KR20020016226A - Method for removal of nitrate - Google Patents

Method for removal of nitrate Download PDF

Info

Publication number
KR20020016226A
KR20020016226A KR1020000049422A KR20000049422A KR20020016226A KR 20020016226 A KR20020016226 A KR 20020016226A KR 1020000049422 A KR1020000049422 A KR 1020000049422A KR 20000049422 A KR20000049422 A KR 20000049422A KR 20020016226 A KR20020016226 A KR 20020016226A
Authority
KR
South Korea
Prior art keywords
water
nitrate nitrogen
reverse osmosis
nitrate
nitrogen ions
Prior art date
Application number
KR1020000049422A
Other languages
Korean (ko)
Inventor
곽영세
강신경
Original Assignee
이구택
포항종합제철 주식회사
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사, 신현준, 재단법인 포항산업과학연구원 filed Critical 이구택
Priority to KR1020000049422A priority Critical patent/KR20020016226A/en
Publication of KR20020016226A publication Critical patent/KR20020016226A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: Provided is a method for removal of nitrate, which is characterized in using reverse osmosis as a sanitary physical treatment for polluted water. The treated water is used as drinking water containing nitrate below standard through chlorination. The method is applied to a continuous sequencing batch reactor using microorganism for denitrification. CONSTITUTION: The method proceeds to the following steps: (i) filtration step to remove particles with 50μm or more of diameter by passing polluted water containing nitrate through a filter bed packed with sand; (ii) separation step to clarified water and thickened water containing nitrate by passing reverse osmosis; and (iii) denitrification step to convert nitrate to nitrogen gas in a continuous sequencing batch reactor with adding carbon source and mixing. The clarified water is sterilized by chlorination process and used for drinking water.

Description

질산성 질소 이온 제거방법{Method for removal of nitrate}Method for removal of nitrate nitrogen ions {Method for removal of nitrate}

본 발명은 다량의 질산성 질소 이온을 함유하는 오염수 중의 질산성 이온 제거방법에 관한 것으로, 보다 상세하게는 질산성 질소 이온으로 오염된 원수를 역삼투법으로 처리하여 질산성 질소 이온이 농축된 농축수와 투과수로 분리한 뒤, 분리된 투과수는 필요에 따라 별도의 소독 공정을 거쳐 최종적으로 음용수를 생산하고, 상기 역삼투 공정의 부산물로 생성되는 고농도의 질산성 질소 이온 농축수는 미생물을 이용한 연속 회분식 반응조에서의 탈질반응을 거쳐 최종적으로 대기중의 질소 가스로 변환시키는 공정을 포함하는 질산성 질소 이온 제거방법에 관한 것이다.The present invention relates to a method for removing nitrate ions in contaminated water containing a large amount of nitrate nitrogen ions, and more particularly, concentrated water in which nitrate nitrogen ions are concentrated by treating the raw water contaminated with nitrate nitrogen ions by reverse osmosis. After separated into permeate and the separated permeate is subjected to a separate disinfection process, if necessary, the final production of drinking water, the high concentration of nitrate nitrogen ions concentrated water produced as a by-product of the reverse osmosis process using microorganisms The present invention relates to a method for removing nitrate nitrogen ions including a step of denitrification in a continuous batch reactor and finally conversion to nitrogen gas in the atmosphere.

일반적인 상수처리 분야에서는 위생적인 물리/화학적 처리방법이 선호되고 있으나(참조: Robert L. Sanks, "Water Treatment Plant Design for the Practicing Engineer", 1980, ANN ARBOR SCIENCE, pp. 371∼395), 전통적인 응집 및 여과처리 기술로는 일반 하수 및 산업 폐수에 다량 포함되어 배출되는 NO2 -및 NO3 -와 같은 질산성 질소 이온(nitrate)을 처리할 수 없기 때문에, 이를 위한 별도의 추가 공정이 요구된다.Hygienic physico-chemical treatments are preferred in the field of general water treatment (Robert L. Sanks, "Water Treatment Plant Design for the Practicing Engineer", 1980, ANN ARBOR SCIENCE, pp. 371-395). And filtration technologies include large amounts of NO emitted in general sewage and industrial wastewater.2 -And NO3 -Such as Because of the inability to process nitrate nitrogen ions, a separate additional process is required.

최근 가장 각광받고 있는 질산성 질소 이온 제거방법은 미생물을 이용한 방법으로, 이 방법의 뛰어난 경제성으로 인하여 많은 응용기술이 소개되어 왔다(참조: 공개특허 제90-011673호, 공개특허 제97-065445호). 하지만, 양질의 음용수를 얻기 위한 질산성 질소 이온 제거에 이러한 생물학적 방법을 적용하는 것은 병원성균 오염에 대한 별도의 방지기술이 수반되지 않는다면 전혀 고려의 대상이 될 수가 없다.Recently, the most nitrate nitrogen ion removal method which is in the spotlight is a method using a microorganism, and many application technologies have been introduced due to the excellent economical efficiency of the method (see, for example, Korean Patent Nos. 90-011673 and 97-065445). ). However, the application of these biological methods to the removal of nitrate nitrogen ions to obtain high quality drinking water cannot be considered at all unless accompanied by a separate prevention against pathogenic bacterial contamination.

위생적인 질산성 질소 이온 제거방법으로는 역삼투법과 이온교환법이 가장 대표적이다. 일반적으로 역삼투법이란 역삼투 현상을 이용하여 수중의 이온성 물질을 제거하는 기술을 말한다. 삼투 현상이란 반투막을 사이에 두고 저농도 용액의 용매가 고농도 용액 쪽으로 이동하는 현상으로, 만약 이때 고농도 용액 쪽에 삼투압차 이상의 압력을 가하면 삼투 현상과는 반대로 고농도 용액의 용매가 저농도 용액 쪽으로 이동하게 되는데, 이러한 현상을 역삼투 현상이라 한다. 이러한 역삼투법에 따르면 높은 압력의 펌프를 이용하여 다량의 질산성 질소 이온으로 오염된 원수를 특별히 제작된 반투막을 통과시킴으로써, 질산성 질소 이온과 물을 효과적으로 분리할 수 있다(참조: R. G. Gutman, "Membrane Filtration", 1987, Adam Hilger, pp. 131∼148). 그러나, 이 방법은 원래 수원의 75%(v/v) 정도만 사용 가능하고 나머지 25%(v/v) 정도는 고농도의 질산성 질소 이온으로 재오염된 부산물이 발생한다는 단점을 가지고 있다.Reverse osmosis and ion exchange are the most representative methods for removing nitrate nitrogen. In general, reverse osmosis refers to a technique for removing ionic substances in water by using reverse osmosis. The osmotic phenomenon is a phenomenon in which the solvent in the low concentration solution moves toward the high concentration solution with a semi-permeable membrane interposed therebetween. In this case, if the pressure of the high concentration solution is applied to the high concentration solution, the solvent in the high concentration solution moves to the low concentration solution as opposed to the osmotic phenomenon. The phenomenon is called reverse osmosis. According to this reverse osmosis method, a high pressure pump can be used to effectively separate nitrate nitrogen ions from water by passing a raw water contaminated with a large amount of nitrate nitrogen ions through a specially prepared semipermeable membrane. RG Gutman, "Membrane Filtration ", 1987, Adam Hilger, pp. 131-148). However, this method has the disadvantage that only 75% (v / v) of the original water source can be used and the remaining 25% (v / v) generates by-products recontaminated with high concentrations of nitrate nitrogen ions.

한편, 이온교환법은 음이온 수지에 붙어있는 염소 이온을 오염된 원수 중의 질산성 질소 이온으로 치환함으로써 질산성 질소 이온을 분리, 제거하는 방법이다(참조: James M. Montgomery, "Water Treatment Principles and Design", 1985, John Wiley & Sons, pp. 198∼207). 그러나, 일반적인 지하수 성분 중에는 2가 음이온(예: SO4 2-)들이 많이 포함되어 있는데, 이들 2가 음이온들은 제거하고자 하는 질산성 질소 이온보다 쉽게 수지에 흡착되므로, 질산성 질소 이온들이 분리되지 않고 그대로 통과되어 제거효율이 크게 저하된다는 것이 문제점으로 지적되고 있다. 또한, 사용된 수지를 세척하는 과정에서 다시 질산성 질소 이온으로 오염된 농축 부산물에 의한 2차 오염의 소지가 크고, 이의 처리에 또다른 수단이 강구되어야 하는 번거로움이 있다.On the other hand, ion exchange is a method of separating and removing nitrate nitrogen ions by replacing chlorine ions attached to the anion resin with nitrate nitrogen ions in contaminated raw water (see James M. Montgomery, "Water Treatment Principles and Design"). , 1985, John Wiley & Sons, pp. 198-207). However, common groundwater components contain a lot of divalent anions (eg SO 4 2- ), which are more easily adsorbed to the resin than the nitrate nitrogen ions to be removed, so that the nitrate nitrogen ions are not separated. The problem is pointed out that the removal efficiency is greatly reduced as it passes. In addition, there is a high possibility of secondary contamination by concentrated by-products contaminated with nitrate nitrogen ions in the process of washing the used resin again, and there is an inconvenience that another means must be taken for its treatment.

이에 본 발명은 상기한 문제점들을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 위생적인 물리적 처리방법인 역삼투법과 탈질반응을 일으키는 미생물을 이용한 연속 회분식 반응법을 혼합 응용하여, 질산성 질소 이온을 규제치 이하로 포함하는 음용수를 생산하는데 적절한 2차 오염의 소지가 없고 환경 친화적인 질산성 질소 이온 제거방법을 제공하는 것이다.Accordingly, the present invention has been made to solve the above problems, the object of the present invention is to regulate the nitrate nitrogen ions by using a mixture of the reverse osmosis method, which is a hygienic physical treatment method and the continuous batch reaction method using a microorganism causing the denitrification reaction, It is to provide an environmentally friendly method for removing nitrate nitrogen ions without the possibility of secondary pollution suitable for producing drinking water including the following.

도 1은 본 발명의 질산성 질소 이온 제거방법을 구현하기 위한 장치 및 공정의 개략적인 모식도.1 is a schematic diagram of an apparatus and process for implementing the method for removing nitrate nitrogen ions of the present invention.

도 2는 연속 회분식 반응조 내의 질산성 질소의 시간에 따른 농도변화를 나타내는 그래프.Figure 2 is a graph showing the concentration change with time of nitrate nitrogen in a continuous batch reactor.

이하, 본 발명에 대하여 상세히 설명하고자 한다.Hereinafter, the present invention will be described in detail.

상기한 목적을 달성하기 위하여, 본 발명의 질산성 질소 이온 제거방법은 질산성 질소 이온으로 오염된 원수를 우선 역삼투법으로 처리하여 질산성 질소 이온이 농축된 농축수와 투과수로 분리한 뒤, 상기 농축수 중의 질산성 질소 이온을 미생물을 이용한 탈질반응에 의하여 최종적으로 대기 중의 질소 가스로 변환시킴으로써, 위생적인 측면과 환경적인 측면의 효과를 동시에 고려하면서 부족한 수자원의 확보를 가능하게 한다는 것을 특징으로 한다. 본 발명의 질산성 질소 이온 제거방법을 상세히 설명하면 하기와 같다.In order to achieve the above object, the method for removing nitrate nitrogen ions of the present invention is to treat the raw water contaminated with nitrate nitrogen ions first by reverse osmosis to separate the nitrate nitrogen ions concentrated concentrated water and permeate water, By converting the nitrate nitrogen ions in the concentrated water to the nitrogen gas in the air finally by the denitrification reaction using microorganisms, it is possible to secure insufficient water resources while simultaneously considering the effects of hygienic and environmental aspects. . Hereinafter, the method for removing nitrate nitrogen ions of the present invention will be described in detail.

본 발명의 질산성 질소 이온 제거방법은 (i) 질산성 질소 이온으로 오염된 원수를 모래가 충진된 여과기를 통과시켜 직경이 50㎛ 이상인 입자성 이물질을 제거하는 여과공정; (ii) 상기 여과수를 역삼투막을 통과시켜 질산성 질소 이온이 농축된 농축수와 투과수로 분리하는 역삼투 공정; 및, (iii) 상기 농축수를 조정조를 거쳐 연속회분식 반응조에 투입한 다음, 상기 반응조에 탄소원을 첨가하고 교반하여 상기 농축수에 포함된 질산성 질소 이온을 질소 가스로 변환시키는 탈질공정을포함한다.The method for removing nitrate nitrogen ions of the present invention comprises the steps of: (i) filtering a raw water contaminated with nitrate nitrogen ions through a sand-filled filter to remove particulate foreign matter having a diameter of 50 μm or more; (ii) a reverse osmosis step of separating the filtered water into a concentrated water and a permeate through which a nitrate nitrogen ion is concentrated by passing the reverse osmosis membrane; And (iii) a denitrification step of introducing the concentrated water into a continuous batch reactor through an adjustment tank, and then adding a carbon source to the reactor and stirring to convert nitrate nitrogen ions contained in the concentrated water into nitrogen gas. .

상기 제 (ii) 공정인 역삼투 공정으로부터 생성된 투과수는 필요에 따라 별도의 염소소독 공정을 거칠 수도 있으며, 상기 염소소독 공정으로부터 수득한 살균수는 음용수로 사용할 수 있다.The permeated water generated from the reverse osmosis process, which is the (ii) process, may be subjected to a separate chlorine sterilization process, if necessary, and the sterilized water obtained from the chlorine sterilization process may be used as drinking water.

또한, 제 (iii) 공정인 탈질공정에서는 농축수에 별도의 균주를 접종, 배양할 필요 없이 원래 오염수 중에 서식하고 있는Achromobacter,Aerobacter, 또는Bacillus 같은 탈질 세균(denitrification bacteria)를 활용하며, 다만 탈질반응을 촉진시키기 위하여 메탄올 또는 아세테이트와 같은 공지의 탄소원을 질소 이온 농도에 비례하여 공급한다. 아울러, 본 발명의 탈질공정에서는 반응조와 침전조가 하나로 통합된 구조의 연속 회분식 반응조를 채택함으로써, 설치비의 부담을 줄이고, 적은 공간에서도 응용이 가능하며, 타이머의 조작으로 다양한 환경 조건에 따라 용이하게 운전 조건을 조작할 수 있도록 하였다.In addition, in the denitrification step (iii), the strain is inhabited in the contaminated water without inoculating and culturing a separate strain in the concentrated water.Achromobacter,Aerobacter, orBacillusWow The same denitrification bacteria are utilized, but a known carbon source such as methanol or acetate is supplied in proportion to the nitrogen ion concentration to promote the denitrification reaction. In addition, in the denitrification process of the present invention, by adopting a continuous batch reactor having a structure in which the reaction tank and the settling tank are integrated into one, the burden of installation cost is reduced, the application is possible in a small space, and the operation of the timer facilitates operation according to various environmental conditions. The condition can be manipulated.

이외에도, 상술한 본 발명의 방법에 의한 질산성 질소 이온 제거용량은 각 개별 공정이 병렬 연결되어 있는 공정 특성상 필요에 따라 용이하게 증감할 수 있다는 장점이 있다.In addition, the nitrate nitrogen ion removal capacity by the method of the present invention described above has the advantage that it can be easily increased or decreased as needed in view of the process characteristics that each individual process is connected in parallel.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples according to the gist of the present invention.

[실시예]EXAMPLE

다량의 질산성 질소 이온으로 오염된 지하수를 도 1에서 보여지는 공정의 흐름에 따라 처리하였으며, 그 구체적인 방법은 하기와 같다. 우선 오염된 지하수를 채취하여 원수 저장조에 저장한 다음, 0.35 내지 0.50㎜의 유효직경을 갖는 모래가 충진된 모래여과 장치를 통과시켜 입자성 이물질을 제거한 후, 고압 펌프를 이용하여 역삼투 모듈(BW30-2540, FILMTEC, U. S. A)에 공급하였다. 이때, 역삼투 모듈로의 원수 유입량은 15ℓ/min이고, 유입압력은 15 내지 20㎏/㎠이었다. 한편, 상기 모듈을 거쳐 나오는 투과수량은 1.5ℓ/min이었으며, 고농도의 질산성 이온이 포함된 농축수(0.5ℓ/min)는 탈질반응을 위한 조정조로 이송시키고, 처리되지 않은 원수(13ℓ/min)는 원수 저장조로 재순환시켰으며, 2ℓ/min의 속도로 역삼투 모듈에 여과된 원수를 보충 공급하여, 전체 역삼투 공정의 회수율(투과수량/보충수량)을 75%(v/v)로 유지하였다. 원수, 투과수 및 농축수의 일부를 각각 채취하여 질산성 질소의 함량을 분석한 결과를 하기 표 1에 나타내었다.Groundwater contaminated with a large amount of nitrate nitrogen ions was treated according to the flow of the process shown in Figure 1, the specific method is as follows. First, contaminated groundwater is collected and stored in a raw water storage tank, and then passed through a sand-filled sand filtration device having an effective diameter of 0.35 to 0.50 mm to remove particulate matter, and then a reverse osmosis module (BW30) is used by a high pressure pump. -2540, FILMTEC, US A). At this time, the raw water inflow into the reverse osmosis module was 15 l / min, the inlet pressure was 15 to 20 kg / ㎠. Meanwhile, the amount of permeated water passing through the module was 1.5 l / min, and the concentrated water (0.5 l / min) containing the high concentration of nitrate ions was transferred to an adjustment tank for denitrification, and the raw water (13 l / min) was treated. ) Was recycled to the raw water storage tank, and supplemented with the filtered raw water to the reverse osmosis module at a rate of 2ℓ / min, maintaining the recovery rate (permeate amount / replenishment amount) of the entire reverse osmosis process at 75% (v / v). It was. Part of raw water, permeated water, and concentrated water were collected, and the results of analyzing the content of nitrate nitrogen are shown in Table 1 below.

[표 1]TABLE 1

구분division 원수enemy 투과수Permeate 농축수Concentrated water 질산성 질소(㎎-N/ℓ)Nitric Acid Nitrogen (mg-N / l) 2020 1One 7777

상기 표 1에서 알 수 있듯이, 역삼투 공정을 거치면 원수 중의 질산성 질소의 95%(w/w)가 제거되어, 음용수 수질 기준(<10㎎-N/ℓ)을 만족함을 알 수 있었다.상기 역삼투 공정으로부터 수득한 투과수는 공지의 염소 소독장치로 유입된 후, 염소를 처리하여 살균소독 하였다. 역삼투 투과수의 2차 오염을 방지하기 위하여 염소 소독을 하는데, 최종 처리수의 잔류 염소 농도가 0.4ppm 이상 유지되도록 염소가스를 투과수 내에 접촉시켰다.As can be seen in Table 1, the reverse osmosis process removes 95% (w / w) of nitrate nitrogen in the raw water, and satisfies the drinking water quality standard (<10 mg-N / l). The permeated water obtained from the reverse osmosis process was introduced into a known chlorine disinfection apparatus and then sterilized by treating chlorine. Chlorine sterilization was performed to prevent secondary contamination of the reverse osmosis permeate, and chlorine gas was brought into contact with the permeate to maintain the residual chlorine concentration of 0.4 ppm or more.

한편, 상기 역삼투 공정에서 발생하는 고농도의 질산성 질소 이온을 포함하는 농축수는 일단 조정조에 저장해두었다가 일정한 유량으로 원통형의 연속 회분식 반응조로 유입시킨 다음, 미생물에 의한 탈질반응에 의하여 최종적으로 질소 가스(N2)로 전환되었다. 이때, 상기 반응조 내의 미생물 농도는 2,000㎎/ℓ MLSS를 유지하였으며, 탄소원으로 아세테이트를 C:N = 2.1:1의 비율로 공급하였다. 연속 회분식 반응조는 1회 6시간의 주기로 1일 총 4회 24시간 운전되었고, 총 유효량의 50%(v/v)를 처리수로 배출하였다. 이를 위하여, 상기 조정조에서 반응조로 농축수를 유입시키는 펌프 및 반응조 내의 교반 모터의 작동은 프로그램이 가능한 타이머(Cron Trol XT series, U. S. A.)에 의하여 자동으로 조절되도록 하였다. 하기 표 2에 연속 회분식 반응조의 세부 운전 주기를 나타내었으며, 반응조 내로 유입된 질산성 질소의 시간에 따른 농도변화를 도 2에 나타내었다.On the other hand, the concentrated water containing a high concentration of nitrate nitrogen ions generated in the reverse osmosis process is stored in the control tank once and introduced into a cylindrical continuous batch reactor at a constant flow rate, and finally nitrogen gas by denitrification by microorganisms Converted to (N 2 ). At this time, the concentration of microorganisms in the reactor was maintained at 2,000 mg / L MLSS, acetate was supplied as a carbon source in a ratio of C: N = 2.1: 1. The continuous batch reactor was operated 24 hours a total of 4 times a day with a cycle of 6 hours once and discharged 50% (v / v) of the total effective amount into the treated water. To this end, the operation of the pump and the stirring motor in the reactor to introduce the concentrated water from the control tank to the reactor was to be automatically controlled by a programmable timer (Cron Trol XT series, USA). Table 2 shows the detailed operation cycle of the continuous batch reactor, and the concentration change with time of the nitrate nitrogen introduced into the reactor is shown in FIG. 2.

[표 2]TABLE 2

시간time 내용Contents 15분15 minutes 질산성 질소 이온 농축수 및 탄소원 공급Supply of nitrate nitrogen ion concentrated water and carbon source 5시간5 hours 교반 및 반응Stirring and reaction 30분30 minutes 침전Sedimentation 15분15 minutes 처리수 배출Treated water discharge

상술한 바와 같이 본 발명에 의하면, 위생적인 역삼투법으로 오염된 지하수 중의 질산성 질소 이온을 95%(w/w) 이상 제거하여 음용수 수질 기준에 적합한 양질의 상수원을 확보할 수 있음은 물론, 질산성 이온 제거시 부산물로 발생하는 농축수도 거의 완벽하게 처리함으로써, 2차 오염의 소지를 완전히 해결한 가장 환경 친화적이면서도 경제적인 질산성 질소 이온 제거를 실현할 수 있다.As described above, according to the present invention, by removing 95% (w / w) or more of nitrate nitrogen ions in the groundwater contaminated by sanitary reverse osmosis, it is possible to secure a high quality water source suitable for drinking water quality standards, as well as nitrate By almost completely treating the concentrated water generated as a by-product when removing ions, it is possible to realize the most environmentally friendly and economical nitrate nitrogen ions that completely eliminate the source of secondary pollution.

Claims (3)

질산성 질소 이온으로 오염된 원수를 역삼투법으로 처리하여 질산성 질소 이온이 농축된 농축수와 투과수로 분리한 뒤, 상기 농축수 중의 질산성 질소 이온을 미생물을 이용한 탈질반응에 의하여 질소 가스로 변환시키는 공정을 포함하는 질산성 질소 이온 제거방법.Raw water contaminated with nitrate nitrogen ions is treated by reverse osmosis to separate the nitrate nitrogen ions into concentrated and permeated water, and the nitrate nitrogen ions in the concentrated water are converted to nitrogen gas by denitrification using microorganisms. Nitrate nitrogen ion removal method comprising the step of making. 제 1항에 있어서,The method of claim 1, (i) 질산성 질소 이온으로 오염된 원수를 모래가 충진된 여과기를 통과시켜 직경이 50㎛ 이상인 입자성 이물질을 제거하는 여과공정;(i) filtering the raw water contaminated with nitrate nitrogen ions through a sand-filled filter to remove particulate foreign matter having a diameter of 50 µm or more; (ii) 상기 여과수를 역삼투막을 통과시켜 질산성 질소 이온이 농축된 농축수와 투과수로 분리하는 역삼투 공정; 및,(ii) a reverse osmosis step of separating the filtered water into a concentrated water and a permeate through which a nitrate nitrogen ion is concentrated by passing the reverse osmosis membrane; And, (iii) 상기 농축수를 조정조를 거쳐 연속회분식 반응조에 투입한 다음, 상기 반응조에 탄소원을 첨가하고 교반하여 상기 농축수에 포함된 질산성 질소 이온을 질소 가스로 변환시키는 탈질공정을 포함하는 질산성 질소 이온 제거방법.(iii) nitric acid comprising a denitrification step of introducing the concentrated water into a continuous batch reactor through an adjustment tank, and then adding a carbon source to the reactor and stirring to convert nitrate nitrogen ions contained in the concentrated water into nitrogen gas. Nitrogen ion removal method. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 역삼투 공정으로부터 수득한 투과수를 염소로 살균하는 염소 소독공정을 추가로 포함하는 것을 특징으로 하는 질산성 질소 이온 제거방법.And a chlorine disinfection step of sterilizing the permeated water obtained from the reverse osmosis step with chlorine.
KR1020000049422A 2000-08-25 2000-08-25 Method for removal of nitrate KR20020016226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000049422A KR20020016226A (en) 2000-08-25 2000-08-25 Method for removal of nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000049422A KR20020016226A (en) 2000-08-25 2000-08-25 Method for removal of nitrate

Publications (1)

Publication Number Publication Date
KR20020016226A true KR20020016226A (en) 2002-03-04

Family

ID=19685073

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000049422A KR20020016226A (en) 2000-08-25 2000-08-25 Method for removal of nitrate

Country Status (1)

Country Link
KR (1) KR20020016226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408193A (en) * 2013-08-16 2013-11-27 北京首钢国际工程技术有限公司 Process for preparing desalted water for iron and steel plants with slightly polluted surface water as water source
KR101688800B1 (en) * 2016-05-09 2016-12-22 세종대학교산학협력단 Treatment system for reverse osmosis concentrate and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408193A (en) * 2013-08-16 2013-11-27 北京首钢国际工程技术有限公司 Process for preparing desalted water for iron and steel plants with slightly polluted surface water as water source
KR101688800B1 (en) * 2016-05-09 2016-12-22 세종대학교산학협력단 Treatment system for reverse osmosis concentrate and method thereof

Similar Documents

Publication Publication Date Title
KR100955914B1 (en) Device and Method for Producing Drinking Water by Treating Waste Water
US5362395A (en) Method and apparatus for biologically purifying sewage which is organically loaded with substances difficult to decompose biologically or not decomposable biologically
US5230803A (en) Ground- and wastewater purification
KR100446041B1 (en) Industrial wastewater reusing system using combination biofilter process, AC/ACF/Sand filter process and advanced oxidation process
KR101279695B1 (en) A process and an apparatus for treating waters containing a biologically treated water
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
KR20190138975A (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
KR100467396B1 (en) Discharged water treatment method
CA1219384A (en) Waste water treatment
Jung et al. A novel approach to an advanced tertiary wastewater treatment: Combination of a membrane bioreactor and an oyster-zeolite column
CN103951141B (en) A kind of garbage leachate treatment process and treatment unit
KR100473532B1 (en) Purifying system for hollow yarn membran and operation method of the purifying system
CN212269808U (en) Reverse osmosis strong brine processing system
JP3221801B2 (en) Water treatment method
KR100468621B1 (en) Water treatment system by electrolysis
KR20020016226A (en) Method for removal of nitrate
KR101054613B1 (en) Apparatus for waste water single reactor composed of biological and membrane process
KR0176276B1 (en) Ultrapure Water Production Method by Wastewater Treatment
EP3484822A1 (en) Fluid treatment process
JPS62204893A (en) Water treatment method using granular activated carbon tower and reverse osmosis membrane apparatus
KR100327095B1 (en) Method for nitrate removal in ground water
JP2004290765A (en) Method for treating soluble organic matter-containing liquid
KR100453024B1 (en) Potable Advanced Water Clearer
JP2887284B2 (en) Ultrapure water production method

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination