KR20020045263A - Method of manufacturing a transistor in a semiconductor device - Google Patents

Method of manufacturing a transistor in a semiconductor device Download PDF

Info

Publication number
KR20020045263A
KR20020045263A KR1020000074647A KR20000074647A KR20020045263A KR 20020045263 A KR20020045263 A KR 20020045263A KR 1020000074647 A KR1020000074647 A KR 1020000074647A KR 20000074647 A KR20000074647 A KR 20000074647A KR 20020045263 A KR20020045263 A KR 20020045263A
Authority
KR
South Korea
Prior art keywords
boron
polysilicon
nitrogen
layer
transistor
Prior art date
Application number
KR1020000074647A
Other languages
Korean (ko)
Other versions
KR100671663B1 (en
Inventor
안태항
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020000074647A priority Critical patent/KR100671663B1/en
Publication of KR20020045263A publication Critical patent/KR20020045263A/en
Application granted granted Critical
Publication of KR100671663B1 publication Critical patent/KR100671663B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen

Abstract

PURPOSE: A fabrication method of transistors using a poly-SiGe as a gate electrode is provided to improve electrical properties of the transistors by effectively preventing a diffusion of boron ions into a channel region. CONSTITUTION: A gate oxide(2) and a polysilicon seed(3) are sequentially formed on a semiconductor substrate(1). A poly-SiGe layer(4) is formed on the polysilicon seed. Boron and nitrogen ions are implanted into the poly-SiGe layer(4), wherein the nitrogen ions are implanted more deep than the boron ions are. A nitrogen pile-up layer(5) is formed at interface between the gate oxide(2) and the polysilicon seed(3) so as to prevent diffusion of the boron ions by annealing. After forming a gate spacer(6) at both sidewalls of a gate electrode(34), lightly doped source and drain regions(7) are formed.

Description

반도체 소자의 트랜지스터 제조 방법{Method of manufacturing a transistor in a semiconductor device}Method of manufacturing a transistor in a semiconductor device

본 발명은 반도체 소자의 트랜지스터 제조 방법에 관한 것으로, 특히 폴리 실리콘 저마늄층으로 이루어진 게이트 전극을 형성하는 반도체 소자의 트랜지스터제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transistor manufacturing method of a semiconductor device, and more particularly, to a transistor manufacturing method of a semiconductor device for forming a gate electrode made of a polysilicon germanium layer.

현재 반도체 소자 제조 방법 중 게이트 전극 재료로 사용되는 폴리실리콘은 게이트 재료로서 우수한 물리적 특성을 갖추고 있어서 현재까지 가장 많이 사용되고 있지만, 소자가 점점 고직접화되는 상황에서 여러 가지 문제점이 대두되고 있는 실정이다. 예를 들어, 매몰 채널(Buried channel)에 기인한 짧은 채널 효과(Short channel effect)와 이로 인한 DIBL(Drain Induced Barrier Lowing) 현상 증가 및 문턱 전압 불안정 현상이 나타난다. 또한, 폴리게이트 공핍 효과(Poly gate depletion effect) 및 게이트 산화막을 통한 채널 영역으로의 보론 불순물 침투 현상으로 소자의 전기적 특성이 열화된다. 이와 같은 단점을 극복하기 위해 도입된 게이트 전극 중의 하나가 폴리실리콘에 저마늄(Ge) 함량을 대략 60%까지 추가한 폴리 실리콘 저마늄(Poly-SiGe)이다. 기발표된 문헌들을 통해 볼 때, 폴리-실리콘 저마늄이 기존 폴리실리콘에 비해 보론 확산을 더 억제시켜 그 침투 현상을 억제시키는 효과가 있다고 하나 여전히 적지 않은 보론 불순물이 하부로 침투하여 소자의 특성을 열화시킬 수 있다.Polysilicon, which is used as a gate electrode material in the current semiconductor device manufacturing method, has the most physical properties as a gate material, and is used the most until now. For example, short channel effects due to buried channels, resulting in increased DBL (Drain Induced Barrier Lowing), and threshold voltage instability. In addition, due to the poly gate depletion effect and the boron impurity penetration into the channel region through the gate oxide layer, electrical characteristics of the device are deteriorated. One of the gate electrodes introduced to overcome this drawback is poly-silicon germanium (Poly-SiGe), which adds about 60% germanium (Ge) to polysilicon. According to the published literatures, poly-silicon germanium is more effective than the existing polysilicon to suppress the diffusion of boron to suppress the penetration phenomenon, but still a small number of boron impurities penetrate the bottom to improve the characteristics of the device May deteriorate.

따라서, 본 발명은 상기의 문제점을 해결하기 위하여 게이트 전극을 폴리 실리콘 저마늄으로 형성하고, 보론 주입시 질소를 함께 주입하되 질소를 보론보다 더 깊이 주입하여 게이트 산화막 상부에 축적함으로써 폴리 실리콘 저마늄층에서 보론의 확산을 1차로 차단하고, 게이트 산화막 상부에 축적된 질소 성분으로 2차 차단함으로써 게이트 산화막을 통과해 채널 영역으로의 보론 침투 현상을 효과적으로 억제하여 소자의 전기적 특성을 향상시킬 수 있는 반도체 소자의 게이트 전극 방법에 관한 것이다.Therefore, in order to solve the above problems, the present invention forms a gate electrode made of polysilicon germanium, and injects nitrogen together during boron injection, but injects nitrogen deeper than boron to accumulate on the gate oxide layer in the polysilicon germanium layer. Blocking the diffusion of boron first and second blocking with nitrogen accumulated on the gate oxide layer effectively prevents the penetration of boron into the channel region through the gate oxide layer and improves the electrical characteristics of the device. It relates to a gate electrode method.

도 1a 내지 도 1d는 본 발명에 따른 반도체 소자의 트랜지스터 제조 방법을 설명하기 위하여 순차적으로 도시한 소자의 단면도.1A to 1D are cross-sectional views of devices sequentially shown in order to explain a transistor manufacturing method of a semiconductor device according to the present invention.

<도면의 주요 부분에 대한 부호 설명><Description of the symbols for the main parts of the drawings>

1 : 반도체 기판2 : 게이트 산화막1 semiconductor substrate 2 gate oxide film

3 : 폴리실리콘 시드층4 : 폴리 실리콘 저마늄층3: polysilicon seed layer 4: polysilicon germanium layer

5 : 질소 축적층34 : 게이트 전극5: nitrogen accumulation layer 34: gate electrode

6 : 게이트 스페이서7 : 소오스/드레인6: gate spacer 7: source / drain

본 발명에 따른 반도체 소자의 트랜지스터 제조 방법은 반도체 기판 상에 게이트 산화막 및 폴리실리콘 시드층을 형성하는 단계, 폴리실리콘 시드층 상에 폴리 실리콘 저마늄층을 형성하는 단계, 폴리 실리콘 저마늄층에 보론 및 질소를 이온 주입하되 질소를 보론보다 더 깊이 이온 주입하는 단계, 폴리 실리콘 저마늄층, 폴리실리콘 시드층 및 게이트 산화막을 패터닝하는 단계, 열처리를 실시하여 질소를 확산시켜 폴리실리콘 시드층과 게이트 산화막의 계면에 보론의 확산을 방지할 수 있는 질소 축적층을 형성하는 단계 및 게이트 스페이서 및 LDD 구조의 소오스/드레인을 형성하는 단계로 이루어진다.A transistor manufacturing method of a semiconductor device according to the present invention comprises the steps of forming a gate oxide film and a polysilicon seed layer on a semiconductor substrate, forming a polysilicon germanium layer on the polysilicon seed layer, boron and nitrogen in the polysilicon germanium layer Ion implantation, but implanting nitrogen deeper than boron, patterning the polysilicon germanium layer, polysilicon seed layer and gate oxide film, and performing heat treatment to diffuse nitrogen to interface the polysilicon seed layer with the gate oxide film. Forming a nitrogen accumulation layer capable of preventing diffusion of boron and forming a source / drain of the gate spacer and the LDD structure.

폴리실리콘 시드층은 550 내지 650℃의 온도에서 100 내지 500Å의 두께로 형성한다. 폴리 실리콘 저마늄층은 비정질(Amorphous) 또는 결정질(Crystalline) 상태로 증착하며, 450 내지 650℃의 온도와 5 내지 1,000mTorr의 압력에서 LPCVD(Low Pressure CVD), VLPCVD(Very Low Pressure CVD), PE-VLPCVD(Plasma Enhanced-Very Low Pressure CVD), UHVCVD(Ultra High Vacuum CVD), RTCVD(Rapid Thermal CVD) 또는 APCVD(Atmosphere Pressure CVD)법을 이용해 700 내지 2500Å두께로 증착한다. 이때, 폴리 실리콘 저마늄층의 저마늄 함량은 10 내지 70%가 되도록 하며, 수소 가스에 SiH4가 10 내지 100% 포함된 혼합 가스나 수소 가스에 Si2H6가 10 내지 100% 포함된 혼합 가스를 실리콘의 소오스 가스로 사용하고, 수소 가스에 GeH4가스가 1 내지 100% 포함된 혼합 가스 또는 수소 가스에 GeF4가 1 내지 100% 포함된 혼합 가스를 저마늄 소오스 가스로 사용하여 형성한다. 보론 이온 주입시 사용하는 보론 불순물로는 B11또는 BF2를 사용하며, 질소 이온 주입시 사용하는 질소로는 14N+또는 28N2 +를 사용한다. 보론 이온 주입은 보론 불순물 가스를 이용해 인-시투로 주입하거나, 이온 주입 공정을 이용한 익스-시투(Ex-situ) 방법으로 불순물을 주입할 수도 있다.The polysilicon seed layer is formed to a thickness of 100 to 500 kPa at a temperature of 550 to 650 ℃. The polysilicon germanium layer is deposited in an amorphous or crystalline state, and is a low pressure CVD (LPCVD), a very low pressure CVD (VLPCVD), a PE- at a temperature of 450 to 650 ° C. and a pressure of 5 to 1,000 mTorr. It is deposited at a thickness of 700 to 2500 kPa using Plasma Enhanced-Very Low Pressure CVD (VLPCVD), Ultra High Vacuum CVD (UHVCVD), Rapid Thermal CVD (RTCVD), or Atmosphere Pressure CVD (APCVD). At this time, the germanium content of the polysilicon germanium layer is 10 to 70%, and a mixed gas containing 10 to 100% of SiH 4 in hydrogen gas or a mixed gas containing 10 to 100% of Si 2 H 6 in hydrogen gas. the formed using a source gas of silicon, a mixed gas with a GeF 4 contains 1 to 100% of the GeH 4 gas contains 1 to 100% of the mixed gas or hydrogen gas to the hydrogen gas to a germanium source gas. B 11 or BF 2 is used as boron impurities used for boron ion implantation, and 14N + or 28N 2 + is used as nitrogen used for nitrogen ion implantation. Boron ion implantation may be implanted in-situ using boron impurity gas, or impurities may be implanted by an ex-situ method using an ion implantation process.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail.

도 1a 내지 도 1d는 본 발명에 따른 반도체 소자의 트랜지스터 제조 방법을 설명하기 위하여 순차적으로 도시한 소자의 단면도이다.1A to 1D are cross-sectional views of devices sequentially shown to explain a method of manufacturing a transistor of a semiconductor device according to the present invention.

도 1a를 참조하면, 반도체 기판(1) 상에 게이트 산화막(2)을 형성한 후 폴리실리콘 시드층(3)을 형성한다.Referring to FIG. 1A, after forming the gate oxide layer 2 on the semiconductor substrate 1, the polysilicon seed layer 3 is formed.

폴리실리콘 시드층(3)은 폴리 실리콘 저마늄을 게이트 산화막 상에 증착하기 전에, 증착막의 양호한 접착(Adhesion)과 원할한 핵생성(Nucleation)을 위하여 형성하며, 550 내지 650℃의 온도에서 100 내지 500Å의 두께로 형성한다.The polysilicon seed layer 3 is formed for good adhesion and smooth nucleation of the deposited film before depositing the polysilicon germanium on the gate oxide film, and it is 100 to 100 at a temperature of 550 to 650 ° C. It is formed to a thickness of 500Å.

도 1b를 참조하면, 폴리실리콘 시드층(3) 상에 폴리 실리콘 저마늄층(4)을 형성한다. 이후, 폴리 실리콘 저마늄층(4)과 폴리실리콘 시드층(3)에 질소와 보론을 연속하여 이온 주입하되 질소를 보론보다 더 깊이 이온 주입한다.Referring to FIG. 1B, a polysilicon germanium layer 4 is formed on the polysilicon seed layer 3. Subsequently, nitrogen and boron are continuously ion implanted into the polysilicon germanium layer 4 and the polysilicon seed layer 3, but nitrogen is ion implanted deeper than boron.

폴리 실리콘 저마늄층(4)은 비정질(Amorphous) 또는 결정질(Crystalline) 상태로 증착하며, 450 내지 650℃의 온도와 5 내지 1,000mTorr의 압력에서 LPCVD(Low Pressure CVD), VLPCVD(Very Low Pressure CVD), PE-VLPCVD(Plasma Enhanced-Very Low Pressure CVD), UHVCVD(Ultra High Vacuum CVD), RTCVD(Rapid Thermal CVD) 또는 APCVD(Atmosphere Pressure CVD)법을 이용해 700 내지 2500Å 두께로 증착한다. 이때, 폴리실리콘 저마늄층(4)의 저마늄 함량은 10 내지 70%가 되도록 한다. 폴리 실리콘 저마늄층(4) 증착 시 실리콘의 소오스 가스(Source Gas)로는 수소 가스(H2)에 SiH4가 10 내지 100% 포함된 혼합 가스나 수소 가스에 Si2H6가 10 내지 100% 포함된 혼합 가스를 사용한다. 저마늄 소오스 가스로는 수소 가스에 GeH4가스가 1 내지 100% 포함된 혼합 가스 또는 수소 가스에 GeF4가 1 내지 100% 포함된 혼합 가스를 사용한다.The polysilicon germanium layer 4 is deposited in an amorphous or crystalline state, and is a low pressure CVD (LPCVD) and a very low pressure CVD (VLPCVD) at a temperature of 450 to 650 ° C. and a pressure of 5 to 1,000 mTorr. It is deposited to a thickness of 700 to 2500 Pa by using Plasma Enhanced-Very Low Pressure CVD (PE-VLPCVD), Ultra High Vacuum CVD (UHVCVD), Rapid Thermal CVD (RTCVD), or Atmosphere Pressure CVD (APCVD). At this time, the germanium content of the polysilicon germanium layer 4 is set to 10 to 70%. Source gas of silicon during deposition of the polysilicon germanium layer 4 includes 10 to 100% of Si 2 H 6 in a mixed gas or hydrogen gas containing 10 to 100% of SiH 4 in hydrogen gas (H 2 ). Mixed gas is used. Germanium source gas is a mixed gas with a GeF 4 contains 1 to 100% of the GeH 4 gas is a mixed gas comprising 1 to 100% hydrogen gas or a hydrogen gas.

보론 이온 주입시 사용하는 보론 불순물로는 B11또는 BF2를 사용하며, 질소 이온 주입시 사용하는 질소로는 14N+또는 28N2 +를 사용한다. 이때, 보론 불순물은 불순물 가스를 이용해 인-시투(In-situ)로 주입할 수도 있고, 도펀트를 이온 주입공정을 이용한 익스-시투(Ex-situ) 방법으로 주입할 수도 있다.B 11 or BF 2 is used as boron impurities used for boron ion implantation, and 14N + or 28N 2 + is used as nitrogen used for nitrogen ion implantation. In this case, the boron impurities may be implanted in-situ using an impurity gas, or the dopant may be implanted by an ex-situ method using an ion implantation process.

도 1c를 참조하면, 식각 공정으로 폴리 실리콘 저마늄층(4), 폴리실리콘 시드층(3) 및 게이트 산화막을 패터닝하여 게이트 전극(34)을 형성한 후 산화 분위기에서 열처리를 실시하여 LDD 산화막(도시되지 않음)을 형성함과 동시에 보론을 활성화시키고, 폴리실리콘 시드층(3)과 게이트 산화막(2)의 계면에 질소 성분을 축적시켜 질소 축적층(5)을 형성한다.Referring to FIG. 1C, the polysilicon germanium layer 4, the polysilicon seed layer 3, and the gate oxide layer are patterned by an etching process to form a gate electrode 34, and then thermally treated in an oxidizing atmosphere to form an LDD oxide layer (not shown). And boron are activated, and a nitrogen component is accumulated at the interface between the polysilicon seed layer 3 and the gate oxide film 2 to form the nitrogen accumulation layer 5.

열처리에 의해 질소와 보론이 폴리 실리콘 저마늄층(4) 및 폴리실리콘 시드층(3)을 거쳐 하부의 게이트 산화막(2) 쪽으로 확산할 때, 보론은 폴리 실리콘 저마늄층(4)에서 확산이 억제된다.When nitrogen and boron diffuse through the polysilicon germanium layer 4 and the polysilicon seed layer 3 toward the lower gate oxide film 2 by the heat treatment, the boron is suppressed from diffusing in the polysilicon germanium layer 4. .

실리콘 내에서 질소의 확산계수(Diffusivity; 7.29E-13 cm2/sec)가 보론의 확산 계수(1.33E-13 cm2/sec)보다 대략 5배 크므로 질소가 폴리실리콘 시드층(3)을 통해 더 빨리 확산될 뿐만 아니라, 폴리실리콘 시드층(3)/게이트 산화막(2) 계면에 축적된다. 결국, 보론은 폴리 실리콘 저마늄층(4)에 의해 확산이 억제될 뿐만 아니라, 폴리실리콘 시드층(3)/게이트 산화막(2)의 계면에 축적(Pile-up)된 질소 성분에 의해, 다시 한번 확산이 차단됨으로 보론의 침투을 매우 효과적으로 억제할 수 있다. 또한, 질소 축적층(5)에 의해 보론의 확산에 억제될 때, 그 계면에는 전기적으로 활성화된 보론의 농도가 증가하게 됨으로 소자의 전기적 특성을 더욱 향상시킬 수 있다.The diffusion coefficient of nitrogen in the silicon (Diffusivity; 7.29E-13 cm 2 / sec) is the diffusion coefficient (1.33E-13 cm 2 / sec ) is approximately five times larger polysilicon seed layer (3) than the nitrogen to boron Not only do they diffuse faster, but also accumulate at the polysilicon seed layer 3 / gate oxide film 2 interface. As a result, boron is not only prevented from being diffused by the polysilicon germanium layer 4 but also once again by a nitrogen component accumulated at the interface of the polysilicon seed layer 3 / gate oxide film 2. By blocking diffusion, boron can be very effectively suppressed. In addition, when the boron is inhibited by diffusion of the nitrogen accumulation layer 5, the concentration of the electrically activated boron increases at the interface, it is possible to further improve the electrical characteristics of the device.

도 1d를 참조하면, 일반적으로 공지된 기술에 의해 게이트 전극스페이서(6), 소오스/드레인(7) 등을 형성하여 트랜지스터를 제조한다.Referring to FIG. 1D, a transistor is manufactured by forming a gate electrode spacer 6, a source / drain 7, and the like by a generally known technique.

상술한 바와 같이, 본 발명은 후속 열처리시 보론 침투 현상을 효과적으로 억제하고 폴리실리콘 시드층과 게이트 산화막 계면에서 전기적으로 활성화된 보론의 농도가 증가하여 소자의 전기적 특성 및 신뢰성을 향상시키는 효과가 있다.As described above, the present invention effectively suppresses boron penetration during subsequent heat treatment and increases the concentration of electrically activated boron at the polysilicon seed layer and the gate oxide layer, thereby improving electrical characteristics and reliability of the device.

Claims (8)

반도체 기판 상에 게이트 산화막 및 폴리실리콘 시드층을 형성하는 단계;Forming a gate oxide film and a polysilicon seed layer on the semiconductor substrate; 상기 폴리실리콘 시드층 상에 폴리 실리콘 저마늄층을 형성하는 단계;Forming a polysilicon germanium layer on the polysilicon seed layer; 상기 폴리 실리콘 저마늄층에 보론 및 질소를 이온 주입하되 질소를 보론보다 더 깊이 이온 주입하는 단계;Ion implanting boron and nitrogen into the polysilicon germanium layer and implanting nitrogen deeper than boron; 상기 폴리 실리콘 저마늄층, 상기 폴리실리콘 시드층 및 상기 게이트 산화막을 패터닝하는 단계;Patterning the poly silicon germanium layer, the polysilicon seed layer, and the gate oxide film; 열처리를 실시하여 상기 질소를 확산시켜 상기 폴리실리콘 시드층과 상기 게이트 산화막의 계면에 보론의 확산을 방지할 수 있는 질소 축적층을 형성하는 단계 및Heat treatment to diffuse the nitrogen to form a nitrogen accumulation layer capable of preventing diffusion of boron at an interface between the polysilicon seed layer and the gate oxide film; and 게이트 스페이서 및 LDD 구조의 소오스/드레인을 형성하는 단계로 이루어지는 것을 특징으로 하는 반도체 소자의 트랜지스터 제조 방법.Forming a source / drain of a gate spacer and an LDD structure. 제 1 항에 있어서,The method of claim 1, 상기 폴리실리콘 시드층은 550 내지 650℃의 온도에서 100 내지 500Å의 두께로 형성하는 것을 특징으로 하는 반도체 소자의 트랜지스터 제조 방법.The polysilicon seed layer is a transistor manufacturing method of a semiconductor device, characterized in that formed in a thickness of 100 to 500Å at a temperature of 550 to 650 ℃. 제 1 항에 있어서,The method of claim 1, 상기 폴리 실리콘 저마늄층은 비정질 또는 결정질 상태로 증착하며, 450 내지 650℃의 온도와 5 내지 1,000mTorr의 압력에서 LPCVD, VLPCVD, PE-VLPCVD, UHVCVD, RTCVD 또는 APCVD법을 이용해 700 내지 2500Å 두께로 증착하는 것을 특징으로 하는 반도체 소자의 트랜지스터 제조 방법.The polysilicon germanium layer is deposited in an amorphous or crystalline state, and is deposited to a thickness of 700 to 2500Å by LPCVD, VLPCVD, PE-VLPCVD, UHVCVD, RTCVD, or APCVD at a temperature of 450 to 650 ° C. and a pressure of 5 to 1,000 mTorr. The transistor manufacturing method of a semiconductor element characterized by the above-mentioned. 제 1 항에 있어서,The method of claim 1, 상기 폴리 실리콘 저마늄층의 저마늄 함량은 10 내지 70%가 되도록 하는 것을 특징으로 하는 반도체 소자의 트랜지스터 제조 방법.The germanium content of the polysilicon germanium layer is a transistor manufacturing method of a semiconductor device, characterized in that to be 10 to 70%. 제 1 항에 있어서,The method of claim 1, 상기 폴리 실리콘 저마늄층은 수소 가스에 SiH4가 10 내지 100% 포함된 혼합 가스나 수소 가스에 Si2H6가 10 내지 100% 포함된 혼합 가스를 실리콘의 소오스 가스로 사용하고, 수소 가스에 GeH4가스가 1 내지 100% 포함된 혼합 가스 또는 수소 가스에 GeF4가 1 내지 100% 포함된 혼합 가스를 저마늄 소오스 가스로 사용하여 형성하는 것을 특징으로 하는 반도체 소자의 트랜지스터 제조 방법.The polysilicon germanium layer uses a mixed gas containing 10 to 100% of SiH 4 in hydrogen gas or a mixed gas containing 10 to 100% of Si 2 H 6 in hydrogen gas as a source gas of silicon, and GeH in hydrogen gas. 4. A method of manufacturing a transistor of a semiconductor device, comprising forming a mixed gas containing 1 to 100% of 4 gases or a mixed gas containing 1 to 100% of GeF 4 as a germanium source gas. 제 1 항에 있어서,The method of claim 1, 상기 보론 이온 주입시 사용하는 보론 불순물로는 B11또는 BF2를 사용하는 것을 특징으로 하는 반도체 소자의 트랜지스터 제조 방법.The method of manufacturing a transistor of a semiconductor device, characterized in that B 11 or BF 2 is used as the boron impurities used in the boron ion implantation. 제 1 항에 있어서,The method of claim 1, 상기 질소 이온 주입시 사용하는 질소로는 14N+또는 28N2 +를 사용하는 것을 특징으로 하는 반도체 소자의 트랜지스터 제조 방법.The method of manufacturing a transistor of a semiconductor device, characterized in that 14N + or 28N 2 + is used as the nitrogen used for the nitrogen ion implantation. 제 1 항에 있어서,The method of claim 1, 상기 보론 이온 주입은 보론 불순물 가스를 이용해 인-시투로 주입하거나, 이온 주입 공정을 이용한 익스-시투 방법으로 불순물을 주입하는 것을 특징으로 하는 반도체 소자의 트랜지스터 제조 방법.The boron ion implantation is implanted in-situ using a boron impurity gas, or a method of manufacturing a transistor of a semiconductor device, characterized in that the implant is implanted by an ex-situ method using an ion implantation process.
KR1020000074647A 2000-12-08 2000-12-08 Method of manufacturing a transistor in a semiconductor device KR100671663B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000074647A KR100671663B1 (en) 2000-12-08 2000-12-08 Method of manufacturing a transistor in a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000074647A KR100671663B1 (en) 2000-12-08 2000-12-08 Method of manufacturing a transistor in a semiconductor device

Publications (2)

Publication Number Publication Date
KR20020045263A true KR20020045263A (en) 2002-06-19
KR100671663B1 KR100671663B1 (en) 2007-01-18

Family

ID=27680550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000074647A KR100671663B1 (en) 2000-12-08 2000-12-08 Method of manufacturing a transistor in a semiconductor device

Country Status (1)

Country Link
KR (1) KR100671663B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451039B1 (en) * 2000-12-20 2004-10-02 주식회사 하이닉스반도체 Method of forming a gate electrode in a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451039B1 (en) * 2000-12-20 2004-10-02 주식회사 하이닉스반도체 Method of forming a gate electrode in a semiconductor device

Also Published As

Publication number Publication date
KR100671663B1 (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US5393676A (en) Method of fabricating semiconductor gate electrode with fluorine migration barrier
US5972783A (en) Method for fabricating a semiconductor device having a nitrogen diffusion layer
US6030874A (en) Doped polysilicon to retard boron diffusion into and through thin gate dielectrics
US7736968B2 (en) Reducing poly-depletion through co-implanting carbon and nitrogen
KR100347544B1 (en) Method of manufacturing a junction in a semiconductor device
US6376318B1 (en) Method of manufacturing a semiconductor device
US8318571B2 (en) Method for forming P-type lightly doped drain region using germanium pre-amorphous treatment
EP1403915B1 (en) Method for fabricating a MOS transistor
CN100547793C (en) Dual gate CMOS semiconductor device and manufacture method thereof
WO2006053338A2 (en) System and method for improved dopant profiles in cmos transistors
US6753232B2 (en) Method for fabricating semiconductor device
US20160056258A1 (en) Semiconductor devices having polysilicon gate patterns and methods of fabricating the same
KR100671663B1 (en) Method of manufacturing a transistor in a semiconductor device
KR100336572B1 (en) Method for forming semiconductor device with gate electrode using poly silicon-germanium
KR100313510B1 (en) Fabrication method of semiconductor device
KR19980046001A (en) Semiconductor device and manufacturing method thereof
KR100618680B1 (en) Method of making poly silicon layer
KR100598162B1 (en) Method for forming gate of a semiconductor device
KR100587053B1 (en) Method for manufacturing a semiconductor device
KR100327433B1 (en) Method for fabricating junction of semiconductor device
KR20020002899A (en) Method for forming gate electrode of semiconductor device
KR20020052682A (en) Method of manufacturing a transistor in a semiconductro device
KR100228330B1 (en) Mosfet device and a manufacturing method thereof
KR100331277B1 (en) Method for forming dual gate electrode
KR100237024B1 (en) Method for mannufacturing semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101224

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee