KR20020040505A - Method for managing air velocity of tuyere by coal injection ratio - Google Patents

Method for managing air velocity of tuyere by coal injection ratio Download PDF

Info

Publication number
KR20020040505A
KR20020040505A KR1020000070569A KR20000070569A KR20020040505A KR 20020040505 A KR20020040505 A KR 20020040505A KR 1020000070569 A KR1020000070569 A KR 1020000070569A KR 20000070569 A KR20000070569 A KR 20000070569A KR 20020040505 A KR20020040505 A KR 20020040505A
Authority
KR
South Korea
Prior art keywords
tuyere
pulverized coal
diameter
coal injection
blast furnace
Prior art date
Application number
KR1020000070569A
Other languages
Korean (ko)
Inventor
김태선
조병관
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR1020000070569A priority Critical patent/KR20020040505A/en
Publication of KR20020040505A publication Critical patent/KR20020040505A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE: A method for controlling a flow rate of tuyere according to pulverized coal injection ratio is provided which efficiently performs high pulverized coal operation by gradually increasing the flow rate of the tuyere as the pulverized coal injection ratio is being increased, thereby guiding improvement of blowing energy. CONSTITUTION: The method for controlling a flow rate of tuyere according to pulverized coal injection ratio comprises the steps of determining a pulverized coal injection amount according to production in a blast furnace; reducing a diameter of the tuyere so as to increase the flow rate of the tuyere proportionally to the pulverized coal injection amount by controlling diameters of tuyeres(31) a plurality of which are installed on the outer circumference of the blast furnace after the step of determining the pulverized coal injection amount; and constantly controlling an overall air volume supplied into the blast furnace in the process of performing the step of reducing a diameter of the tuyere by controlling diameters of tuyeres(31), wherein the diameter of the tuyere is controlled by attaching or detaching tuyere rings(32) having various diameters to or from the tuyere in the step of controlling a diameter of the tuyere, and the tuyere rings(32) are symmetrically installed on the plurality of tuyeres(31) around the center of the blast furnace.

Description

미분탄 취입비에 따른 풍구유속 관리방법{METHOD FOR MANAGING AIR VELOCITY OF TUYERE BY COAL INJECTION RATIO}How to manage wind speed according to pulverized coal injection cost {METHOD FOR MANAGING AIR VELOCITY OF TUYERE BY COAL INJECTION RATIO}

본 발명은 미분탄 취입비 증대시 풍구유속을 단계적으로 증가시켜 송풍에너지 향상을 유도하여 고미분탄 조업을 효율적으로 수행할수 있도록 한 미분탄 취입비에 따른 풍구유속 관리방법에 관한 것이다.The present invention relates to a method for managing the wind tunnel flow rate according to the coal dust injection rate to efficiently carry out the high pulverized coal operation by increasing the wind tunnel flow rate step by step when increasing the coal dust injection rate.

통상 도 1의 도시와 같이, 고로조업에서 고미분탄 조업시 장입되는 연료로서 코크스(1)와 미분탄(2)이 있는데 코크스(1)는 괴상태로 장입되며 고로내에서 통기성을 유지하는데 중요한 역할을 담당하고 있다.As shown in FIG. 1, fuels charged during pulverized coal operation in blast furnace operations include coke (1) and pulverized coal (2). Coke (1) is charged in a lumped state and plays an important role in maintaining breathability in the blast furnace. I am in charge.

그러나, 코크스(1)는 값이 비싸고 제조공정이 복잡하기 때문에 최근에는 미분탄으로 이를 대체하고 있다.However, coke 1 has been replaced by pulverized coal recently because of its high cost and complicated manufacturing process.

미분탄은 분(가루)상태로 고로에 취입되기 때문에 취입량이 증가할수록 상대적으로 코크스(1)가 줄어들게 되어 통기성이 악화되고 풍압이 상승하는 문제점이 발생하고 노황이 불안정해지는 조업특성이 있다.Since the pulverized coal is blown into the blast furnace in powder (powder) state, as the amount of blowing increases, the coke (1) is relatively reduced, resulting in deterioration of air permeability, increase in wind pressure, and unstable yellowing.

종래에는 이러한 풍압상승을 방지하기 위하여 미분탄 취입비가 상승할수록 풍구유속을 일정하게 유지하거나 혹은 소폭 상승시켜서 풍압이 급격하게 상승하는 것을 억제하는 조업방법을 사용하였다.Conventionally, in order to prevent such an increase in wind pressure, as the pulverized coal injection ratio increases, an operating method of keeping the wind hole flow rate constant or slightly increasing the wind pressure rises is suppressed.

만약 미분탄 취입비가 급격히 상승되면 단위 시간당 많은량의 미분탄을 노내에 취입하게 되므로 연소성이 저하하여 노내에 미처 연소되지 못한 상태로 퇴적하게 되고, 특히 풍구 주위에 특히 퇴적층(3)이 많이 분포하게 된다.If the pulverized coal injection ratio is drastically increased, a large amount of pulverized coal is injected into the furnace, and thus the combustibility is lowered and the coal is not burned in the furnace, and the sediment layer 3 is particularly distributed around the tuyere.

이것을 버드네스트(4)라고 칭하며 송풍에너지(5)가 침투하지 못할정도의 딱딱한 층을 이루게 된다.This is called a bird nest (4) and forms a hard layer that can not penetrate the blowing energy (5).

따라서, 풍구로부터 취입되는 풍량이 노중심부까지 원할하게 침투하지 못하여 송풍에너지가 노중심까지 효과적으로 전달되지 못하게 되므로 노심의 온도(6)를 저하시키게 되고 이는 풍구선단(7)의 온도저하를 불러와 미분탄 다량취입시 분위기 온도저하에 의해 연소성을 현저하게 저하시키는 결과를 초래하게 된다.Therefore, since the amount of air blown in from the tuyere does not penetrate smoothly to the center of the furnace, the blowing energy cannot be effectively transmitted to the hearth of the core, thereby lowering the temperature of the core 6, which brings about a temperature decrease of the tuyere tip 7, thereby pulverizing coal dust. When a large amount of blowing is caused, the combustibility is remarkably lowered due to the decrease in the ambient temperature.

뿐만 아니라, 취입된 미분탄이 효율적으로 연소되지 못하고 풍구 주위의 벽부에 퇴적(3)됨으로써 노벽 열부하를 초래하게 된다.In addition, the injected pulverized coal is not efficiently burned and is deposited 3 on the wall around the tuyere, resulting in a furnace wall heat load.

이러한 문제를 해결하기 위해서는 용선온도(8)를 올려 주든지 아니면 풍구선단온도(7)를 올리기 위해 산소부화량을 증가시켜 주거나 혹은 고로 휴풍시에 직접적으로 버드 네스트를 물리적으로 파괴하여야만 하나 이는 고로조업에서 연료비의 상승과 산소증가에 따른 원가상승 부담을 안고 있으므로 바람직하지 못하며 노황에도 불리하게 작용하므로 미분탄비 상승에 따라 안정적인 조업을 유지할 수 없게 된다.In order to solve this problem, it is necessary to increase the molten iron temperature (8) or to increase the oxygen enrichment amount to increase the tuft tip temperature (7) or to physically destroy the bird nest during the blast furnace airflow. As it bears the cost increase due to the increase in fuel cost and oxygen increase, it is not preferable and adversely affects the aging.

본 발명은 상기와 같은 종래 기술이 갖는 제반 문제점을 감안하여 이를 해결하고자 안출된 것으로, 미분탄 취입비를 상승시키면서 동시에 풍구유속을 비례적으로 상승시켜 풍구 선단의 버드네스트를 효과적으로 제거하고 송풍에너지를 노심 중심부까지 효율적으로 전달하여 노심온도 안정확보, 미분탄의 연소성 확보 및 노벽 열부하를 효율적으로 제어할 수 있도록 한 미분탄 취입비에 따른 풍구유속 관리방법을 제공함에 그 목적이 있다.The present invention has been made in view of the above-mentioned problems in the prior art, and while increasing the pulverized coal injection ratio, at the same time increasing the windball flow rate proportionately, effectively removing the bird nest at the tip of the windball and cored blowing energy. Its purpose is to provide airflow flow rate management method according to the pulverized coal injection ratio, which efficiently delivers the core temperature to secure core temperature, secure the combustibility of pulverized coal and control the furnace wall heat load efficiently.

본 발명의 상기한 목적은 고로에서 생산할 출선량에 따라 미분탄 취입량을 결정하는 단계와; 상기 단계후 고로의 외주연에 다수 설치된 각 풍구의 풍구경을 조절하여 상기 미분탄 취입량에 비례하여 풍구의 유속을 증가시키도록 풍구경을 축소조절하는 단계와; 상기 단계를 수행하는 과정에서 고로로 공급되는 전체적인 풍량은 일정되도록 조절하는 단계를 포함하여 이루어짐에 의해 달성된다.The above object of the present invention comprises the steps of determining the amount of pulverized coal blown according to the output amount to be produced in the blast furnace; Reducing the diameter of the balloon to increase the flow velocity of the balloon in proportion to the amount of pulverized coal by adjusting the balloon diameter of each of the balloon holes installed in the outer periphery of the blast furnace after the step; In the course of performing the above steps, the overall air volume supplied to the blast furnace is achieved by including a step of adjusting to be constant.

도 1은 일반적인 고로조업에서 고미분탄 조업시의 노내상황을 나타낸 모식도,1 is a schematic diagram showing the internal furnace conditions during the operation of pulverized coal in a typical blast furnace operation,

도 2는 본 발명의 일예에 따른 풍구 및 풍구링의 사시도,2 is a perspective view of the tuyere and tuyere ring according to an embodiment of the present invention,

도 3은 본 발명을 구현하기 위한 시험장치를 나타낸 사시도,3 is a perspective view showing a test apparatus for implementing the present invention,

도 4는 본 발명에서 정립한 미분탄비에 따른 풍구유속 기준을 보인 그래프.Figure 4 is a graph showing the wind flow velocity criteria according to the pulverized coal ratio established in the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 코크스, 2 : 미분탄,1: coke, 2: pulverized coal,

31 : 풍구, 32 : 풍구링,31: airball, 32: airball ring,

42 : 파이프, 42,44 : 레코드.42: pipe, 42,44: records.

이하에서는, 본 발명에 따른 바람직한 일 실시예를 첨부도면에 의거하여 보다 상세하게 설명한다.Hereinafter, a preferred embodiment according to the present invention will be described in more detail on the basis of the accompanying drawings.

도 2는 본 발명에 따른 관리방법을 달성하기 위해 풍구유속을 늘리기 위한 풍구경 조절용 풍구 및 풍구링을 도시한 것이다.Figure 2 illustrates a balloon opening and a balloon opening for increasing the diameter of the tuyere in order to achieve the management method according to the present invention.

도 2에 따르면, 풍구(31)에 장착하여 풍구유속을 효율적으로 증가시켜 주기 위한 풍구링(32)이 구비된다.According to Figure 2, it is mounted to the tuyere 31 is provided with tuyere ring 32 for efficiently increasing the tuyere flow rate.

풍구링(32)은 내부가 중공된 절두원추형상으로 일단의 직경이 타단의 직경보다 좁게 형성되며, 좁게 형성된 부위가 풍구(31)의 선단측을 향해 삽입고정된다.The tuyere ring 32 is a truncated cone-shaped hollow inside, the diameter of one end is formed narrower than the diameter of the other end, the narrowly formed portion is inserted and fixed toward the front end side of the tuyere 31.

또한, 풍구링(32)은 구리재질로 형성됨이 바람직하다.In addition, the tuyere ring 32 is preferably formed of a copper material.

이와 같이, 풍구링(32)을 사용하는 이유는 풍구(31)의 풍구경을 축소조절하여 풍구를 통한 열풍의 유속을 높이기 위한 것이다.As such, the reason for using the tuyere ring 32 is to increase the flow rate of hot wind through the tuyere by reducing and adjusting the tuyere diameter of the tuyere 31.

즉, 본 발명에서는 취입비 상승에 따라 풍구경을 축소하여 풍구유속을 늘려서 조업을 실시하도록 함으로써 상술한 종래의 문제를 해결할 수 있는 것이다.That is, in the present invention, the above-mentioned conventional problems can be solved by performing the operation by reducing the bulge diameter by increasing the bulge diameter as the blowing ratio increases.

물론, 풍구링(32)을 사용하지 않고 풍구(31) 자체의 구경을 조절할 수도 있으나 이는 비용상, 제작상 실효성이 없다.Of course, it is possible to adjust the diameter of the tuyere 31 itself without using the tuyere ring 32, but this is not cost effective, manufacturing.

풍구의 유속은 미분탄의 취입비에 비례하여 상승되어야 하는 바, 이는 실험치에 의해 산출될 수 있으며 풍구링(32)의 직경가변을 통해 쉽게 조절할 수 있다.The flow velocity of the tuyere should be increased in proportion to the blowing ratio of the pulverized coal, which can be calculated by the experimental value and can be easily adjusted through the variable diameter of the tuyere ring (32).

따라서, 풍구링(32)은 조업조건에 따라 다양한 직경과 형태를 가질 수 있으며, 도 3의 도시와 같은 버드네스트심도 측정용 리코더(42)와 노심온도 측정용 리코더(44)를 통해 미분탄 취입비에 따른 적정 풍구유속을 결정할 수 있다.Therefore, the tuyere ring 32 may have a variety of diameters and shapes according to the operating conditions, the pulverized coal injection ratio through the bird nest depth measurement recorder 42 and the core temperature measurement recorder 44 as shown in FIG. The proper wind speed can be determined according to

여기에서, 풍구유속을 증가시키기 위해 풍구경을 조절할 때에 풍량은 동일 수준을 유지하여 타요인에 의한 조업 변수를 막아주어야 한다.In this case, when adjusting the wind diameter to increase the wind flow velocity, the air flow rate should be maintained at the same level to prevent operation variables caused by other factors.

풍구유속은 하기한 식 1에 의해 산출될 수 있는 바, 영향요인은 풍량, 풍압, 산소, 조습, 풍온, 풍구경 인자 등이 영향을 주는 요소이며 풍구경을 제외하고는 변경시에 생산량의 가감, 연료비의 가감등이 변화요인이 있으며 유틸리티 사용비용의 증가등의 문제점은 물론 풍구유속 증대효과를 충분히 살릴수 없다.The air flow velocity can be calculated by Equation 1 below, and the influence factors are factors such as air volume, air pressure, oxygen, humidity, wind temperature, and wind diameter factors. In addition, there are factors that change fuel costs, such as increase and decrease of fuel costs.

동일한 풍량 ,풍온, 산소, 조습량을 가지고 풍구유속을 올릴수 있는 방법은 풍구경을 줄이는 것이 가장 효율적이다.It is most efficient to reduce the wind diameter in order to increase the flow velocity with the same air volume, wind temperature, oxygen and humidity.

따라서, 풍구경 조정을 제외하고는 모든 수단들이 조업에 변수로서 작용하므로 본 발명에서는 풍구경 조정을 통한 풍구유속 증가 방법을 선택하였다.Therefore, except for the adjustment of the diameter, all the means act as a variable in the operation, in the present invention, the method for increasing the flow rate of the wind through the diameter adjustment.

[식 1][Equation 1]

본 발명에 적용한 미분탄 취입비별 적정 풍구유속은 시험조업의 결과를 통해서 결정하였으며 시험조업의 결과로서는 풍구유속 상승시 버드네스트 두께측정 결과(이하 "레이스웨이 심도"라고도 칭함)와 동일, 노심온도 측정결과, 노하부 온도 측정결과,노벽 열부하 측정결과, 연소성의 척도인 연료비 비교로서 가능하게 된다.Appropriate windball flow rate according to the pulverized coal injection ratio applied to the present invention was determined through the results of the test operation, and as a result of the test operation, the same result as the birdest thickness measurement (hereinafter referred to as "raceway depth") at the rise of the windball flow rate, the core temperature measurement result , Furnace bottom temperature measurement results, furnace wall heat load measurement results, and fuel ratio comparison, which is a measure of combustibility, are possible.

[실시예]EXAMPLE

본 발명에서 풍구경을 줄이기 위하여 풍구링을 사용하였고, 통상 140 mm의풍구경의 내면에 두께 10mm의 풍구링을 삽입하여 풍구경을 120 mm로 저하시켜 전체적인 풍구경 축소를 시도하였다.In the present invention, a balloon ring was used in order to reduce the balloon diameter, and a balloon diameter ring having a thickness of 10 mm was inserted into the inner surface of the balloon diameter of 140 mm to reduce the balloon diameter to 120 mm, thereby reducing the overall diameter.

아울러, 상기 식 1에 의하면 풍량을 동일하게 유지하였을 때 풍구경 1% 축소시 풍구유속은 1.2 % 증가함을 알 수 있었다.In addition, according to Equation 1, when the air flow rate was kept the same, it was found that the air flow velocity increased by 1.2% when the wind diameter decreased by 1%.

상기와 같은 방법으로 풍구경을 줄여서 시험조업을 실시한 결과는 다음과 같다The result of the test operation by reducing the wind diameter as described above is as follows.

도 3에서와 같이, 풍구를 통하여 파이프(41)를 삽입하고 추력의 차이를 전류신호로 바꾸는 레코더(42)를 부착하여 버드네스트 두께(43)를 측정할수 있는 장치를 사용하였고, 버드네스트가 깊을수록 즉, 레이스웨이(RACEWAY) 심도가 클수록 미분탄 증가시 풍구주위 퇴적층이 형성되지 않고 연소성이 양호한 조업결과를 얻을수 있었다.As shown in FIG. 3, a device for measuring the bird nest thickness 43 by inserting the pipe 41 through the tuyere and attaching a recorder 42 for changing the difference in thrust into a current signal was used. In other words, the greater the raceway depth, the more combustible operation results were obtained without the formation of a layer around the wind hole when the pulverized coal increased.

또한, 파이프 선단에는 온도계를 부착하여 레이스웨이 선단부 즉 노심부의 온도를 측정(44)할수있는 장치를 부착하였고 풍구유속을 상승하여 조업한 결과 노심온도가 상승하는 결과를 확인하였다.In addition, a pipe was attached to the tip of the thermometer to measure the temperature of the raceway tip, that is, the core part (44) was attached to the operation of the airflow flow rate was confirmed that the result of the core temperature rises.

시험 조업조건은 하기한 표 1의 조건대로 풍구링을 부착하여 풍구경을 조정한 다음 용선톤당 미분탄 취입비(이하 "PCR"이라 함)별 조업을 실시하고 약 10일이 경과한 시점에서 휴풍시간을 이용하여 레이스웨이 길이 측정장치를 이용한 길이측정, 레이스웨이내 노심온도 측정장치를 통해 노심온도를 측정하였다.The test operation conditions were to adjust the wind diameter by attaching the tuyere rings according to the conditions shown in Table 1 below, and to perform the operation by the pulverized coal injection ratio per molten ton (hereinafter referred to as "PCR"). The core temperature was measured using the length measurement using the raceway length measuring device and the core temperature measuring device in the raceway.

그리고, 시험조업 기간중 노하부온도, 노벽열부하, 연료비등을 비교하여 시험조업을 확인하였다.In addition, the test operation was confirmed by comparing the furnace bottom temperature, the furnace heat load, and the fuel cost during the test operation period.

PCR(kg/T-P)PCR (kg / T-P) 120120 130130 140140 150150 160160 170170 180180 풍구링취부(개)Fenggu Ring Mounting 00 44 88 1212 1616 2020 2424 풍구단면적(m2)Opening area (m 2 ) 0.5230.523 0.5070.507 0.4910.491 0.4740.474 0.4580.458 0.4420.442 0.4250.425 풍구유속(m/s)Wind flow velocity (m / s) 210210 218218 226226 234234 242242 250250 258258

시험결과는 하기한 표 2와 같다.The test results are shown in Table 2 below.

여기에서, 풍구의 유속은 고로 외주연을 따라 다수, 예컨대 24개 배치된 각 풍구에 풍구링을 서로 대칭적으로 부가 취부함으로써 조절하였다.Here, the flow velocity of the tuyere was adjusted by symmetrically adding the tuyere rings to each tuyere arranged in a plurality, for example, 24 arranged along the outer periphery of the blast furnace.

PCR(Kg/T-P)PCR (Kg / T-P) 120120 130130 140140 150150 160160 170170 180180 레이스웨이 심도(m)Raceway Depth (m) 발명전Before Invention 1.7~2.21.7-2.2 발명후After Invention 2.52.5 2.652.65 2.542.54 2.502.50 2.502.50 2.572.57 2.612.61 노심온도(℃)Core temperature (℃) 발명전Before Invention 1210~13101210-1310 발명후After Invention 13501350 13551355 13441344 13521352 13481348 13451345 13891389 노하부온도(℃)Lower part temperature (℃) 발명전Before Invention 87~15087-150 발명후After Invention 9595 105105 118118 108108 117117 109109 114114 노벽 열부하(Mcal/H)Furnace Wall Heat Load (Mcal / H) 발명전Before Invention 7450~150007450-15000 발명후After Invention 85008500 86578657 92359235 89708970 91509150 89508950 88808880 연료비(Kg/T-P)Fuel Cost (Kg / T-P) 발명전Before Invention 477~515477-515 발명후After Invention 479479 488488 491491 485485 488488 484484 487487

상기 표 2를 통해 알 수 있듯이, 미분탄 취입비 상승에 따른 풍구유속을 증가시켜 조업을 한 결과 발명전에 비해 취입비 상승시 풍구선단에서의 버드네스트 형성을 억제하여 연소성을 향상시키고, 미연소된 미분탄의 퇴적을 방지할수 있고, 레이스웨이 길이를 연장할수 있으며, 미분탄 고취입시에도 노심온도를 저하시키지 않고 안정조업을 유지할 수 있었다.As can be seen from Table 2, as a result of operation by increasing the windball flow rate according to the increase in the pulverized coal blowing ratio, the combustibility is improved by suppressing the formation of bud nest at the tip of the windball when the blowing ratio is increased compared to before the invention. Sediment can be prevented, raceway length can be extended, and stable operation can be maintained without lowering core temperature even when high coal dust is blown.

이와 같은, 실시예를 토대로 도 4의 그래프와 같이 용선톤당 미분탄 취입량을 기준으로 풍구경을 조절하여 풍구유속을 결정한 후 고미분탄 조업을 하면 노하부온도, 노벽열부하를 효과적으로 제어하면선 안정적인 고미분탄 조업을 할 수 있게 된다.Based on the embodiment, as shown in the graph of FIG. 4, after determining the air flow velocity by adjusting the air diameter based on the amount of fine coal injection per molten ton, high coal dust operation is carried out to control the furnace bottom temperature and the furnace wall heat load. You will be able to operate.

이상에서 상세히 설명한 바와 같이, 본 발명은 미분탄 취입비 증대시 풍구유속을 단계적으로 증가시켜 송풍에너지를 향상시킴으로써 고미분탄 조업을 효율적으로 수행할 수 있는 효과를 제공한다.As described in detail above, the present invention provides an effect that can efficiently perform the high pulverized coal operation by increasing the blowing energy by gradually increasing the wind mouth flow rate when the pulverized coal injection ratio is increased.

Claims (3)

고로에서 생산할 출선량에 따라 미분탄 취입량을 결정하는 단계와;Determining the amount of pulverized coal blown according to the output amount to be produced in the blast furnace; 상기 단계후 고로의 외주연에 다수 설치된 각 풍구(31)의 풍구경을 조절하여 상기 미분탄 취입량에 비례하여 풍구의 유속을 증가시키도록 풍구경을 축소조절하는 단계와;Reducing the diameter of the balloon to increase the flow velocity of the balloon in proportion to the amount of pulverized coal injected by adjusting the balloon diameter of each of the nozzles 31 installed on the outer periphery of the blast furnace after the step; 상기 단계를 수행하는 과정에서 고로로 공급되는 전체적인 풍량은 일정되도록 조절하는 단계를 포함하여 이루어지는 것을 특징으로 하는 미분탄 취입비에 따른 풍구유속 관리방법.Wind flow velocity management method according to the pulverized coal injection ratio, characterized in that the overall amount of air supplied to the blast furnace in the process of performing the step comprises adjusting to be constant. 제1항에 있어서, 상기 풍구경 조절하는 단계에서 풍구경은 다양한 직경을 갖는 풍구링(32)의 삽탈에 의해 조절되는 것을 특징으로 하는 미분탄 취입비에 따른 풍구유속 관리방법.The method of claim 1, wherein in the step of adjusting the size of the wind blowing, the wind blowing flow rate management method according to the pulverized coal injection ratio, characterized in that the adjustment by the insertion and removal of the wind blowing ring (32) having a variety of diameters. 제1항 또는 제2항에 있어서, 상기 풍구링(32)은 상기 다수의 풍구(31)에 고로 중심을 기준으로 대칭되게 설치되는 것을 특징으로 하는 미분탄 취입비에 따른 풍구유속 관리방법.The method of claim 1 or 2, wherein the tuyere ring (32) is installed symmetrically with respect to the center of the blast furnace in the plurality of tuyere (31).
KR1020000070569A 2000-11-24 2000-11-24 Method for managing air velocity of tuyere by coal injection ratio KR20020040505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000070569A KR20020040505A (en) 2000-11-24 2000-11-24 Method for managing air velocity of tuyere by coal injection ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000070569A KR20020040505A (en) 2000-11-24 2000-11-24 Method for managing air velocity of tuyere by coal injection ratio

Publications (1)

Publication Number Publication Date
KR20020040505A true KR20020040505A (en) 2002-05-30

Family

ID=19701390

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000070569A KR20020040505A (en) 2000-11-24 2000-11-24 Method for managing air velocity of tuyere by coal injection ratio

Country Status (1)

Country Link
KR (1) KR20020040505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056226B1 (en) * 2008-12-24 2011-08-11 주식회사 포스코 Flow rate control method of blast furnace and wind hole
KR101587742B1 (en) 2014-12-03 2016-01-22 주식회사 포스코 Apparatus and method for increasing fluid velocity of air blowing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056226B1 (en) * 2008-12-24 2011-08-11 주식회사 포스코 Flow rate control method of blast furnace and wind hole
KR101587742B1 (en) 2014-12-03 2016-01-22 주식회사 포스코 Apparatus and method for increasing fluid velocity of air blowing

Similar Documents

Publication Publication Date Title
JP4341131B2 (en) Pulverized coal blowing burner
KR20020040505A (en) Method for managing air velocity of tuyere by coal injection ratio
JP4742442B2 (en) Blast furnace operation method by large amount of pulverized coal injection
CN202380031U (en) Coherent oxygen lance structure for electric arc furnaces
JP4044711B2 (en) Heating method of core at the time of pulverized coal injection into blast furnace
KR100605685B1 (en) Method for improving dedman permeability by injecting steam and oxygen in blast furnace tuyere
JPH05295415A (en) Method for operating blast furnace
KR100442639B1 (en) Fines cleaning apparatus for a blast furnace
JP3943831B2 (en) Reactor core heating method in pulverized coal injection operation.
JP2694588B2 (en) Blast furnace operation method
KR100431871B1 (en) Operation method for solving immunity of reactor core in the furnace operation with a large quantity of pulverized coal
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
KR100435497B1 (en) A method for controlling operation of a blast furnace
KR101655213B1 (en) Device for activiting furnace center in blasst furnace, and thr method
JPH08302407A (en) Operating method of furnace
JP3450168B2 (en) Blast furnace pulverized coal injection operation method
KR100356156B1 (en) A method for promoting combustibility in balst furnace
KR940008925B1 (en) Method of dust check
JP2741140B2 (en) Blast furnace operation method
JPH07278623A (en) Operation of blast furnace
CN116356089A (en) Long-term damping down full-open tuyere re-blowing method for blast furnace
JP3764939B2 (en) Method for determining lance installation position for blast furnace pulverized coal injection
JP4808931B2 (en) Blast furnace output control method
JPH10298617A (en) Operation of blast furnace
JPH09170007A (en) Operation of blast furnace

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination