KR20020036933A - Coated aluminium nitride with organo-surface treating agent for thermally conductive paste and its manufacturing method - Google Patents

Coated aluminium nitride with organo-surface treating agent for thermally conductive paste and its manufacturing method Download PDF

Info

Publication number
KR20020036933A
KR20020036933A KR1020000067029A KR20000067029A KR20020036933A KR 20020036933 A KR20020036933 A KR 20020036933A KR 1020000067029 A KR1020000067029 A KR 1020000067029A KR 20000067029 A KR20000067029 A KR 20000067029A KR 20020036933 A KR20020036933 A KR 20020036933A
Authority
KR
South Korea
Prior art keywords
formula
alkyl
alkenyl
aluminum nitride
alkenyloxy
Prior art date
Application number
KR1020000067029A
Other languages
Korean (ko)
Other versions
KR100373834B1 (en
Inventor
정광춘
공명선
김용석
김진석
이근수
Original Assignee
정광춘
(주)해은켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정광춘, (주)해은켐텍 filed Critical 정광춘
Priority to KR10-2000-0067029A priority Critical patent/KR100373834B1/en
Publication of KR20020036933A publication Critical patent/KR20020036933A/en
Application granted granted Critical
Publication of KR100373834B1 publication Critical patent/KR100373834B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Conductive Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE: Provided are an aluminum nitride for thermal conductive paste coated with organic surface-treating agent, and a method for coating of aluminum nitride. CONSTITUTION: The aluminum nitride for thermal conductive paste coated with organic surface-treating agent, is produced by coating a surface of aluminum nitride with organic surfacing preparations selected from the group consisting of alkyl alkenyloxy benzoic acid derivative(formula 1), alkenyloxy aralkyl fatty acid derivative(formula 2), ricinoleic acid derivative(formula 3), succinyl acid-substituted oleic acid derivative(formula 4), linolenic acid derivative(formula 5), trimellitic acid imide derivative(formula 6), alkenyloxy benzene dicarboxylic acid derivative(formula 7) and alkyl alkenyloxy phenol derivative(formula 8). In the formula 1, R1 and R2 represent hydrogen, alkyl and branched alkyl, alkenyl and branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl and hydroxyalkenyl having C1-C20. In the formula 2, R1 and R2 represent hydrogen, alkyl and branched alkyl, alkenyl and branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl and hydroxyalkenyl having C1-C20, and n is a natural number of 1-18. In the formula 3, R represents alkyl and alkenyl groups of C1-C17. In the formulas 4 and 5, R represents alkyl and alkenyl groups of C1-C18. In the formula 6, R represents alkyl, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, alkoxyalkyl, allyl, aryl and arylalkyl of C1-C20. In the formulas 7 and 8, R1 and R2 represent alkyl and branched alkyl, alkenyl and branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, alkoxyalkyl, alkoxyalkenyl, allyl, aryl and arylalkyl having C1-C20.

Description

유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄 및 질화알루미늄의 코팅방법 {Coated aluminium nitride with organo-surface treating agent for thermally conductive paste and its manufacturing method}Coating method of aluminum nitride and aluminum nitride coated with organic surface treatment agent {Coated aluminum nitride with organo-surface treating agent for thermally conductive paste and its manufacturing method}

본 발명은 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄 및 질화알루미늄의 코팅방법에 관한 것이다. 보다 상세하게는 본 발명은 질화알루미늄을 유기표면처리제로 코팅하여 리드프레임의 다이 위에 반도체 칩을 부착시키는 것과 같은 전자공업용의 열전도성 페이스트, 에폭시 봉지제, 열전도성 코팅 테이프, 인쇄회로기판의 다층형성용 수지 등에 포함될 수 있는, 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄 및 질화알루미늄의 코팅방법에 관한 것이다.The present invention relates to a coating method of aluminum nitride and aluminum nitride for thermal conductive paste coated with an organic surface treatment agent. More specifically, the present invention relates to a thermally conductive paste, an epoxy encapsulant, a thermally conductive coating tape, a printed circuit board, and the like for attaching aluminum nitride to an organic surface treatment agent and attaching a semiconductor chip on a die of a lead frame. It relates to a coating method of aluminum nitride and aluminum nitride for thermal conductive paste coated with an organic surface treatment agent, which may be included in the resin.

질화알루미늄은 질소원자와 알루미늄원자가 공유결합된 공유결합성 화합물로서, 우수한 내열성, 우수한 기계적 강도, 높은 열전도성, 높은 전기절연성 및 실리콘과 유사한 열팽창계수를 가지고 있는 세라믹 화합물로서, 반도체용 방열기판으로 주목을 받고 있다. 특히, 최근에 반도체 등 마이크로 일렉트로닉스(micro-electronics)의 디바이스(device)는 집적도가 커짐에 따라서 빠른 방열이 요구되고 있다. 현재 반도체 기판으로서 알루미나가 사용될 경우에는 방열성능에 한계가 나타나고 있으며, 알루미나의 5 내지 10배 정도의 높은 열전도도를 가지는 질화알루미늄의 이용이 기대되고 있다. 또한, 전자산업에서 널리 응용되고 있는 전도성 접착제는 여러 가지의 용도가 알려져 있지만, 가장 널리 알려진 것 중의 하나는 반도체 칩을 리드프레임의 다이, 기판 및 다른 지지체에 부착시키는데 사용하는 것이다. 이러한 다이 부착 접착제는 주로 여러 가지 에폭시 수지의 혼합물이 이용되며 여러 가지 화학구조를 가진 에폭시 화합물을 적절히 혼합하여 요구되는 성질을 얻고 있다. 다이 부착 접착제는 반도체 칩을 리드프레임의 다이 위에 접착시키는 접착제로 현재 은 분말을 이용한 은 페이스트 접착제가 주로 사용되고 있는데 은 분말이 가격 면으로 고가일 뿐만 아니라 최근 반도체의 집적도가 높아짐에 따라서 작동 상태에서 고열의 발생이 되고 있어 방열을 위하여 은 페이스트의 사용이 한계가 나타나고 있다. 그래서 열전도도가 크게 향상된 다이 부착 접착제가 요구되고 있는 실정이다. 은 페이스트에서 조성 중에 은 분말의 함량은 열전도도에 커다란 영향을 주고 있다. 은 분말을 80중량%를 사용할 경우보다도 질화알루미늄을 50중량%를 사용할 때가 2배 이상의 열전도도의 증가 효과를 볼 수 있으며 은 분말의 함량의 증가로서 열전도도는 증가할 수 있으나, 은 분말의 함량의 증가에 따라서 가격 상승은 물론 열전도성 접착제로서 요구되는 유변학적인 변화, 함량 증가에 따른 접착성 및 여러 가지 요구되는 물성의 저하가 수반된다. 특히, 수지 함량 감소에 의한 접착력 저하, 경화된 접착제의 은 분말과 매트릭스 수지와의 결합력 저하, 충전제의 증가에 의한 유변학적인 문제를 해결하여야만 한다. 또한 은 분말을 이용한 접착제는 접착 후 순수한 열전도도의 증가 이외에 전기 전도도의 증가도 수반된다. 이러한 전기 전도도의 증가는 다이부착 접착제에 또 다른 문제를 야기하고 있으며 이에 대한 개선이 요구되고 있는 실정이다.Aluminum nitride is a covalent compound in which a nitrogen atom and an aluminum atom are covalently bonded, and is a ceramic compound having excellent heat resistance, excellent mechanical strength, high thermal conductivity, high electrical insulation, and a thermal expansion coefficient similar to that of silicon. Is getting. In particular, in recent years, devices of microelectronics such as semiconductors require rapid heat dissipation as the degree of integration increases. Currently, when alumina is used as a semiconductor substrate, there is a limit in heat dissipation performance, and it is expected to use aluminum nitride having a high thermal conductivity of about 5 to 10 times that of alumina. In addition, conductive adhesives widely used in the electronics industry are known for various uses, but one of the most widely known is the use of semiconductor chips to attach to dies, substrates and other supports of leadframes. These die attach adhesives are mainly used as a mixture of various epoxy resins and proper properties of epoxy compounds having various chemical structures have been obtained to obtain required properties. Die attach adhesive is an adhesive that bonds a semiconductor chip onto a die of a lead frame. Currently, silver paste adhesive using silver powder is mainly used. In addition, silver powder is expensive in terms of price and high heat in an operation state due to the recent increase in semiconductor integration. There is a limit to the use of silver paste for heat dissipation. Therefore, there is a demand for a die attach adhesive having greatly improved thermal conductivity. The content of silver powder in the composition of silver paste has a great influence on the thermal conductivity. When using 50% by weight of aluminum nitride than when using 80% by weight of silver powder, the thermal conductivity can be more than doubled, and the thermal conductivity can be increased by increasing the content of silver powder. As the price increases, the price increases, as well as the rheological change required as a thermally conductive adhesive, the adhesion according to the increase in content, and the various required properties decrease. In particular, it is necessary to solve the rheological problems caused by a decrease in adhesion due to a decrease in resin content, a decrease in bonding strength between the silver powder and the matrix resin of the cured adhesive, and an increase in filler. In addition, the adhesive using silver powder is accompanied by an increase in electrical conductivity in addition to an increase in pure thermal conductivity after adhesion. This increase in electrical conductivity causes another problem in the die attach adhesive, and the situation is in need of improvement.

질화알루미늄(aluminium nitride)을 충전제로 사용하는 열전도성 페이스트 (thermally conductive paste)에서 질화알루미늄은 내열성 및 강도가 매우 우수한 세라믹 화합물이지만, 질화알루미늄 자체로서는 반응성이 커서 물과 반응하여 가수분해가 일어나 암모니아가 발생하며, 산소의 함량이 증가한다. 산소의 증가는 질화알루미늄의 고유특성의 저하를 가져오기 때문에 제조 공정상 그리고 보관상 엄격한 관리가 필요하며, 이러한 문제를 해결하기 위하여 내수성의 향상이 필요하다. 이러한 문제를 해결하기 위하여 기존에 유기표면처리제로서 스테아르산을 처리한 예가 발표된 적이 있으나 내수성의 향상은 증가되었으나 수지와의 결합이 형성되지 않기 때문에 페이스트의 물성이 저하되고 또 다른 예는 질화알루미늄에 구리와 같은 금속을 코팅하여 충전제로 사용하였으나 충전제로서 물성의 향상은 발표된 바 없다.In a thermally conductive paste that uses aluminum nitride as a filler, aluminum nitride is a ceramic compound having excellent heat resistance and strength, but aluminum nitride itself is highly reactive and reacts with water to cause hydrolysis to cause ammonia Occurs, and the oxygen content increases. Since the increase of oxygen leads to the deterioration of the intrinsic properties of aluminum nitride, strict control is required in the manufacturing process and storage, and the water resistance needs to be improved to solve this problem. In order to solve this problem, an example of treating stearic acid as an organic surface treatment agent has been published, but the water resistance has been increased, but since the bond with the resin is not formed, the physical properties of the paste are lowered. Metals such as copper were used as fillers, but no improvement in physical properties as fillers has been published.

전도성 페이스트에서 충전제의 분해는 충전제 자체의 고유한 여러 가지 특성의 저하를 가져오며, 접착물질의 파단 및 탈리가 일어나게 된다. 따라서, 질화알루미늄의 내수성을 향상시킬 필요가 있다. 특히, 다이 부착 접착제에서 고온, 고습한 환경에서의 질화알루미늄의 흡습은 암모니아 기체의 발생으로 인하여 계면에서 층분리(delamination)나 패키징의 크랙 및 팝콘 현상을 야기할 수 있으며, 이는 열전도성 페이스트의 물성을 저하시키는 원인이 된다. 특히, 열전도성 페이스트에서의 충전제로서의 질화알루미늄은 그 자체로는 매트릭스 수지(matrix resin) 내에서의 분산성을 향상시킬 필요가 있다. 질화알루미늄과 같은 충전제의 매트릭스 수지 내에서의 분산성이 낮을 경우, 수지와 충전제 간의 분리현상, 특히 매트릭스 수지의 경화시에 수지와 충전제 간의 분리현상이 일어날 수 있으며, 이는 열전도성 페이스트에 의한 반도체 칩의 부착에서의 불량을 야기할 수 있을 뿐만 아니라 부착이 이루어진다 하여도 반도체 칩과 다이 사이에서의 불균일한 열전도 현상 등이 일어나는 문제점이 있을 수 있게 된다.Degradation of the filler in the conductive paste leads to a deterioration of various properties inherent to the filler itself, resulting in breakage and detachment of the adhesive material. Therefore, it is necessary to improve the water resistance of aluminum nitride. In particular, moisture absorption of aluminum nitride in a high temperature, high humidity environment in a die attach adhesive may cause delamination or cracking of packaging and popcorn at the interface due to the generation of ammonia gas, which is a property of thermally conductive pastes. This causes a decrease. In particular, aluminum nitride as a filler in thermally conductive pastes needs to improve dispersibility in matrix resins by itself. When the dispersibility of a filler such as aluminum nitride in the matrix resin is low, separation between the resin and the filler, in particular, separation between the resin and the filler during curing of the matrix resin may occur, which is caused by a semiconductor chip by a thermally conductive paste. Not only may cause defects in the adhesion of the semiconductor, but even if the adhesion is made, there may be a problem that a non-uniform thermal conduction phenomenon occurs between the semiconductor chip and the die.

특히, 열전도성 페이스트 및 에폭시 봉지제, 전도성 코팅 테이프, 인쇄회로기판의 다층형성용 수지 등의 유변학적인 성질은 접착공정에서 작업성 및 생산성에도 커다란 영향을 미치고 있다. 이러한 성질 중에서 점도와 요변 지수(thixotropic index)는 매우 중요한 인자로서, 질화알루미늄과 같은 충전제의 매트릭스 수지에의 분산성은 전도성 페이스트의 흐름성, 퍼짐성 및 끌림(tailing) 등에 관여하고 있다.In particular, rheological properties such as thermally conductive pastes and epoxy encapsulants, conductive coating tapes, and resins for forming multilayers of printed circuit boards have a great impact on workability and productivity in the bonding process. Among these properties, the viscosity and thixotropic index are very important factors, and the dispersibility of the filler such as aluminum nitride into the matrix resin is involved in the flowability, spreadability, and tailing of the conductive paste.

또한, 열전도성 페이스트에서 충전제의 함량이 증가하는 경우, 충전제와 매트릭스 수지와의 결합력이 약화되어 여러 가지 기계적 성질의 저하가 수반되는 문제점이 야기된다.In addition, when the content of the filler is increased in the thermally conductive paste, the bonding strength between the filler and the matrix resin is weakened, which causes a problem that is accompanied by a decrease in various mechanical properties.

따라서, 질화알루미늄에 내수성, 분산성, 유변학적 성질 및 수지와의 결합성 등을 향상시키기 위하여 예의 연구를 거듭한 결과, 질화알루미늄을 여러 가지 소수성기 및 수지와 반응하는 작용기를 포함하는 여러 가지 지방족 및 방향족 지방산 등과 같은 유기표면처리제로 코팅하는 것에 의하여 상기한 문제점들을 해결하고, 내수성, 분산성, 유변학적 성질 및 수지와의 결합성 등을 향상시킬 수 있음을 확인하여 본 발명을 완성하였다. 이러한 표면처리된 질화알루미늄은 매트릭스 수지로서의 에폭시수지와 혼합되어 전도성 접착제를 형성하게 된다. 이렇게 형성되는 전도성 접착제는 리드프레임의 다이 위에 반도체 칩을 접착하는 것을 포함하는 전자공업에서의 접착제, 에폭시 봉지제, 전도성 코팅 테이프, 인쇄회로기판의 다층형성용 수지 등에 사용될 수 있다.Therefore, as a result of intensive studies to improve the water resistance, dispersibility, rheological properties, and binding properties of resin to aluminum nitride, various aliphatic groups including various hydrophobic groups and functional groups reacting with resins, The present invention has been completed by resolving the above problems by coating with an organic surface treatment agent such as an aromatic fatty acid, and improving water resistance, dispersibility, rheological properties, and bonding with resin. This surface treated aluminum nitride is mixed with an epoxy resin as a matrix resin to form a conductive adhesive. The conductive adhesive thus formed may be used in adhesives, epoxy encapsulants, conductive coating tapes, multilayered resins for printed circuit boards, and the like in the electronic industry including bonding semiconductor chips on dies of leadframes.

본 발명의 목적은 질화알루미늄을 여러 가지 소수성기 및 수지와 반응하는 작용기를 포함하는 여러 가지 지방족 및 방향족 지방산 등과 같은 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄을 제공하는 데 있다.It is an object of the present invention to provide an aluminum nitride for thermally conductive paste coated with organic surface treatment agents such as various aliphatic and aromatic fatty acids including aluminum nitride with various hydrophobic groups and functional groups that react with resins.

본 발명의 다른 목적은 질화알루미늄을 여러 가지 소수성기 및 수지와 반응하는 작용기를 포함하는 여러 가지 지방족 및 방향족 지방산 등과 같은 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄의 코팅방법을 제공하는 데 있다.Another object of the present invention is to provide a method for coating aluminum nitride for thermally conductive paste coated with organic surface treatment agents such as various aliphatic and aromatic fatty acids including aluminum nitride with functional groups that react with various hydrophobic groups and resins.

본 발명에 따른 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄은, 질화알루미늄의 표면이 알킬 알케닐옥시 벤조산 유도체(화학식 1), 알케닐옥시 아랄킬 지방산 유도체(화학식 2), 리시놀레인산 유도체(화학식 3), 석시닐산 치환 올레인산 유도체(화학식 4), 리놀렌산 유도체(화학식 5), 트리멜리트산 이미드 유도체(화학식 6), 알케닐옥시 벤젠 디카르복시산 유도체(화학식 7) 및 알킬 알케닐옥시 페놀 유도체(화학식 8)들로 이루어진 그룹 중에서 선택되는 유기표면처리제로 코팅되어 이루어진다.Aluminum nitride for thermal conductive paste coated with an organic surface treatment agent according to the present invention, the surface of the aluminum nitride is an alkyl alkenyloxy benzoic acid derivative (Formula 1), alkenyloxy aralkyl fatty acid derivative (Formula 2), ricinoleic acid Derivatives (Formula 3), succinylic acid substituted oleic acid derivatives (Formula 4), linolenic acid derivatives (Formula 5), trimellitic acid imide derivatives (Formula 6), alkenyloxy benzene dicarboxylic acid derivatives (Formula 7) and alkyl alkenyloxy It is made by coating with an organic surface treatment agent selected from the group consisting of phenol derivatives (Formula 8).

여기에서, R1및 R2는 수소, 탄소수 1 내지 20인 알킬 및 측쇄 알킬, 알케닐, 측쇄 알케닐, 시클로알킬, 시클로알케닐, 히드록시알킬, 히드록시알케닐이다.Wherein R 1 and R 2 are hydrogen, alkyl having 1 to 20 carbon atoms and branched alkyl, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl.

여기에서, R1및 R2는 수소, 탄소수 1 내지 20인 알킬 및 측쇄 알킬, 알케닐, 측쇄 알케닐, 시클로알킬, 시클로알케닐, 히드록시알킬, 히드록시알케닐이고, n은 1 내지 18의 자연수이다.Wherein R 1 and R 2 are hydrogen, alkyl having 1 to 20 carbon atoms and branched alkyl, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, n is from 1 to 18 Is a natural number of.

여기에서, R은 탄소수 1 내지 17인 알킬 및 알케닐기이다.R is an alkyl and alkenyl group having 1 to 17 carbon atoms.

여기에서, R은 탄소수 1 내지 18인 알킬 및 알케닐기이다.R is an alkyl and alkenyl group having 1 to 18 carbon atoms.

여기에서, R은 탄소수 1 내지 18인 알킬 및 알케닐기이다.R is an alkyl and alkenyl group having 1 to 18 carbon atoms.

여기에서, R은 탄소수 1 내지 20의 알킬, 알케닐, 측쇄 알케닐, 시클로알킬, 시클로알케닐, 히드록시알킬, 히드록시알케닐, 알콕시알킬, 알릴, 아릴, 아릴알킬이다.Wherein R is alkyl having 1 to 20 carbon atoms, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, alkoxyalkyl, allyl, aryl, arylalkyl.

여기에서, R1및 R2는 탄소수 1 내지 20의 알킬, 측쇄 알킬, 알케닐, 측쇄 알케닐, 시클로알킬, 시클로알케닐, 히드록시알킬, 히드록시알케닐, 알콕시알킬, 알콕시알케닐, 알릴, 아릴, 아릴알킬이다.Wherein R 1 and R 2 are alkyl having 1 to 20 carbon atoms, branched alkyl, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, alkoxyalkyl, alkoxyalkenyl, allyl , Aryl, arylalkyl.

여기에서, R1및 R2는 탄소수 1 내지 20의 알킬, 측쇄 알킬, 알케닐, 측쇄 알케닐, 시클로알킬, 시클로알케닐, 히드록시알킬, 히드록시알케닐, 알콕시알킬, 알콕시알케닐, 알릴, 아릴, 아릴알킬이다.Wherein R 1 and R 2 are alkyl having 1 to 20 carbon atoms, branched alkyl, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, alkoxyalkyl, alkoxyalkenyl, allyl , Aryl, arylalkyl.

본 발명에 따른 유기표면처리제로 코팅된 전도성 페이스트용 질화알루미늄의 코팅방법은, (1) 질화알루미늄 100중량부에 대하여 알킬 알케닐옥시 벤조산 유도체, 알케닐옥시 아랄킬 지방산 유도체, 리시놀레인산 유도체, 석시닐산 치환 올레인산 유도체, 리놀렌산 유도체, 트리멜리트산 이미드 유도체, 알케닐옥시 벤젠 디카르복시산 유도체 및 알킬 알케닐옥시 페놀 유도체들로 이루어진 그룹 중에서 선택되는 유기표면처리제 0.1 내지 10중량부를 벤젠 등과 같은 유기용제 100 내지500중량부에 완전히 용해시켜 반응혼합물을 수득하는 용해단계; (2) 상기 반응혼합물을 80℃에서 2내지 4시간동안 환류시키는 환류단계; (3) 환류 후, 실온으로 냉각시키고, 유기용제를 제거하는 용제제거단계; (4) 용제제거 후, 얻어진 분말을 120 내지 160 ℃에서 진공 오븐에서 열처리하는 열처리단계;들을 포함하여 이루어진다.Coating method of the aluminum nitride for conductive paste coated with the organic surface treatment agent according to the present invention, (1) Alkyl alkenyloxy benzoic acid derivatives, alkenyloxy aralkyl fatty acid derivatives, ricinoleic acid derivatives based on 100 parts by weight of aluminum nitride 0.1-10 parts by weight of an organic surface treatment agent selected from the group consisting of succinylic acid substituted oleic acid derivatives, linolenic acid derivatives, trimellitic acid imide derivatives, alkenyloxy benzene dicarboxylic acid derivatives and alkyl alkenyloxy phenol derivatives A dissolution step of completely dissolving 100 to 500 parts by weight of a solvent to obtain a reaction mixture; (2) refluxing the reaction mixture at 80 ° C. for 2 to 4 hours; (3) a solvent removal step of cooling to room temperature after reflux and removing the organic solvent; (4) after the removal of the solvent, a heat treatment step of heat-treating the obtained powder in a vacuum oven at 120 to 160 ℃; comprising.

이러한 본 발명에 따른 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄의 코팅방법에 의하여 유기표면처리제로 코팅된 질화알루미늄을 수득할 수 있다.The aluminum nitride coated with the organic surface treating agent may be obtained by the coating method of the aluminum nitride for thermal conductive paste coated with the organic surface treating agent according to the present invention.

이하, 본 발명을 구체적인 실시예를 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to specific examples.

본 발명에 따른 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄은, 질화알루미늄의 표면이 알킬 알케닐옥시 벤조산 유도체, 알케닐옥시 아랄킬 지방산 유도체, 리시놀레인산 유도체, 석시닐산 치환 올레인산 유도체, 리놀렌산 유도체, 트리멜리트산 이미드 유도체, 알케닐옥시 벤젠 디카르복시산 유도체 및 알킬 알케닐옥시 페놀 유도체들로 이루어진 그룹 중에서 선택되는 유기표면처리제로 코팅되어 이루어짐을 특징으로 한다.Aluminum nitride for thermal conductive paste coated with an organic surface treatment agent according to the present invention, the surface of the aluminum nitride, alkyl alkenyloxy benzoic acid derivatives, alkenyloxy aralkyl fatty acid derivatives, ricinoleic acid derivatives, succinylic acid substituted oleic acid derivatives, Linolenic acid derivatives, trimellitic acid imide derivatives, alkenyloxy benzene dicarboxylic acid derivatives and alkyl alkenyloxy phenol derivatives, characterized in that the coating with an organic surface treatment agent selected from the group consisting of.

상기 유기표면처리제들은 상기 질화알루미늄의 표면에 코팅되어 질화알루미늄의 내수성을 향상시키고, 수지내의 분산성 및 수지와의 반응성을 보여주어 좋은 유변학적 특성, 내수성 그리고 접착성 및 쉬어 강도 등 좋은 기계적 강도를 가지는 질화알루미늄 분말을 제공한다.The organic surface treatment agents are coated on the surface of the aluminum nitride to improve the water resistance of the aluminum nitride, and exhibit dispersibility in the resin and reactivity with the resin, thereby providing good rheological properties, water resistance, and good mechanical strength such as adhesion and shear strength. Eggplant provides aluminum nitride powder.

상기 질화알루미늄은 그 표면의 일부가 공기 중에서 가수분해되어 수산기로 변화한 층을 가지며, 상기한 지방산 또는 이들의 유도체로서 산성을 갖는 유기표면처리제와의 혼합 및 적절한 가열(환류)에 의하여 알루미늄 금속과 에스테르화 및 에테르 결합의 생성이 이루어지는 것으로 여겨진다. 따라서, 코팅의 정도는 질화알루미늄의 표면의 수산기의 양 및 코팅하고자 하는 유기표면처리제의 흡착능력에 비례한다. 질화알루미늄 표면에 형성된 수산기는 약염기성을 나타내고 있으며, 대개 지방산 등은 산성을 나타내고 있어 질화알루미늄의 표면에 물리흡착이 유리하고 높은 온도에서 수분의 탈리와 함께 표면 유기 보호 코팅막이 형성된다. 지방족 알콜이나 방향족 알콜류도 보호 유기층으로 사용할 수 있으나 그 정도는 지방산 보다 떨어진다. 보호 유기층이 코팅되는 양은 균일한 조건에서 제조된 질화알루미늄의 경우 일정하다.The aluminum nitride has a layer in which a part of its surface is hydrolyzed in air and changed into a hydroxyl group, and the aluminum metal is mixed with an aluminum surface by mixing with an organic surface treatment agent having an acid as the fatty acid or a derivative thereof and appropriate heating (refluxing). It is believed that the esterification and the production of ether bonds take place. Thus, the degree of coating is proportional to the amount of hydroxyl groups on the surface of aluminum nitride and the adsorption capacity of the organic surface treatment agent to be coated. The hydroxyl groups formed on the aluminum nitride surface are weakly basic, and fatty acids and the like are usually acidic, so physical adsorption is advantageous on the surface of the aluminum nitride, and the surface organic protective coating film is formed together with the desorption of moisture at a high temperature. Aliphatic alcohols and aromatic alcohols can also be used as the protective organic layer, but the extent is lower than fatty acids. The amount to which the protective organic layer is coated is constant for aluminum nitride produced under uniform conditions.

본 발명에 있어서의 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄은 카르복시산 유도체들과 페놀 유도체들이 질화알루미늄의 표면과 반응하여 표면 코팅된 분말로서 30 내지 80 중량% 범위로 혼합하였으며, 바람직하게는 40 내지 60 중량%가 좋다. 상기 유기표면처리제로 코팅된 질화알루미늄 분말은 에폭시 수지와 혼합하여 열전도성 접착제로 사용할 시 다이 부착 접착제로서 적합한 물성을 가진다. 이러한 결과로 열전도도를 저하시키지 않으며 분산성 및 내수성이 우수한 전도성 페이스트가 제조될 수 있다.In the present invention, the aluminum nitride for thermally conductive paste coated with the organic surface treating agent is mixed with the carboxylic acid derivatives and the phenol derivatives with the surface of the aluminum nitride as a surface-coated powder, preferably in the range of 30 to 80% by weight. 40 to 60% by weight is preferred. The aluminum nitride powder coated with the organic surface treatment agent has suitable physical properties as a die attach adhesive when mixed with an epoxy resin and used as a thermally conductive adhesive. As a result, a conductive paste having excellent dispersibility and water resistance without lowering the thermal conductivity can be prepared.

본 발명에 따른 유기표면처리제로 코팅된 전도성 페이스트용 질화알루미늄의 코팅방법은, (1) 질화알루미늄 100중량부에 대하여 알킬 알케닐옥시 벤조산 유도체, 알케닐옥시 아랄킬 지방산 유도체, 리시놀레인산 유도체, 석시닐산 치환 올레인산 유도체, 리놀렌산 유도체, 트리멜리트산 이미드 유도체, 알케닐옥시 벤젠 디카르복시산 유도체 및 알킬 알케닐옥시 페놀 유도체들로 이루어진 그룹 중에서 선택되는 유기표면처리제 0.1 내지 10중량부를 벤젠 등과 같은 유기용제 100 내지 500중량부에 완전히 용해시켜 반응혼합물을 수득하는 용해단계; (2) 상기 반응혼합물을 80 ℃에서 2 내지 4시간동안 환류시키는 환류단계; (3) 환류 후, 실온으로 냉각시키고, 유기용제를 제거하는 용제제거단계; (4) 용제제거 후, 얻어진 분말을 120 내지 160 ℃의 진공 오븐에서 열처리단계;들을 포함하여 이루어짐을 특징으로 한다.Coating method of the aluminum nitride for conductive paste coated with the organic surface treatment agent according to the present invention, (1) Alkyl alkenyloxy benzoic acid derivatives, alkenyloxy aralkyl fatty acid derivatives, ricinoleic acid derivatives based on 100 parts by weight of aluminum nitride 0.1-10 parts by weight of an organic surface treatment agent selected from the group consisting of succinylic acid substituted oleic acid derivatives, linolenic acid derivatives, trimellitic acid imide derivatives, alkenyloxy benzene dicarboxylic acid derivatives and alkyl alkenyloxy phenol derivatives A dissolution step of completely dissolving 100 to 500 parts by weight of a solvent to obtain a reaction mixture; (2) refluxing the reaction mixture at 80 ° C. for 2 to 4 hours; (3) a solvent removal step of cooling to room temperature after reflux and removing the organic solvent; (4) after removing the solvent, the powder obtained is heat-treated in a vacuum oven at 120 to 160 ℃; characterized in that it comprises a.

상기 용해단계에서는 환류에 의한 가열에 의하여 유기표면처리제가 질화알루미늄의 표면의 수산기와 반응하도록 하기 위한 전처리단계로서, 반응을 위한 반응혼합물을 준비하는 단계이다. 상기 유기표면처리제가 상기 질화알루미늄 100중량부에 대하여 0.1중량부 미만으로 사용되는 경우, 유기표면처리제에 의한 질화알루미늄의 코팅층이 충분히 형성되지 못하게 되는 문제점이 있을 수 있으며, 반대로 10중량부를 초과하는 것은 유기표면처리제가 너무 과량으로 첨가되어 미반응의 유기표면처리제가 페이스트의 물성을 저하시키는 문제점이 있을 수 있다. 상기 용해단계에서 사용되는 유기용제는 가열에 의한 탈수반응으로 상기 유기표면처리제가 상기 질화알루미늄의 표면에 반응하도록 하기 위한 유효한 반응을 위한 반응매질로 이해될 수 있다.The dissolution step is a pretreatment step for allowing the organic surface treatment agent to react with hydroxyl groups on the surface of aluminum nitride by heating by reflux, and preparing a reaction mixture for the reaction. When the organic surface treatment agent is used in an amount less than 0.1 part by weight based on 100 parts by weight of the aluminum nitride, there may be a problem that the coating layer of aluminum nitride by the organic surface treatment agent is not formed sufficiently, on the contrary, exceeding 10 parts by weight Too much organic surface treating agent may be added, which may cause a problem that the unreacted organic surface treating agent lowers the physical properties of the paste. The organic solvent used in the dissolving step may be understood as a reaction medium for an effective reaction for causing the organic surface treatment agent to react on the surface of the aluminum nitride by a dehydration reaction by heating.

상기 환류단계에서는 상기 반응혼합물을 80 ℃에서 2 내지 4시간 동안 환류시켜 가열에 의하여 질화알루미늄의 표면에 유기표면처리제의 코팅층이 형성되도록 하는 단계이다.In the reflux step, the reaction mixture is refluxed at 80 ° C. for 2 to 4 hours to form a coating layer of an organic surface treatment agent on the surface of aluminum nitride by heating.

환류 후, 상기 반응혼합물을 실온으로 냉각시키고, 유기용제를 제거한 후, 계속해서 수득된 분말을 120 내지 160 ℃에서 열처리함으로써 탈수 반응이 일어나 유기표면처리제의 코팅층이 상기 질화알루미늄에 긴밀하게 부착되도록 한다.After refluxing, the reaction mixture is cooled to room temperature, the organic solvent is removed, and then, the obtained powder is subsequently heat treated at 120 to 160 ° C. so that a dehydration reaction occurs so that the coating layer of the organic surface treatment agent is closely attached to the aluminum nitride. .

이러한 본 발명에 따른 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄의 코팅방법에 의하여 유기표면처리제로 코팅된 질화알루미늄을 수득할 수 있다.The aluminum nitride coated with the organic surface treating agent may be obtained by the coating method of the aluminum nitride for thermal conductive paste coated with the organic surface treating agent according to the present invention.

이하에서 본 발명의 바람직한 실시예들이 기술되어질 것이다.Hereinafter, preferred embodiments of the present invention will be described.

이하의 실시예들은 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 국한시키는 것으로 이해되어져서는 안될 것이다.The following examples are intended to illustrate the invention and should not be understood as limiting the scope of the invention.

실험 1 ; 질화알루미늄의 코팅Experiment 1; Coating of Aluminum Nitride

실시예 1Example 1

하기 표 1에 나타낸 바와 같이, 3,4-디알릴옥시벤조산 240 g, 질화알루미늄 10 kg을 벤젠 30 kg에 용해시켜 반응혼합물을 준비하고, 이 반응혼합물을 80 ℃에서 3시간 환류를 실시하였다. 3시간 후, 반응혼합물을 실온으로 냉각시킨 후, 슬러리를 여과하여 벤젠을 제거하였다. 계속해서 수득된 질화알루미늄 분말을 150 ℃에서 열처리하여 코팅된 질화알루미늄을 수득하였다.As shown in Table 1 below, 240 g of 3,4-diallyloxybenzoic acid and 10 kg of aluminum nitride were dissolved in 30 kg of benzene to prepare a reaction mixture, and the reaction mixture was refluxed at 80 ° C. for 3 hours. After 3 hours, the reaction mixture was cooled to room temperature and the slurry was filtered to remove benzene. Subsequently, the obtained aluminum nitride powder was heat-treated at 150 ° C. to obtain coated aluminum nitride.

실시예 2Example 2

3-(p-알릴옥시페닐)프로피온산 280 g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코팅된 질화알루미늄을 수득하였다.A coated aluminum nitride was obtained in the same manner as in Example 1 except that 280 g of 3- ( p -allyloxyphenyl) propionic acid was used.

실시예 3Example 3

리시놀레인산 230 g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코팅된 질화알루미늄을 수득하였다.A coated aluminum nitride was obtained in the same manner as in Example 1, except that 230 g of ricinoleic acid was used.

실시예 4Example 4

석시닐치환 올레인산 230 g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코팅된 질화알루미늄을 수득하였다.A coated aluminum nitride was obtained in the same manner as in Example 1, except that 230 g of succinyl-substituted oleic acid was used.

실시예 5Example 5

리놀렌산 230 g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코팅된 질화알루미늄을 수득하였다.A coated aluminum nitride was obtained in the same manner as in Example 1, except that 230 g of linolenic acid was used.

실시예 6Example 6

트리멜리트산 310 g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코팅된 질화알루미늄을 수득하였다.A coated aluminum nitride was obtained in the same manner as in Example 1 except that 310 g of trimellitic acid was used.

실시예 7Example 7

5-옥타데실옥시프탈산 210 g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코팅된 질화알루미늄을 수득하였다.The coated aluminum nitride was obtained in the same manner as in Example 1, except that 210 g of 5-octadecyloxyphthalic acid was used.

실시예 8Example 8

노닐페놀 280 g을 사용하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 코팅된 질화알루미늄을 수득하였다.A coated aluminum nitride was obtained in the same manner as in Example 1, except that 280 g of nonylphenol was used.

실험 2 ; 전도성 페이스트의 제조Experiment 2; Preparation of Conductive Paste

실시예 9 내지 16Examples 9-16

하기 표 2에 나타낸 성분들의 비율로 혼합하고, 1 x 1 x 3 cm(가로 x 세로 x 높이)의 틀에 넣어 175 ℃에서 10분 경화시켜 시편을 제조하였다. 제조된 시편의 물성을 측정하였으며, 그 결과를 하기 표 3에 나타내었다. 시편의 물성 측정은 다음과 같다.The specimens were prepared by mixing in the ratio of the components shown in Table 2 below, and placed in a mold of 1 × 1 × 3 cm (horizontal × vertical xheight) for 10 minutes at 175 ° C. The physical properties of the prepared specimens were measured, and the results are shown in Table 3 below. Measurement of physical properties of the specimen is as follows.

비교예 1Comparative Example 1

하기 표 2에 나타낸 성분들의 비율로 혼합하였으며 질화알루미늄 분말은 유기표면처리제로 처리하지 않은 것을 사용하였다.It was mixed in the ratio of the components shown in Table 2 and used aluminum nitride powder was not treated with an organic surface treatment agent.

점도: Brookfield사의 Model HBDV-II+사용, rpm 0.5와 5에서 측정Viscosity: with Model HBDV-II + from Brookfield, measured at rpm 0.5 and 5

이온농도: 페이스트를 경화한 후 마쇄하여 60-100 mesh 사이의 망을 통하여 여과하였다. 시료 5 g을 취한 후 플라스크에 넣고 탈이온수를 넣고 100 ℃에서 24시간 방치 후 여과한 후 양이온과 음이온의 분석을 위해 이온크로마토그라피 (Dionex사, DX-500)에 주입하였다. 여기서 얻어지는 크로마토그람데이터를 바탕으로 이온 불순물의 함량을 산출하였다.Ion Concentration: The paste was cured and then ground and filtered through a network between 60-100 mesh. 5 g of the sample was taken, placed in a flask, deionized water, and allowed to stand at 100 ° C. for 24 hours, followed by filtration, and then injected into ion chromatography (Dionex, DX-500) for analysis of cations and anions. The content of ionic impurities was calculated based on the chromatogram data obtained here.

중량감량, 중량감량(175 ℃ 경화, 1시간): TGA (Shimadzu TGA 50 Thermal Analyzer)는 승온속도 10℃/min의 질소 분위기에서 측정하였다.Weight loss, weight loss (175 ° C. curing, 1 hour): TGA (Shimadzu TGA 50 Thermal Analyzer) was measured in a nitrogen atmosphere at a temperature increase rate of 10 ° C./min.

유리전이온도, 경화시간은 Perkin-Elmer DSC 7을 질소 분위기에서 10 ℃/min의 속도로 측정하였다.Glass transition temperature and curing time were measured at a rate of 10 ℃ / min Perkin-Elmer DSC 7 in a nitrogen atmosphere.

인장쉬어강도: UTM (Instron Model 4467)을 이용하여 0.05 inch/min의 속도로 측정하였다.Tensile Shear Strength: Measured at a rate of 0.05 inch / min using UTM (Instron Model 4467).

열팽창계수: TA사의 Universal V2.5H TMA를 사용하여 측정하였다.Thermal expansion coefficient: Measured using a Universal V2.5H TMA from TA.

흡습량: 항온항습조를 사용하여 80 ℃에서 5일 방치한 후 측정하였다.Moisture absorption: measured after 5 days at 80 ℃ using a constant temperature and humidity bath.

열전도도: 히터 헤드에서 일정의 발열량으로 가열하고 시편내 온도구배를 측정하는 정상상태 측정법을 이용하였으며 레이저 섬광법은 보정을 위하여 사용하였다. 시편은 1 x 1 x 3 cm의 것을 사용하였다.Thermal conductivity: A steady state measurement was used to heat the heater head with a constant heating value and to measure the temperature gradient in the specimen. Laser scintillation was used for calibration. Specimen used was 1 x 1 x 3 cm.

비교예 2Comparative Example 2

표면처리되지 않은 질화알루미늄을 사용하는 것을 제외하고는 상기 실시예 9와 동일하게 하여 시편을 제조하였으며, 물성시험 결과를 상기 표 3에 나타내었다.A specimen was prepared in the same manner as in Example 9 except that the surface-treated aluminum nitride was used, and the physical property test results are shown in Table 3 above.

상기 실시예들 및 비교예의 결과들에서 나타난 바와 같이, 본 발명에 따른 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄을 사용하여 조성된 페이스트 조성은 표면처리제의 종류에 따라 점도를 조절할 수 있으며, 낮은 염소 및 나트륨 농도를 보여주었다. 또한 메트릭스 수지와 유기표면처리제의 결합에 의하여 약간 높은 유리전이온도를 나타내며, 인장쉬어 강도는 매우 큰 값을 보여주고 있음을 확인할 수 있었다. 특히 흡습성에서는 표면처리하지 않은 시료 (비교예)에 비해낮은 흡수율을 보여주었다.As shown in the results of the above examples and comparative examples, the paste composition prepared by using the aluminum nitride for thermal conductive paste coated with the organic surface treatment agent according to the present invention can adjust the viscosity according to the type of surface treatment agent, Low chlorine and sodium concentrations were shown. In addition, it was confirmed that the glass transition temperature was slightly high due to the combination of the matrix resin and the organic surface treatment agent, and the tensile shear strength was very large. In particular, the hygroscopicity showed lower water absorption than the untreated surface (Comparative Example).

따라서, 본 발명에 의하면 질화알루미늄을 여러 가지 소수성기 및 수지와 반응하는 작용기를 포함하는 여러 가지 지방족 및 방향족 지방산 등과 같은 유기표면처리제로 코팅하는 것에 의하여 내수성, 분산성, 유변학적 성질 및 수지와의 결합성 등을 향상시킨 표면처리된 질화알루미늄을 제공하며, 이러한 질화알루미늄은 매트릭스 수지로서의 에폭시수지와 혼합되어 전도성 접착제를 형성할 수 있으며, 또한 이렇게 형성되는 전도성 접착제는 리드프레임의 다이 위에 반도체 칩을 접착하는 것을 포함하는 전자공업에서의 접착제로서 사용될 수 있는 효과가 있다.Therefore, according to the present invention, aluminum nitride is coated with organic surface treatment agents such as various aliphatic and aromatic fatty acids including functional groups reacting with various hydrophobic groups and resins, and thus water resistance, dispersibility, rheological properties, and bonding to resins. It provides a surface-treated aluminum nitride with improved properties, such as aluminum nitride can be mixed with the epoxy resin as a matrix resin to form a conductive adhesive, and the conductive adhesive is formed to bond the semiconductor chip on the die of the lead frame There is an effect that can be used as an adhesive in the electronics industry, including.

이상에서 본 발명은 기재된 구체 예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical scope of the present invention, and such modifications and modifications are within the scope of the appended claims.

Claims (4)

질화알루미늄의 표면이 알킬 알케닐옥시 벤조산 유도체(화학식 1), 알케닐옥시 아랄킬 지방산 유도체(화학식 2), 리시놀레인산 유도체(화학식 3), 석시닐산 치환 올레인산 유도체(화학식 4), 리놀렌산 유도체(화학식 5), 트리멜리트산 이미드 유도체(화학식 6), 알케닐옥시 벤젠 디카르복시산 유도체(화학식 7) 및 알킬 알케닐옥시 페놀 유도체(화학식 8)들로 이루어진 그룹 중에서 선택되는 유기표면처리제로 코팅되어 이루어짐을 특징으로 하는 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄:The surface of aluminum nitride is alkyl alkenyloxy benzoic acid derivative (Formula 1), alkenyloxy aralkyl fatty acid derivative (Formula 2), ricinoleic acid derivative (Formula 3), succinylic acid substituted oleic acid derivative (Formula 4), linolenic acid derivative Coating with an organic surface treatment agent selected from the group consisting of (Formula 5), trimellitic acid imide derivatives (Formula 6), alkenyloxy benzene dicarboxylic acid derivatives (Formula 7) and alkyl alkenyloxy phenol derivatives (Formula 8) Aluminum nitride for thermally conductive paste coated with an organic surface treatment agent, characterized in that: 화학식 1Formula 1 여기에서, R1및 R2는 수소, 탄소수 1 내지 20인 알킬 및 측쇄 알킬, 알케닐, 측쇄 알케닐, 시클로알킬, 시클로알케닐, 히드록시알킬, 히드록시알케닐이고,Wherein R 1 and R 2 are hydrogen, alkyl having 1 to 20 carbon atoms and branched alkyl, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, 화학식 2Formula 2 여기에서, R1및 R2는 수소, 탄소수 1 내지 20인 알킬 및 측쇄 알킬, 알케닐, 측쇄 알케닐, 시클로알킬, 시클로알케닐, 히드록시알킬, 히드록시알케닐이고, n은 1 내지 18의 자연수이고,Wherein R 1 and R 2 are hydrogen, alkyl having 1 to 20 carbon atoms and branched alkyl, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, n is from 1 to 18 Is a natural number of, 화학식 3Formula 3 여기에서, R은 탄소수 1 내지 17인 알킬 및 알케닐기이고,Wherein R is an alkyl and alkenyl group having 1 to 17 carbon atoms, 화학식 4Formula 4 여기에서, R은 탄소수 1 내지 18인 알킬 및 알케닐기이고,Wherein R is an alkyl and alkenyl group having 1 to 18 carbon atoms, 화학식 5Formula 5 여기에서, R은 탄소수 1 내지 18인 알킬 및 알케닐기이고,Wherein R is an alkyl and alkenyl group having 1 to 18 carbon atoms, 화학식 6Formula 6 여기에서, R은 탄소수 1 내지 20의 알킬, 알케닐, 측쇄 알케닐, 시클로알킬, 시클로알케닐, 히드록시알킬, 히드록시알케닐, 알콕시알킬, 알릴, 아릴, 아릴알킬이고,Wherein R is alkyl having 1 to 20 carbon atoms, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, alkoxyalkyl, allyl, aryl, arylalkyl, 화학식 7Formula 7 여기에서, R1및 R2는 탄소수 1 내지 20의 알킬, 측쇄 알킬, 알케닐, 측쇄 알케닐, 시클로알킬, 시클로알케닐, 히드록시알킬, 히드록시알케닐, 알콕시알킬, 알콕시알케닐, 알릴, 아릴, 아릴알킬이고,Wherein R 1 and R 2 are alkyl having 1 to 20 carbon atoms, branched alkyl, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, alkoxyalkyl, alkoxyalkenyl, allyl , Aryl, arylalkyl, 화학식 8Formula 8 여기에서, R1및 R2는 탄소수 1 내지 20의 알킬, 측쇄 알킬, 알케닐, 측쇄 알케닐, 시클로알킬, 시클로알케닐, 히드록시알킬, 히드록시알케닐, 알콕시알킬, 알콕시알케닐, 알릴, 아릴, 아릴알킬임.Wherein R 1 and R 2 are alkyl having 1 to 20 carbon atoms, branched alkyl, alkenyl, branched alkenyl, cycloalkyl, cycloalkenyl, hydroxyalkyl, hydroxyalkenyl, alkoxyalkyl, alkoxyalkenyl, allyl , Aryl, arylalkyl. 제 1 항에 있어서,The method of claim 1, 상기 유기표면처리제 그룹 중에서 2개 이상 선택된 유기표면처리제로 코팅되어 이루어짐을 특징으로 하는 유기표면처리제로 코팅된 전도성 페이스트용 질화알루미늄Aluminum nitride for conductive paste coated with an organic surface treatment agent, characterized in that the coating is made of two or more organic surface treatment agents selected from the group of organic surface treatment agents. 제 1 항에 있어서,The method of claim 1, 상기 유기표면처리제가 상기 질화알루미늄에 대하여 0.1 내지 10 중량% 범위로 코팅되는 것을 특징으로 하는 상기 열전도성 페이스트용 질화알루미늄.The aluminum nitride for thermally conductive paste, characterized in that the organic surface treatment agent is coated in the range of 0.1 to 10% by weight relative to the aluminum nitride. (1) 질화알루미늄 100중량부에 대하여 알킬 알케닐옥시 벤조산 유도체, 알케닐옥시 아랄킬 지방산 유도체, 리시놀레인산 유도체, 석시닐산 치환 올레인산 유도체, 리놀렌산 유도체, 트리멜리트산 이미드 유도체, 알케닐옥시 벤젠 디카르복시산 유도체 및 알킬 알케닐옥시 페놀 에폭시 유도체들로 이루어진 그룹 중에서 선택되는 유기표면처리제 0.1 내지 10중량부를 벤젠 등과 같은 유기용제 100 내지 500중량부에 완전히 용해시켜 반응혼합물을 수득하는 용해단계;(1) 100 parts by weight of aluminum nitride, alkyl alkenyloxy benzoic acid derivatives, alkenyloxy aralkyl fatty acid derivatives, ricinoleic acid derivatives, succinylic acid substituted oleic acid derivatives, linolenic acid derivatives, trimellitic acid imide derivatives, alkenyloxy A dissolution step of completely dissolving 0.1 to 10 parts by weight of an organic surface treatment agent selected from the group consisting of benzene dicarboxylic acid derivatives and alkyl alkenyloxy phenol epoxy derivatives to 100 to 500 parts by weight of an organic solvent such as benzene to obtain a reaction mixture; (2) 상기 반응혼합물을 80 ℃에서 2 내지 4시간 동안 환류시키는 환류단계;(2) refluxing the reaction mixture at 80 ° C. for 2 to 4 hours; (3) 환류 후, 실온으로 냉각시키고, 유기용제를 제거하는 용제제거단계;(3) a solvent removal step of cooling to room temperature after reflux and removing the organic solvent; (4) 용제제거 후, 얻어진 분말을 120 내지 160 ℃의 진공 오븐에서 열처리단계;(4) heat removal step of the obtained powder after solvent removal in a vacuum oven at 120 to 160 ℃; 들을 포함하여 이루어짐을 특징으로 하는 유기표면처리제로 코팅된 열전도성 페이스트용 질화알루미늄의 코팅방법.Coating method of aluminum nitride for thermal conductive paste coated with an organic surface treatment agent, characterized in that made.
KR10-2000-0067029A 2000-11-11 2000-11-11 Coated aluminium nitride with organo-surface treating agent for thermally conductive paste and its manufacturing method KR100373834B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0067029A KR100373834B1 (en) 2000-11-11 2000-11-11 Coated aluminium nitride with organo-surface treating agent for thermally conductive paste and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0067029A KR100373834B1 (en) 2000-11-11 2000-11-11 Coated aluminium nitride with organo-surface treating agent for thermally conductive paste and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20020036933A true KR20020036933A (en) 2002-05-17
KR100373834B1 KR100373834B1 (en) 2003-02-26

Family

ID=19698535

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0067029A KR100373834B1 (en) 2000-11-11 2000-11-11 Coated aluminium nitride with organo-surface treating agent for thermally conductive paste and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100373834B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200014828A (en) * 2017-07-14 2020-02-11 후지필름 가부시키가이샤 Surface Modified Inorganic Nitride, Composition, Thermally Conductive Material, Thermally Conductive Device
KR20200014813A (en) * 2017-07-14 2020-02-11 후지필름 가부시키가이샤 Surface Modified Inorganic Nitride, Composition, Thermally Conductive Material, Thermally Conductive Device
KR20200016946A (en) * 2017-07-14 2020-02-17 후지필름 가부시키가이샤 Surface Modified Inorganic Nitride, Composition, Thermally Conductive Material, Thermally Conductive Device
EP3653573A4 (en) * 2017-07-14 2020-06-17 FUJIFILM Corporation Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296708A (en) * 1989-05-10 1990-12-07 Inax Corp Method for surface coating of aln powder
JPH03261665A (en) * 1990-03-09 1991-11-21 Toshiba Corp Aluminum nitride powder and production of aluminum nitride sintered body
JPH0616478A (en) * 1992-04-30 1994-01-25 Toyo Alum Kk Production of aluminum nitride molding
JP3794525B2 (en) * 1998-02-06 2006-07-05 信越化学工業株式会社 Aluminum nitride composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200014828A (en) * 2017-07-14 2020-02-11 후지필름 가부시키가이샤 Surface Modified Inorganic Nitride, Composition, Thermally Conductive Material, Thermally Conductive Device
KR20200014813A (en) * 2017-07-14 2020-02-11 후지필름 가부시키가이샤 Surface Modified Inorganic Nitride, Composition, Thermally Conductive Material, Thermally Conductive Device
KR20200016946A (en) * 2017-07-14 2020-02-17 후지필름 가부시키가이샤 Surface Modified Inorganic Nitride, Composition, Thermally Conductive Material, Thermally Conductive Device
EP3653573A4 (en) * 2017-07-14 2020-06-17 FUJIFILM Corporation Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
EP3653572A4 (en) * 2017-07-14 2020-06-17 FUJIFILM Corporation Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
JPWO2019013261A1 (en) * 2017-07-14 2020-06-18 富士フイルム株式会社 Surface modified inorganic nitride, composition, heat conductive material, device with heat conductive layer
EP3653574A4 (en) * 2017-07-14 2020-07-01 FUJIFILM Corporation Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
EP3653575A4 (en) * 2017-07-14 2020-07-15 FUJIFILM Corporation Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
US11370950B2 (en) 2017-07-14 2022-06-28 Fujifilm Corporation Surface-modified inorganic nitride, composition, thermally conductive material, and device with thermally conductive layer
US11945717B2 (en) 2017-07-14 2024-04-02 Fujifilm Corporation Surface-modified inorganic nitride, composition, thermally conductive material, and device with thermally conductive layer
US11945718B2 (en) 2017-07-14 2024-04-02 Fujifilm Corporation Surface-modified inorganic nitride, composition, thermally conductive material, and device with thermally conductive layer

Also Published As

Publication number Publication date
KR100373834B1 (en) 2003-02-26

Similar Documents

Publication Publication Date Title
EP2799509A1 (en) Insulating adhesive composition for metal-based copper clad laminate (mccl), coated metal plate using same, and method for manufacturing same
KR100373834B1 (en) Coated aluminium nitride with organo-surface treating agent for thermally conductive paste and its manufacturing method
JPS6272511A (en) Hydrophobic diamond powder and process for obtaining hydrophobic diamond powder
KR101835937B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device prepared from using the same
KR20170000066A (en) Phosphonium compound, epoxy resin composition comprising the same and semiconductor device prepared from using the same
US5250637A (en) Semiconductor encapsulating epoxy resin compositions and semiconductor devices
CN108456501B (en) Conductive adhesive composition
KR101854503B1 (en) Phosphonium compound, epoxy resin composition comprising the same and semiconductor device prepared from using the same
JP2603375B2 (en) Conductive resin paste for semiconductors
JPH04356934A (en) Insulating resin paste
KR101266534B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
KR101845134B1 (en) Phosphonium compound, epoxy resin composition comprising the same and semiconductor device prepared from using the same
JPH04222887A (en) Insulating resin paste
JP2501258B2 (en) Insulating resin paste
JPH04332754A (en) Electrical insulating resin paste
KR100479858B1 (en) Liquid Epoxy Resin Composition for Encapsulating Semiconductor Device
KR100479859B1 (en) Liquid Epoxy Resin Composition for Encapsulating Semiconductor Device
JP2944726B2 (en) Conductive resin paste for semiconductors
JP2000178445A (en) Liquid sealing resin composition and semiconductor device
KR100250771B1 (en) Epoxy resin compositions containing latent catalysts for semiconductor encapsulation
JP2798565B2 (en) Conductive resin paste for semiconductors
JP3449846B2 (en) Conductive resin paste for semiconductor
JPS5875854A (en) Resin-sealed semiconductor device
KR100479855B1 (en) Liquid epoxy resin composition for use in ball grid array package
JP2001164230A (en) Silicone-based adhesive

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140212

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee