cm2이상인 규격번호 JO16-60 타입의 IEC(International Electrical Commission) 국제규격 제품과 지름(Φ)이 91mm, 높이(H)가 130mm, 정격전압이 12kV, 굴곡강도가 1,183kg/cm2 이상인 규격번호 JO16-75 타입의 IEC 국제규격제품 2종을 성형하여 시험하였다.The tested insulator is a insulator product embedded in a switchboard for a nuclear power plant. The diameter is Φ 91 mm, the height H is 95 mm, the rated voltage is 7.2 kV, and the bending strength is not less than 1,071 kg / cm 2. International standard of IEC (International Electrical Commission) of IEC Standard type JO16-75 with 91mm in diameter (Φ), 130mm in height (H), rated voltage 12kV, flexural strength over 1,183kg / cm2 Species were molded and tested.

애자의 평가항목인 난연성, 굴곡강도, 부분방전 소멸전압의 시험방법은 하기와같다.The test methods of inflammability, flexural strength, and partial discharge extinction voltage, which are insulator evaluation items, are as follows.

- 난연성 : IEC 60660 24 애자의 난연성 시험방법에 의거함.-Flame retardant: According to IEC 60660 24 inflammability test method.

- 굴곡강도 : IEC 60660 19 애자의 굴곡강도 시험방법에 의거함.-Flexural strength: Based on the test method of flexural strength of IEC 60660 19 insulator.

- 부분방전소멸전압 : IEC 60660 17 애자의 부분방전소멸전압 시험방법에 의거함.-Partial discharge extinction voltage: Based on the test method of partial discharge extinction voltage of IEC 60660 17 insulator.

실시예 및 비교예의 시험결과를 보면 실시예 1,3, 5,7, 9, 12, 15, 17 조성물은 브롬화 에폭시수지, 삼산화안티몬, 수산화알루미늄의 적절한 사용으로 난연성이 양호한 결과가 나타났으며, 다이머산 변성 에폭시수지, 유리섬유, 실리카를 적절히 사용하여 굴곡강도도 우수한 결과가 나타났다. 또한 부분방전 소멸전압 및 작업성 모두 양호한 결과가 나타났다.According to the test results of Examples and Comparative Examples, the compositions of Examples 1, 3, 5, 7, 9, 12, 15, and 17 showed good flame retardancy by appropriate use of epoxy bromide, antimony trioxide, and aluminum hydroxide. The bending strength was also excellent by using dimer acid-modified epoxy resin, glass fiber, and silica properly. In addition, good results were obtained for both partial discharge extinction voltage and workability.

그러나 실시예 4, 10, 13 조성물의 경우에는 난연성이 저하되는 결과가 나타났다. 이는 난연성을 부여하기 위해 사용한 브롬화에폭시수지, 삼산화안티몬 및 수산화 알루미늄을 너무 소량 사용하여 난연효과가 없는 것으로 나타났다.However, in the case of the composition of Examples 4, 10, 13, the flame retardancy was reduced. This resulted in no flame retardant effect by using too small amount of epoxy bromide, antimony trioxide and aluminum hydroxide used to impart flame retardancy.

또한, 실시예 6, 14, 16, 19 조성물의 경우에는 굴곡강도가 저하되는 결과가 나타 났다. 실시예 6의 경우에는 가소성을 부여하기 위하여 사용한 다이머산 변성 에폭시 수지를 너무 소량 사용하여 가소성 부여에 따른 굴곡강도 향상 효과가 없는 것으로 나타났고, 실시예 14의 경우에는 난연성을 부여하기 위하여 사용한 수산화알루미늄을 너무 과량 사용하고, 실시예 16,19의 경우에는 유리섬유 및 실리카를 너무 소량 사용함으로 인하여 굴곡강도가 저하된 것으로 나타났다.In addition, in the case of the compositions of Examples 6, 14, 16, and 19, the bending strength was lowered. In Example 6, too small amount of the dimer acid-modified epoxy resin used to impart plasticity was found to have no effect of improving flexural strength due to plasticity, and in Example 14, aluminum hydroxide was used to impart flame retardancy. Too much excess was used, and in Examples 16 and 19, it was found that the flexural strength was reduced due to the too small amount of glass fiber and silica.

실시예 2, 8, 11 조성물의 경우에는 부분방전소멸전압이 저하되는 것으로 나타 났다. 이는 난연성을 부여하기 위하여 사용한 브롬화에폭시수지, 삼산화안티몬과 가소성을 부여하기 사용한 다이머산 변성 에폭시수지가 너무 과량 사용됨으로 인해 전기적인 특성이 저하되는 것으로 나타났다.In the case of the compositions of Examples 2, 8 and 11, it was shown that the partial discharge extinction voltage is lowered. It was found that the electrical properties were deteriorated due to the excessive use of epoxy bromide resin, antimony trioxide and dimer acid modified epoxy resin used to impart flame retardancy.

실시예 18,20 조성물의 경우에는 애자 성형시 작업성이 저하되는 결과가 나타났다. 이는 굴곡강도를 향상시키기 위하여 사용한 유리섬유 및 실리카를 너무 과량 사용하여 점도가 상승하고 탈포성이 떨어지고 금형주입시 주입속도가 늦어지는 등 작업성이 저하되는 것으로 나타났다.In the case of the compositions of Examples 18 and 20, workability was decreased during insulator molding. This is because the excessive use of the glass fiber and silica used to improve the flexural strength, the viscosity is increased, the defoaming property is lowered and the injection speed is slowed when the mold injection, the workability is shown to be lowered.

실시예 3,21,22,23 조성물의 물성을 비교해 보면 실시예 3과 같이 Me-THPA를 단독으로 사용한 경우와 실시예21,22와 같이 Me-THPA와 프로필렌글리콜을 3:1 또는 2 : 1의 배합 비율로 변성하여 사용한 경우는 난연성, 굴곡강도, 부분방전소멸전압 및 작업성 모두 양호한 결과가 나타났지만, 실시예23과 같이 Me-THPA와 프로필렌글리콜을 1 : 1의 배합 비율로 변성하여 사용한 경우는 점도가 증가하여 작업성이 저하하고 부분방전 소멸전압도 저하하는 것으로 나타났다.Example 3,21,22,23 Comparing the physical properties of the composition when using Me-THPA alone as in Example 3 and Me-THPA and propylene glycol as in Example 21,22 3: 1 or 2: 1 In the case of using at the compounding ratio of, the flame retardancy, flexural strength, partial discharge extinction voltage and workability were all good.However, as in Example 23, Me-THPA and propylene glycol were modified at the ratio of 1: 1. In the case of increasing viscosity, workability was lowered and partial discharge extinction voltage was also lowered.

실시예 3,24,25,26,27 조성물의 물성을 비교해 보면 실시예 3,25,26은 난연성, 굴곡강도, 부분방전 소멸전압 및 작업성 모두가 양호한 결과가 나타났지만, 실시예24와 같이 벤질디메틸아민의 배합량이 0.03%인 경우에는 경화가 불완전하고 경화물 밀도가 저하하여 굴곡강도, 부분방전 소멸전압 및 작업성이 저하하는 것으로나타났고, 실시예 27과 같이 벤질디메틸아민의 배합량이 1.5%인 경우에는 경화 속도가 빨라서 경화시 내부응력 발생으로 굴곡강도, 부분방전소멸전압 및 작업성이 저하하는 것으로 나타났다.Example 3,24,25,26,27 Comparing the physical properties of the compositions, Examples 3,25,26 showed good results in terms of flame retardancy, flexural strength, partial discharge extinction voltage, and workability. When the compounding amount of benzyl dimethylamine was 0.03%, the curing was incomplete and the density of the cured product was lowered, resulting in the decrease in flexural strength, the partial discharge extinction voltage and the workability. In the case of%, the curing rate is fast, and the bending stress, partial discharge extinction voltage and workability are decreased due to internal stress during curing.

실시예 3,28,29,30,31 조성물의 물성을 비교해 보면 실시예 3,28,29,30이 경우 난연성, 굴곡강도, 부분방전 소멸전압 및 작업성 모두가 양호한 결과가 나타났지만, 실시예31과 같이 실란커플링제의 배합량이 5%인 경우에는 과이이 첨가에 따른 부분방전 소멸전압이 저하하는 것으로 나타났다.Example 3,28,29,30,31 Comparing the physical properties of the compositions Example 3,28,29,30 In this case, all of the flame retardancy, flexural strength, partial discharge extinction voltage and workability showed good results, As shown in Fig. 31, when the blending amount of the silane coupling agent was 5%, the partial discharge extinction voltage was decreased due to the addition of the silane coupling agent.

한편 비교예의 경우, 비교예 1의 조성물은 굴곡강도, 부분방전 소멸전압 및 작업성 모두 양호한 결과가 나타났으나 난연성은 저하되는 것으로 나타났다. 이는 난연성을 부여할 수 있는 브롬화에폭시수지, 삼산화안티몬 및 수산화알루미늄을 전혀 사용하지 않아 난연성이 없는 것으로 나타났다.On the other hand, in the case of the comparative example, the composition of Comparative Example 1 was found to be good in flexural strength, partial discharge extinction voltage and workability, but the flame retardancy was lowered. It was found that there is no flame retardance because no brominated epoxy resin, antimony trioxide and aluminum hydroxide are used to impart flame retardancy.

비교예2 조성물의 경우에는 비교예 1의 조성물과는 달리 난연성을 부여하기 위해 브롬화에폭시수지, 삼산화안티몬 및 수산화알루미늄을 사용하므로 인하여 상대적으로 실리카 함량이 감소하여 굴곡강도가 저하되는 것으로 나타났다.In the case of the composition of Comparative Example 2, unlike the composition of Comparative Example 1, since the epoxy bromide, antimony trioxide, and aluminum hydroxide were used to impart flame retardancy, the silica content was relatively decreased and the flexural strength was lowered.

실시예및비교예시험항목Examples and Comparative Test Items 실 시 예Example 1One 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 1616 JO16-60*JO16-60 * 난 연 성***Flame retardant *** ×× ×× ×× 굴곡강도****Flexural Strength **** ×× ×× ×× 부분방전소멸전압*****Partial discharge extinction voltage ***** ×× ×× ×× 작 업 성******Workability****** JO16-75**JO16-75 ** 난 연 성Flame retardant ×× ×× ×× 굴곡강도Flexural strength ×× ×× ×× 부분방전소멸전압Partial discharge extinction voltage ×× ×× ×× 작 업 성Workability

실시예및비교예시험항목Examples and Comparative Test Items 실 시 예Example 비교예Comparative example 1717 1818 1919 2020 2121 2222 2323 2424 2525 2626 2727 2828 2929 3030 3131 1One 22 JO16-60JO16-60 난 연 성Flame retardant ×× 굴곡강도Flexural strength ×× ×× ×× ×× 부분방전소멸전압Partial discharge extinction voltage ×× ×× ×× ×× 작 업 성Workability ×× ×× ×× ×× ×× JO16-75JO16-75 난 연 성Flame retardant ×× 굴곡강도Flexural strength ×× ×× ×× ×× 부분방전소멸전압Partial discharge extinction voltage ×× ×× ×× ×× 작 업 성Workability ×× ×× ×× ×× ××

* JO16-60:IEC(International Electrical Commission) 국제규격제품, 지름(Φ)91mm, 높이(H) 95mm, 정격전압 7.2kV* JO16-60: IEC (International Electrical Commission) international standard product, diameter (Φ) 91mm, height (H) 95mm, rated voltage 7.2kV

** JO16-75:IEC 국제규격제품, 지름(Φ) 91mm, 높이(H) 130mm, 정격전압 12kV** JO16-75: IEC international standard product, diameter (Φ) 91mm, height (H) 130mm, rated voltage 12kV

*** 난연성:IEC 60660 24, ○:연소시간 60초 이내, ×: 연소시간 60초 초과*** Flame retardant: IEC 60660 24, ○: Burning time within 60 seconds, ×: Burning time exceeding 60 seconds

**** 굴곡강도:IEC 60660 19, JO16-60 타입, ○:1,071kg/cm2 이상, ×: 1,071kg/cm2 미만,**** Flexural Strength: IEC 60660 19, JO16-60 type, ○: 1,071kg / cm2 or more, ×: less than 1,071kg / cm2,

JO16-75 타입 ○: 1,183kg/cm2 이상, × : 1,183kg/cm2 미만,JO16-75 type ○: 1,183kg / cm2 or more, ×: 1,183kg / cm2,

***** 부분방전 소멸전압:IEC 60660 17, JO16-60 타입, ○: 4.57kV 이상, × : 4.57kV 미만***** Partial discharge extinction voltage: IEC 60660 17, JO16-60 type, ○: 4.57 kV or more, ×: Less than 4.57 kV

JO16-75 타입, ○: 7.62kV 이상, ×: 7.62kV 미만JO16-75 type, ○: 7.62 kV or more, ×: 7.62 kV or less

****** 작업성 : 애자 성형시의 주입상태 및 탈포상태, ○: 양호, ×: 불량****** Workability: Injection state and defoaming state during insulator molding, ○: Good, ×: Poor

이상과 같이 본 발명에 의하면, 난연성 부여시 애자의 굴곡 강도가 현저하게 저하 되는 문제점 등을 없게하면서 애자의 특성을 그대로 유지하게 하는 효과가 있고, 또 원자력발전소, 변전소 등의 배전반에 사용되고 있는 옥내용 애자에 난연성을 부여함으로써 화재시 재산상·인명상의 피해를 줄이는 등 애자를 사용함에 있어서 제품의 안전성을 확보하는 효과가 있다.As described above, according to the present invention, there is an effect of maintaining the characteristics of the insulator as it is, without the problem that the flexural strength of the insulator is significantly reduced when imparting flame retardancy, and also being used in switchboards such as nuclear power plants and substations. By providing flame resistance to insulators, it is effective to secure product safety in using insulators, such as reducing damages to property and humans in case of fire.

Claims (15)

에폭시수지에 대해, 가소성부여제로 다이머산 변성 에폭시수지, 난연제로 브롬화 에폭시수지와 삼산화안티몬, 무기질충진제로 유리섬유·실리카·수산화알루미늄, 경화제로 Me-THPA 및 프로필렌글리콜 변성 Me-THPA, 경화촉진제로 제3급 아민계를 배합하여 된 난연성 고강도 에폭시수지 조성물.Epoxy resin, plasticizer, dimer acid-modified epoxy resin, flame retardant, brominated epoxy resin, antimony trioxide, inorganic filler, fiberglass, silica, aluminum hydroxide, hardener, Me-THPA, propylene glycol modified Me-THPA, hardening accelerator A flame retardant high strength epoxy resin composition comprising a tertiary amine compound. 청구항1에 있어서, 상기 에폭시수지는 1분자 중에 2개 이상의 에폭시기를 가진 화합물로서 비스페놀 A형 에폭시수지, 비스페놀 F형 에폭시수지, 비스페놀 AD형 에폭시수지, 폴리카본산 글리시딜에테르, 사이클로헥산 유도체의 에폭시화에 의하여 얻을 수 있는 에폭시수지, 액상의 모노에폭시 등을 사용하며, 이들을 단독 또는 2개 이상을 혼합하여 사용하는 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The method according to claim 1, wherein the epoxy resin is a compound having two or more epoxy groups in one molecule of bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AD epoxy resin, polycarboxylic acid glycidyl ether, cyclohexane derivatives A flame retardant high strength epoxy resin composition comprising an epoxy resin obtained by epoxidation, a liquid monoepoxy, etc., and a mixture of two or more thereof. 청구항1에 있어서, 상기 다이머(Dimer)산 변성 에폭시수지는 당량이 200∼ 900g/eq이고, 다이머산의 산가가 100∼300mg KOH/g인 것으로 배합 량은 표1의 주제 100wt%에 대하여 3∼20 wt%를 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The dimer acid-modified epoxy resin has an equivalent weight of 200 to 900 g / eq, and an acid value of dimer acid of 100 to 300 mg KOH / g. Flame retardant high strength epoxy resin composition, characterized in that using 20 wt%. 청구항1에 있어서, 상기 브롬화에폭시수지는 당량이 150∼700g/eq이고, 브롬함량이 5∼80 wt% 인 것으로, 배합량은 표1의 주제100 wt%에 대하여 3∼20 wt%를 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The method of claim 1, wherein the brominated epoxy resin is equivalent to 150 to 700 g / eq, bromine content is 5 to 80 wt%, the compounding amount is 3 to 20 wt% relative to the main 100 wt% of Table 1 Flame retardant high strength epoxy resin composition, characterized in that. 청구항1에 있어서, 상기 삼산화안티몬은 평균입도가 0.5∼20㎛이고, 배합량은 표1의 주제100 wt%에 대하여 3∼20 wt%를 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The flame retardant high strength epoxy resin composition according to claim 1, wherein the antimony trioxide has an average particle size of 0.5 to 20 µm and a blending amount of 3 to 20 wt% based on the main 100 wt% of Table 1. 청구항1에 있어서, 상기 수산화알루미늄은 일반 타입 및 입자를 실란커플링제 등으로 표면 처리한 타입의 수산화 알루미늄으로 평균입도가 1∼50㎛이고, 배합량은 표1의 주제 100 wt%에 대하여 3∼37 wt%를 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The method of claim 1, wherein the aluminum hydroxide is aluminum hydroxide of the general type and the type surface-treated with a silane coupling agent, the average particle size of 1 to 50㎛, the compounding amount is 3 to 37 with respect to the 100 wt% of the main table Flame-retardant high strength epoxy resin composition, characterized in that using wt%. 청구항1에 있어서,상기 유리섬유는 평균섬유입도가 1∼50㎛인 것으로 배합량은 표1의 주제100 wt%에 대하여 3∼59 wt%를 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The flame-retardant high-strength epoxy resin composition according to claim 1, wherein the glass fiber has an average fiber particle size of 1 to 50 µm and a blending amount of 3 to 59 wt% is used based on 100 wt% of the main ingredient of Table 1. 청구항1에 있어서, 상기 실리카는 일반 타입 및 입자를 실란커플링제 등으로 표면 처리한 타입의 실리카로 평균입도가 1∼50㎛이고, 배합량은 표1 의 주제 100 wt%에 대하여 3∼57 wt%를 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The method according to claim 1, wherein the silica is a silica of the general type and the type surface-treated with a silane coupling agent, etc., the average particle size of 1 to 50㎛, the compounding amount is 3 to 57 wt% relative to the main 100 wt% of Table 1 Flame retardant high strength epoxy resin composition, characterized in that the use. 청구항1에 있어서, 상기 경화제는 Me-THPA 또는 프로필렌글리콜 변성 Me-THPA를 사용하고 변성 Me-THPA가 Me-THPA와 프로필렌글리콜의 배합비율이 2 : 1 이하를 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The flame-retardant high strength of claim 1, wherein the curing agent uses Me-THPA or propylene glycol-modified Me-THPA. Epoxy resin composition. 청구항9에 있어서, 상기 Me-THPA 변성시에는 EG(Ethylene glycol), DEG (Diethylene glycol), PEG(Polyethylene glycol), PPG(Polypropylene glycol), NPG(Neopentyl glycol)등의 다가 알콜을 사용하는 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The method of claim 9, wherein the Me-THPA denaturation is characterized by using polyhydric alcohols such as ethylene glycol (EG), diethylene glycol (DEG), polyethylene glycol (PEG), polypropylene glycol (PPG), neopentyl glycol (NPG), etc. Flame retardant high strength epoxy resin composition. 청구항9에 있어서, 상기 경화제 외에 Me-HHPA(Methyl-hexahydrophthalic anhydride),THPA(Tetrahydrophthalicanhydride),HHPA(Hexahydrophthalicanhydride) ,MHAC(무수메틸하이믹산),MNA(무수메틸나딕산),DDSA(Dodecenyl sussinic anhydri de)등의 산무수물 경화제를, 단독 또는 2개 이상을 혼합해서 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The method of claim 9, wherein in addition to the hardening agent, methyl-hexahydrophthalic anhydride (Me-HHPA), tetrahydrophthalicanhydride (THPA), hexahydrophthalicanhydride (HHPA), methylhydric anhydride (MHAC), methylnahydride anhydride (MNA), and dodecenyl sussinic anhydri de Flame retardant high-strength epoxy resin composition characterized by using an acid anhydride curing agent such as a) or a mixture of two or more. 청구항1에 있어서, 상기 경화촉진제 벤질디메틸아민은 제3급 아민으로 배합량은 표1의 경화제 20wt%에 대하여 0.05 ~`1wt%를 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The flame-retardant high strength epoxy resin composition according to claim 1, wherein the curing accelerator benzyldimethylamine is a tertiary amine and the compounding amount is 0.05 to 1 wt% based on 20 wt% of the curing agent of Table 1. 청구항12에있어서, 상기 경화촉진제 외에 DMP-10(2-(Dimethylaminome thyl)phenol), DMP-30(2,4,6-Tris(Dimethylam inomethyl)phenol), DBU(1,8-Diazabi scyclo(5,4,0)undecan), K-61B(DMP-30의 Tri-2-ethylhexyl산염), Pyrrolidine, Pyridine, Piperidine, Triethanolamine, N,N'-Dimethylpyperazine 등의 제3급 아민계와 이미다졸계 및 그 유도체, Lewis산 및 Bronsted산염,제4급 암모늄염 등을 단독 또는 2개 이상을 혼합해서 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The method according to claim 12, in addition to the curing accelerator DMP-10 (2- (Dimethylaminome thyl) phenol), DMP-30 (2,4,6-Tris (Dimethylam inomethyl) phenol), DBU (1,8-Diazabi scyclo (5) Tertiary amines and imidazoles such as (4,0) undecan), K-61B (tri-2-ethylhexyl acid salt of DMP-30), Pyrrolidine, Pyridine, Piperidine, Triethanolamine, N, N'-Dimethylpyperazine and A flame-retardant high strength epoxy resin composition comprising a derivative, Lewis acid, Bronsted acid salt, quaternary ammonium salt, or the like, or a mixture of two or more thereof. 청구항1에 있어서, 상기 커플링제는 에폭시실란 커플링제로 배합량은 표1의 주제 100wt%에 대하여 3wt% 이하를 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The flame-retardant high-strength epoxy resin composition according to claim 1, wherein the coupling agent is an epoxysilane coupling agent, and a compounding amount is 3 wt% or less based on the main 100 wt% of Table 1. 청구항14에 있어서, 상기 커플링제외에 유기관능기가 Amino, Mercapto, Methacryloxy, Vinyl 타입의 실란커플링제를 사용하여 된 것을 특징으로하는 난연성 고강도 에폭시수지 조성물.The flame retardant high strength epoxy resin composition according to claim 14, wherein an organic functional group is used in addition to the coupling agent, and a silane coupling agent of Amino, Mercapto, Methacryloxy, or Vinyl type.
KR10-2000-0077865A 2000-12-18 2000-12-18 Diffcult Combustibility Hi-Intensity Epoxy Composition For Insulator KR100393410B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0077865A KR100393410B1 (en) 2000-12-18 2000-12-18 Diffcult Combustibility Hi-Intensity Epoxy Composition For Insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0077865A KR100393410B1 (en) 2000-12-18 2000-12-18 Diffcult Combustibility Hi-Intensity Epoxy Composition For Insulator

Publications (2)

Publication Number Publication Date
KR20020048653A true KR20020048653A (en) 2002-06-24
KR100393410B1 KR100393410B1 (en) 2003-07-31

Family

ID=27682860

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0077865A KR100393410B1 (en) 2000-12-18 2000-12-18 Diffcult Combustibility Hi-Intensity Epoxy Composition For Insulator

Country Status (1)

Country Link
KR (1) KR100393410B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594508B1 (en) * 2006-03-25 2006-06-30 (주)콘스코 Reinforcing methods using as silane modified epoxy composition for underwater structure
US9382445B2 (en) 2012-09-07 2016-07-05 Sekisui Chemical Co., Ltd. Insulating resin material and multilayer substrate
KR102175592B1 (en) 2020-01-09 2020-11-09 (주)다이아몬드 Flame retardant concrete floor board resin composition and method of constructing concrete floor board by using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107903229B (en) * 2017-11-22 2021-04-20 濮阳惠成电子材料股份有限公司 Modified reactive methyl tetrahydrophthalic anhydride for insulator core rod

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940014616A (en) * 1992-12-29 1994-07-19 김충세 Thermosetting Epoxy Resin Composition
JPH0853533A (en) * 1994-08-10 1996-02-27 Dainippon Ink & Chem Inc Brominated epoxy resin composition for laminate
JPH0959349A (en) * 1995-08-23 1997-03-04 Toshiba Chem Corp Epoxy resin composition for casting
KR19980030356A (en) * 1996-10-29 1998-07-25 구광시 Epoxy Resin Composition for Soft Molds with Excellent Thermal Shock Resistance
KR100364237B1 (en) * 1997-12-22 2003-02-19 제일모직주식회사 Epoxy resin composition for sealing of semiconductor device
KR100540909B1 (en) * 1999-02-04 2006-01-10 제일모직주식회사 Epoxy molding compound for encapsulating semiconductors elements with good markability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594508B1 (en) * 2006-03-25 2006-06-30 (주)콘스코 Reinforcing methods using as silane modified epoxy composition for underwater structure
US9382445B2 (en) 2012-09-07 2016-07-05 Sekisui Chemical Co., Ltd. Insulating resin material and multilayer substrate
KR102175592B1 (en) 2020-01-09 2020-11-09 (주)다이아몬드 Flame retardant concrete floor board resin composition and method of constructing concrete floor board by using the same

Also Published As

Publication number Publication date
KR100393410B1 (en) 2003-07-31

Similar Documents

Publication Publication Date Title
EP2230267B1 (en) Method of producing a curable epoxy resin composition
US8399577B2 (en) Curable epoxy resin composition
CN110105716B (en) High-efficiency flame-retardant alicyclic epoxy resin outdoor insulator castable
US7060761B2 (en) Epoxy resin compositions
KR100393410B1 (en) Diffcult Combustibility Hi-Intensity Epoxy Composition For Insulator
JPH0959349A (en) Epoxy resin composition for casting
JPH1060096A (en) Flame-retardant epoxy resin composition
KR950004724B1 (en) Compositions of epoxy-resin
KR20030056495A (en) Epoxy resin compositions for mold transformer and method for manufacturing the same
JP2005023220A (en) Flame-retardant epoxy resin composition, electric or electronic component insulated by using the same, and method for producing the same
JPH10292090A (en) Epoxy resin composition for casting
KR20030059513A (en) A high electric pressure resistant cure epoxy compound and the preparing method thereof
JPH10298268A (en) Flame-retardant epoxy resin composition and production of electrical appliance
KR970004664B1 (en) Epoxy-resin composition
JPH0940747A (en) Castable epoxy resin composition
KR100371609B1 (en) Molding Compound for Outdoor Insulator
JPH0959351A (en) Epoxy resin composition for casting
JPH03273022A (en) Epoxy resin composition
KR950006811B1 (en) Liquid epoxy resin composition
KR100373980B1 (en) Expoxy resin composition of ignition coil for motor vehicles
JPH0723424B2 (en) Flame-retardant epoxy resin composition for semiconductor encapsulation
JPH08231829A (en) Epoxy resin composition for casting
JP2000178411A (en) Flame retardant epoxy resin composition and electrical part using the composition
JPH02370B2 (en)
JP2000239486A (en) Flame-retardant epoxy resin composition and electrical part made by using the composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130710

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140714

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee