KR20020002899A - Method for forming gate electrode of semiconductor device - Google Patents

Method for forming gate electrode of semiconductor device Download PDF

Info

Publication number
KR20020002899A
KR20020002899A KR1020000037263A KR20000037263A KR20020002899A KR 20020002899 A KR20020002899 A KR 20020002899A KR 1020000037263 A KR1020000037263 A KR 1020000037263A KR 20000037263 A KR20000037263 A KR 20000037263A KR 20020002899 A KR20020002899 A KR 20020002899A
Authority
KR
South Korea
Prior art keywords
film
poly
silicon
silicon germanium
dopant
Prior art date
Application number
KR1020000037263A
Other languages
Korean (ko)
Inventor
안태항
주문식
박지수
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020000037263A priority Critical patent/KR20020002899A/en
Publication of KR20020002899A publication Critical patent/KR20020002899A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen

Abstract

PURPOSE: A method for forming gate electrode of a semiconductor device is provided to prevent a penetration of a dopant by forming a diffusion preventing layer after heat treating a silicon seed layer under a nitrogen gas. CONSTITUTION: A gate oxide layer(110) is formed on a semiconductor substrate(100). A silicon seed layer(120) is formed on the gate oxide layer. A diffusion preventing layer is formed on the silicon seed layer and the gate oxide layer after heat treating the silicon seed layer. A polysilicon germanium layer(130) is formed on the resultant structure. The poly silicon germanium layer is doped by a dopant, thereby preventing efficiently a penetration of the dopant.

Description

반도체 소자의 게이트전극 형성방법{Method for forming gate electrode of semiconductor device}Method for forming gate electrode of semiconductor device

본 발명은 반도체소자의 게이트전극 형성방법에 관한 것으로써, 보다 자세하게는 게이트전극 형성 시, 폴리-실리콘게르마늄막을 형성한 후, 이에 도펀트를 주입하고 열처리공정을 실시할 때 도펀트가 확산하면서 반도체기판에 침투하는 것을방지할 수 있는 확산방지막을 형성할 수 있도록 한 반도체소자의 게이트전극 형성방법에 관한 것이다.The present invention relates to a method for forming a gate electrode of a semiconductor device, and more particularly, to form a poly-silicon germanium film during the formation of a gate electrode, and then dopants are injected into the semiconductor substrate while the dopant is diffused during the heat treatment process. A method of forming a gate electrode of a semiconductor device capable of forming a diffusion barrier film that can prevent penetration.

디자인룰이 감소함에 따라 N+ 폴리게이트 PMOS의 경우 보론 카운터 도핑(Counter doping)에 의해 채널 길이가 짧아지는 짧은 채널 효과(Short channel effect)가 발생하고 이로 인해 문턱전압이 불안정하고 누설전류가 증가되는 문제점이 발생하여 매몰채널(Buried channel) PMOS 트랜지스터 특성을 개선할 필요성이 제기되었다.As the design rule decreases, N + polygate PMOS causes short channel effect that shortens the channel length by boron counter doping, which causes the threshold voltage to be unstable and the leakage current increases. This has led to the need to improve the characteristics of buried channel PMOS transistors.

그래서, 이를 해결하기 위해 소자의 축소가 가능하고 낮은 전압에서도 안정적으로 사용할 수 있는 이중게이트 전극(Dual gate electrode)을 연구 개발하게 되었다.Therefore, in order to solve this problem, the researcher has developed a dual gate electrode which can reduce the size of the device and can be used stably at low voltage.

종래의 이중게이트 전극의 형성공정은 반도체기판 상부에 게이트산화막을 형성하고, 그 상부에 1000Å 이하의 얇은 폴리실리콘막을 형성한 후, 상기 폴리실리콘막에 붕소와 같은 P형 도펀트를 주입하고 열처리공정을 실시함으로써, 붕소를 확산시키고 활성화시켜 PMOS 트랜지스터 영역을 형성하였다.In the conventional double gate electrode forming process, a gate oxide film is formed on a semiconductor substrate, a thin polysilicon film of 1000 Å or less is formed thereon, a P-type dopant such as boron is injected into the polysilicon film, and a heat treatment process is performed. By doing so, boron was diffused and activated to form a PMOS transistor region.

하지만 상기와 같은 방법에서 있어서, 열처리공정 시에 붕소가 게이트산화막을 뚫고 반도체기판에 침투하여 문턱전압(threshold voltage)이 불안정해지고, 짧은 채널 효과(Short channel effect)를 가속화시키는 문제점이 있었다.However, in the above-described method, boron penetrates through the gate oxide layer and penetrates the semiconductor substrate during the heat treatment process, thereby making the threshold voltage unstable and accelerating the short channel effect.

또한, 붕소가 반도체기판에 침투하는 것을 방지하기 위해 열처리 공정을 행하지 않은 경우에는 붕소의 확산이 충분하게 일어나지 않아 게이트전극의 도펀트공핍(Gate depletion)현상이 발생하고, 붕소의 활성화률이 낮아지면서 폴리실리콘막의 저항이 증가하여 게이트 특성을 열화시키는 문제점이 발생하였다.In addition, when the heat treatment process is not performed to prevent boron from penetrating the semiconductor substrate, boron diffusion does not sufficiently occur, causing dopant depletion of the gate electrode, and lowering the activation rate of boron. The resistance of the silicon film is increased, causing a problem of deteriorating the gate characteristics.

그래서, 이를 해결하기 위해 폴리-실리콘게르마늄막(Si1-XGeX)을 게이트전극으로 사용하고자 하는 연구가 진행되었다.Thus, in order to solve this problem, a research has been conducted to use a poly-silicon germanium film (Si 1-X Ge X ) as a gate electrode.

폴리-실리콘게르마늄막은게르마늄함량에 따라 페르미에너지 레벨(Fermi energy)을 실리콘의 미드밴드갭(Mid band gap) 근처로 이동시킬 수 있어서, 양호한 대칭성 문턱전압(Symmetric threshold voltage)을 얻을 수 있고, NMOS영역과 PMOS영역을 모두 표면채널(Surface channel)모드에서 작동시킬 수 있다.The poly-silicon germanium film can move the Fermi energy level near the mid band gap of silicon according to the germanium content, so that a good symmetric threshold voltage can be obtained and the NMOS region can be obtained. Both the and PMOS regions can be operated in surface channel mode.

또한 상기 폴리-실리콘게르마늄막에 도펀트를 주입하고 열처리공정을 시행할 때, 폴리-실리콘게르마늄막 내에서 도펀트가 반도체기판에 침투하는 것이 억제되며, 게르마늄의 함량이 20%인 경우, 게이트 도펀트 공핍현상도 감소시킬 수 있어 종래의 폴리실리콘막에 비해 안정된 특성을 가진다.In addition, when the dopant is injected into the poly-silicon germanium film and the heat treatment process is performed, the dopant is prevented from penetrating into the semiconductor substrate in the poly-silicon germanium film, and when the germanium content is 20%, the gate dopant depletion phenomenon It can also be reduced, and has a stable characteristic compared with the conventional polysilicon film.

하지만, 최근에 반도체소자가 점점 소형화되는 추세에 있기 때문에 폴리-실리콘게르마늄막의 사용 시에도 도펀트가 반도체기판에 침투하는 현상을 더욱 효과적으로 억제시켜야 될 필요성이 있다.However, in recent years, as semiconductor devices are becoming more and more miniaturized, there is a need to more effectively suppress the dopant from penetrating the semiconductor substrate even when using a poly-silicon germanium film.

상기와 같은 필요성을 해결하기 위하여 창안된 본 발명의 목적은 게이트전극 형성 시, 폴리-실리콘게르마늄막을 형성한 후, 이에 도펀트를 주입하고 열처리공정을 실시할 때 도펀트가 확산하면서 반도체기판에 침투하는 것을 방지할 수 있는 확산방지막을 형성할 수 있도록 한 반도체소자의 게이트전극 형성방법을 제공하는데있다.An object of the present invention devised to solve the above necessity is to form a poly-silicon germanium film at the time of forming the gate electrode, and then to infiltrate the semiconductor substrate while the dopant is diffused during the dopant injection and heat treatment process. The present invention provides a method of forming a gate electrode of a semiconductor device capable of forming a diffusion preventing film that can be prevented.

도 1 내지 도 4는 본 발명에 따른 반도체소자의 게이트전극 형성방법을 설명하기 위해 도시된 단면도들이다.1 to 4 are cross-sectional views illustrating a method of forming a gate electrode of a semiconductor device according to the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of symbols for main parts of the drawings *

100 ; 반도체기판 110 ; 게이트산화막100; Semiconductor substrate 110; Gate oxide

110'; 질산화막 120 ; 실리콘시드막110 '; Nitriding film 120; Silicon seed film

120'; 질화막 130 ; 폴리-실리콘게르마늄막120 '; Nitride film 130; Poly-silicon germanium film

상기와 같은 목적을 달성하기 위한 본 발명은 반도체기판 상부에 게이트산화막을 형성하는 단계와; 상기 게이트산화막 상부에 실리콘시드막을 형성하는 단계와; 상기 실리콘시드막에 열처리공정을 실시하여 상기 실리콘시드막의 상부 및 상기 게이트산화막 상부에 확산방지막을 형성하는 단계와; 상기 결과물 상부에 폴리-실리콘게르마늄막을 형성하는 단계와; 상기 폴리-실리콘게르마늄막에 도펀트를 도핑하는 단계; 를 포함하여 이루어진 것을 특징으로 한다.The present invention for achieving the above object comprises the steps of forming a gate oxide film on the semiconductor substrate; Forming a silicon seed film on the gate oxide film; Performing a heat treatment process on the silicon seed layer to form a diffusion barrier layer on the silicon seed layer and on the gate oxide layer; Forming a poly-silicon germanium film on the resultant; Doping a dopant to the poly-silicon germanium film; Characterized in that comprises a.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대해 설명하고자 한다. 또한, 본 실시예는 발명의 권리범위를 제한하는 것이 아니고, 단지 예시로 제시된 것이다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. In addition, this embodiment does not limit the scope of the invention, but is presented by way of example only.

도 1 내지 도 4는 본 발명에 따른 반도체소자의 게이트산화막 형성방법을 설명하기 위해 도시된 단면도들이다.1 to 4 are cross-sectional views illustrating a method of forming a gate oxide film of a semiconductor device according to the present invention.

우선, 도 1에 도시된 바와 같이 반도체기판(100) 상부에 게이트산화막(110)을 형성한 후, 상기 게이트산화막(110) 상부에 실리콘시드막(120)을 450∼550℃의 온도범위에서 30∼100Å의 두께로 형성한다.First, as shown in FIG. 1, after the gate oxide layer 110 is formed on the semiconductor substrate 100, the silicon seed layer 120 is formed on the gate oxide layer 110 at a temperature in the range of 450 to 550 ° C .. It is formed to a thickness of ˜100 mm 3.

그 다음, 도 2에 도시된 바와 같이 상기 실리콘시드막(120)에 질소분위기 하에서 열처리공정을 실시한다.Next, as shown in FIG. 2, the silicon seed film 120 is subjected to a heat treatment process under a nitrogen atmosphere.

상기 열처리공정은 N2,NH3중 어느 하나를 이용한 질소분위기와 800∼950℃ 의 온도에서 RTP방식으로 30∼120초간 실시되는데, 이로 인해 도 3에 도시된 바와 같이 상기 실리콘시드막(120)의 상부에는 질화막(120')이 형성되고, 질소성분이 상기 게이트산화막(110)까지 확산되면서 상기 게이트산화막(110) 상부에는 질산화막(110')이 형성된다.The heat treatment process is carried out for 30 to 120 seconds in a nitrogen atmosphere using any one of N 2, NH 3 and the RTP method at a temperature of 800 ~ 950 ℃, this is the silicon seed film 120 as shown in FIG. The nitride film 120 'is formed on the upper portion of the substrate, and the nitrogen component diffuses to the gate oxide film 110, and the nitride oxide film 110' is formed on the gate oxide film 110.

상기와 같이 형성된 질화막(120') 및 질산화막(110')은 확산방지막의 역할을 하게 된다. 즉, 이후 게이트전극으로 폴리-실리콘게르마늄막(130)을 형성하고 이에 도펀트를 주입한 후 열처리공정을 실시할 때, 상기 질화막(120') 및 질산화막(110')으로 인해 도펀트가 반도체기판(100)에 침투하는 것이 방지된다.The nitride film 120 'and the nitride oxide film 110' formed as described above serve as a diffusion barrier. That is, when the poly-silicon germanium layer 130 is formed as a gate electrode and a dopant is injected thereinto, and then a heat treatment process is performed, the dopant is formed of a semiconductor substrate due to the nitride film 120 'and the nitride oxide film 110'. Penetration is prevented.

상기와 같은 확산방지막을 형성한 후, 도 4에 도시된 바와 같이 상기 결과물의 상부에 폴리-실리콘게르마늄막(130)을 형성한다.After forming the diffusion barrier as described above, as shown in FIG. 4, a poly-silicon germanium film 130 is formed on the resultant.

상기 실리콘-게르마늄막(130)은 LPCVD(Low Pressure Chemical Vapor Deposition), VLPCVD(Very Low Pressure Chemical Vapor Deposition), PE-VLPCVD(Plasma Enhanced-Very Low Pressure Chemical Vapor Deposition), UHVCVD(Ultrahigh Vacuum Chemical Vapor Deposition), RTCVD(Rapid Thermal Chemical Vapor Deposition), APCVD(Atmosphere Pressure Chemical Vapor Deposition), MBE(Molecular Beam Epitaxy)방식 중 어느 하나를 이용하여 700∼1500Å의 두께로 형성되는데, 이때 상기 실리콘-게르마늄막(130) 내의 게르마늄 함량은 10∼70%이고, 공정압력은 5∼1000mTorr이며, 온도범위는 500∼650℃이다.The silicon-germanium layer 130 may include low pressure chemical vapor deposition (LPCVD), very low pressure chemical vapor deposition (VLPCVD), plasma enhanced-very low pressure chemical vapor deposition (PE-VLPCVD), and ultrahigh vacuum chemical vapor deposition (UHVCVD). ), RTCVD (Rapid Thermal Chemical Vapor Deposition), APCVD (Atmosphere Pressure Chemical Vapor Deposition), MBE (Molecular Beam Epitaxy) method using any one of the thickness of 700 ~ 1500Å, wherein the silicon-germanium film 130 The germanium content in) is 10-70%, the process pressure is 5-1000 mTorr, and the temperature range is 500-650 ° C.

그리고, 상기 폴리-실리콘게르마늄막(130) 형성 시 실리콘의 소스로는 SiH4, Si6H6중 어느 하나를 사용하고, 게르마늄의 소스로는 GeH4, GeF4중 어느 하나를 사용하면 된다.In addition, the poly-to-source in the silicon germanium film 130 during the formation of silicon is to use any one of SiH 4, Si 6 H 6, it is when the source back to the germanium is used for any one of GeH 4, GeF 4.

또한, 상기 폴리-실리콘게르마늄막(130) 형성공정은 수소가스를 이용한 수소분위기 하에서 진행되는데, 상기 SiH4및 Si6H6가스는 수소가스 내에 10∼100% 정도 함유된 것을 사용하고, 상기 GeH4, GeF4가스는 수소가스 내에 1∼100% 정도 함유된 것을 사용한다.In addition, the poly-silicon germanium film 130 forming process is carried out under a hydrogen atmosphere using hydrogen gas, the SiH 4 and Si 6 H 6 gas is used that contains about 10 to 100% in hydrogen gas, the GeH 4 , GeF 4 gas is used containing about 1 to 100% in hydrogen gas.

이후, 상기 폴리-실리콘게르마늄막(130)에 도펀트를 도핑하고, 열공정을 실시한다.Thereafter, a dopant is doped into the poly-silicon germanium layer 130 and a thermal process is performed.

이때, 상기 폴리-실리콘게르마늄막(130)에 주입되는 도펀트는 B, BF2중 어느 하나를 사용하는데, 상기 폴리-실리콘게르마늄 막(130)이 형성될 때, 도펀트가스를 사용한 인-시튜방식으로 상기 폴리-실리콘게르마늄막(130)에 도핑되거나 상기 폴리-실리콘게르마늄막(130)을 형성한 후, 이온주입방식으로 상기 폴리-실리콘게르마늄막(130)에 도핑된다.In this case, the dopant injected into the poly-silicon germanium film 130 may use any one of B and BF 2. When the poly-silicon germanium film 130 is formed, an in-situ method using a dopant gas may be used. After the poly-silicon germanium layer 130 is doped or the poly-silicon germanium layer 130 is formed, the poly-silicon germanium layer 130 is doped by ion implantation.

그리고, 열공정을 실시하여 도펀트를 고르게 확산시킬 때 상기에서 형성된 질화막(120') 및 질산화막(110')으로 인해 도펀트가 반도체기판(100)에 침투하는 것이 방지된다.In addition, when the dopant is uniformly diffused by performing the thermal process, the dopant is prevented from penetrating into the semiconductor substrate 100 due to the nitride film 120 'and the nitride oxide film 110' formed above.

상기한 바와 같이 본 발명은 반도체소자의 게이트전극 형성방법에 관한 것으로써, 반도체기판의 상부에 게이트산화막 및 실리콘시드막을 차례로 형성한 후, 상기 실리콘시드막에 질소분위기 하에서 열처리공정을 실시하여 상기 실리콘시드막의 상부 및 상기 게이트산화막의 상부에 확산방지막을 형성함으로써, 이후 상기 실리콘시드막의 상부에 게이트전극으로 폴리-실리콘게르마늄막을 형성하고, 이에 도펀트를 주입한 후 열공정을 실시할 때 상기 확산방지막으로 인해 도펀트가 확산하면서 반도체기판에 침투하는 것이 방지되어 게이트특성 및 반도체소자의 전기적 특성을 향상시킬 수 있는 효과를 가진다.As described above, the present invention relates to a method for forming a gate electrode of a semiconductor device. The gate oxide film and a silicon seed film are sequentially formed on a semiconductor substrate, and then the silicon seed film is subjected to a heat treatment process under a nitrogen atmosphere. By forming a diffusion barrier layer on the seed layer and the gate oxide layer, a poly-silicon germanium layer is formed on the silicon seed layer as a gate electrode, and then a dopant is injected into the diffusion barrier layer. As a result, dopants are prevented from penetrating into the semiconductor substrate while being diffused, thereby improving the gate characteristics and electrical characteristics of the semiconductor device.

Claims (19)

반도체기판 상부에 게이트산화막을 형성하는 단계와;Forming a gate oxide film on the semiconductor substrate; 상기 게이트산화막 상부에 실리콘시드막을 형성하는 단계와;Forming a silicon seed film on the gate oxide film; 상기 실리콘시드막에 열처리공정을 실시하여, 상기 실리콘시드막의 상부 및 상기 게이트산화막의 상부에 확산방지막을 형성하는 단계와;Performing a heat treatment process on the silicon seed film to form a diffusion barrier film on the silicon seed film and on the gate oxide film; 상기 결과물 상부에 폴리-실리콘게르마늄막을 형성하는 단계와;Forming a poly-silicon germanium film on the resultant; 상기 폴리-실리콘게르마늄막에 도펀트를 도핑하는 단계;Doping a dopant to the poly-silicon germanium film; 를 포함하여 이루어지는 것을 특징으로 하는 반도체 소자의 게이트전극 형성방법.Gate electrode forming method of a semiconductor device comprising a. 제 1항에 있어서, 상기 실리콘시드막은 30∼100Å의 두께로 증착됨을 특징으로 하는 반도체 소자의 게이트전극 형성방법.The method of claim 1, wherein the silicon seed film is deposited to a thickness of about 30 to about 100 microns. 제 1항에 있어서, 상기 실리콘시드막은 450∼550℃의 온도범위에서 증착됨을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the silicon seed film is deposited at a temperature in the range of 450 to 550 ° C. 7. 제 1항에 있어서, 상기 열처리공정은 N2,NH3중 어느 하나를 이용한 질소분위기의 반응로에서 실시되는 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the heat treatment is performed in a reactor of a nitrogen atmosphere using any one of N 2 and NH 3 . 제 1항에 있어서, 상기 열처리공정은 800∼950℃의 온도범위에서 RTP방식으로 실시되는 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the heat treatment is performed in an RTP method at a temperature in a range of 800 ° C. to 950 ° C. 7. 제 1항에 있어서, 상기 열처리공정은 30∼120초간 실시되는 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the heat treatment is performed for 30 to 120 seconds. 제 1항에 있어서, 상기 실리콘시드막의 상부에 형성된 산화방지막은 질화막이고, 상기 게이트산화막 상부에 형성된 확산방지막은 질산화막인 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the anti-oxidation film formed on the silicon seed film is a nitride film, and the diffusion barrier is formed on the gate oxide film. 제 1항에 있어서, 상기 폴리-실리콘게르마늄막은 700∼1500Å의 두께로 증착됨을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the poly-silicon germanium film is deposited to a thickness of 700 to 1500 Å. 제 1항에 있어서, 상기 폴리-실리콘게르마늄막 내의 게르마늄 함량은 10∼70%인 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method according to claim 1, wherein the germanium content in the poly-silicon germanium film is 10 to 70%. 제 1항에 있어서, 상기 폴리-실리콘게르마늄은 수소분위기 하에서 LPCVD, VLPCVD, PE-VLPCVD, UHVCVD, RTCVD, APCVD, MBE방식 중 어느 하나를 이용하여 형성됨을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the poly-silicon germanium is formed by using any one of LPCVD, VLPCVD, PE-VLPCVD, UHVCVD, RTCVD, APCVD, MBE method under a hydrogen atmosphere. 제 1항에 있어서, 상기 폴리-실리콘게르마늄막 형성 시, 실리콘의 소스로는 SiH4, Si6H6중 어느 하나를 사용하는 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the silicon source is formed of SiH 4 or Si 6 H 6 as a source of silicon. 제 11항에 있어서, 상기 SiH4및 Si6H6는 수소가스 내에 10∼100% 정도 함유된 것을 사용함을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 11, wherein the SiH 4 and Si 6 H 6 are contained in hydrogen gas in an amount of about 10 to 100%. 제 1항에 있어서, 상기 폴리-실리콘게르마늄막 형성 시, 게르마늄의 소스로는 GeH4, GeF4중 어느 하나를 사용하는 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the poly-, as a source of germanium, silicon germanium film is formed during GeH 4, GeF 4 any one method of forming the gate electrode of the semiconductor device characterized by the use of a. 제 13항에 있어서, 상기 GeH4, GeF4는 수소가스 내에 1∼100% 정도 함유된 것을 사용함을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 13, wherein the GeH 4 and the GeF 4 contain about 1 to 100% of hydrogen gas. 제 1항에 있어서, 상기 폴리-실리콘게르마늄막 형성 시, 공정압력은 5∼1000mTorr인 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the process pressure is 5 to 1000 mTorr when the poly-silicon germanium film is formed. 제 1항에 있어서, 상기 폴리-실리콘게르마늄 형성은 500∼650℃의 온도범위에 진행됨을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the poly-silicon germanium is formed at a temperature in a range of 500 ° C. to 650 ° C. 7. 제 1항에 있어서, 상기 폴리-실리콘게르마늄막에 주입되는 도펀트는 B, BF2중 어느 하나인 것을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the dopant to be injected into the poly-silicon germanium film is any one of B and BF 2 . 제 1항에 있어서, 상기 도펀트는 상기 폴리-실리콘게르마늄막이 형성될 때, 도펀트가스를 사용한 인-시튜방식으로 상기 폴리-실리콘게르마늄막에 도핑됨을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein when the poly-silicon germanium film is formed, the dopant is doped into the poly-silicon germanium film in an in-situ manner using a dopant gas. 제 1항에 있어서, 상기 도펀트는 상기 폴리-실리콘게르마늄막을 형성한 후, 이온주입방식으로 상기 폴리-실리콘게르마늄막에 도핑됨을 특징으로 하는 반도체소자의 게이트전극 형성방법.The method of claim 1, wherein the dopant is doped into the poly-silicon germanium layer by ion implantation after forming the poly-silicon germanium layer.
KR1020000037263A 2000-06-30 2000-06-30 Method for forming gate electrode of semiconductor device KR20020002899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000037263A KR20020002899A (en) 2000-06-30 2000-06-30 Method for forming gate electrode of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000037263A KR20020002899A (en) 2000-06-30 2000-06-30 Method for forming gate electrode of semiconductor device

Publications (1)

Publication Number Publication Date
KR20020002899A true KR20020002899A (en) 2002-01-10

Family

ID=19675497

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000037263A KR20020002899A (en) 2000-06-30 2000-06-30 Method for forming gate electrode of semiconductor device

Country Status (1)

Country Link
KR (1) KR20020002899A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451039B1 (en) * 2000-12-20 2004-10-02 주식회사 하이닉스반도체 Method of forming a gate electrode in a semiconductor device
KR100640572B1 (en) * 2000-09-20 2006-10-31 삼성전자주식회사 Method for forming a transistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195975A (en) * 1984-03-19 1985-10-04 Fujitsu Ltd Semiconductor device
KR980005455A (en) * 1996-06-21 1998-03-30 김주용 Gate electrode formation method of semiconductor device
KR0137901B1 (en) * 1994-02-07 1998-04-27 문정환 Mos transistor device & method for fabricating the same
KR100252898B1 (en) * 1998-02-12 2000-04-15 김영환 Semiconductor element manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195975A (en) * 1984-03-19 1985-10-04 Fujitsu Ltd Semiconductor device
KR0137901B1 (en) * 1994-02-07 1998-04-27 문정환 Mos transistor device & method for fabricating the same
KR980005455A (en) * 1996-06-21 1998-03-30 김주용 Gate electrode formation method of semiconductor device
KR100252898B1 (en) * 1998-02-12 2000-04-15 김영환 Semiconductor element manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640572B1 (en) * 2000-09-20 2006-10-31 삼성전자주식회사 Method for forming a transistor
KR100451039B1 (en) * 2000-12-20 2004-10-02 주식회사 하이닉스반도체 Method of forming a gate electrode in a semiconductor device

Similar Documents

Publication Publication Date Title
US5674788A (en) Method of forming high pressure silicon oxynitride gate dielectrics
US5972783A (en) Method for fabricating a semiconductor device having a nitrogen diffusion layer
US5972765A (en) Use of deuterated materials in semiconductor processing
US7736968B2 (en) Reducing poly-depletion through co-implanting carbon and nitrogen
KR100304083B1 (en) Method of manufacturing semiconductor device having MIS structure
US6376318B1 (en) Method of manufacturing a semiconductor device
KR100347544B1 (en) Method of manufacturing a junction in a semiconductor device
CN100547793C (en) Dual gate CMOS semiconductor device and manufacture method thereof
US7358128B2 (en) Method for manufacturing a transistor
US6753232B2 (en) Method for fabricating semiconductor device
US20020168828A1 (en) Method of reducing threshold voltage shifting of a gate
US6372582B1 (en) Indium retrograde channel doping for improved gate oxide reliability
KR20020002899A (en) Method for forming gate electrode of semiconductor device
KR0137901B1 (en) Mos transistor device & method for fabricating the same
KR100586554B1 (en) Method for manufacturing gate electrode of semiconductor device
KR100671663B1 (en) Method of manufacturing a transistor in a semiconductor device
KR100618680B1 (en) Method of making poly silicon layer
KR100331277B1 (en) Method for forming dual gate electrode
KR100336572B1 (en) Method for forming semiconductor device with gate electrode using poly silicon-germanium
KR100313510B1 (en) Fabrication method of semiconductor device
KR100598162B1 (en) Method for forming gate of a semiconductor device
KR100306812B1 (en) Method of forming gate for semiconductor device
KR20040025187A (en) Gate Insulating Structure Of Semiconductor Device And Method Of Forming The Same
KR100305720B1 (en) Method For Forming The Gate Electrode Semiconductor Device
KR20020002808A (en) Method of manufacturing poly-silicon layer in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20061113

Effective date: 20070418

S901 Examination by remand of revocation
E902 Notification of reason for refusal
S601 Decision to reject again after remand of revocation
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20071203

Effective date: 20080808