KR20020014956A - A method for fabricating semiconductor device using high density plasma oxide - Google Patents

A method for fabricating semiconductor device using high density plasma oxide Download PDF

Info

Publication number
KR20020014956A
KR20020014956A KR1020000048162A KR20000048162A KR20020014956A KR 20020014956 A KR20020014956 A KR 20020014956A KR 1020000048162 A KR1020000048162 A KR 1020000048162A KR 20000048162 A KR20000048162 A KR 20000048162A KR 20020014956 A KR20020014956 A KR 20020014956A
Authority
KR
South Korea
Prior art keywords
deposition
oxide film
density plasma
high density
bit line
Prior art date
Application number
KR1020000048162A
Other languages
Korean (ko)
Inventor
노재선
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020000048162A priority Critical patent/KR20020014956A/en
Publication of KR20020014956A publication Critical patent/KR20020014956A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE: A method for forming a semiconductor device using a high density plasma(HDP) oxide layer is provided to increase the whole planarization of a wafer by using a deposition characteristic of a boron phosphorous silicate glass(BPSG) layer and the HDP oxide layer, and to fill a gap between bit lines by controlling a deposition condition in depositing the HDP oxide layer. CONSTITUTION: The BPSG layer as a planarization insulation layer is deposited on the entire structure having the bit line. A bit line is formed on the BPSG layer. The HDP oxide layer is deposited on the resultant structure having the bit line. A chemical mechanical polishing(CMP) process is performed to planarize the HDP oxide layer.

Description

고밀도플라즈마 산화막을 이용한 반도체 소자 제조방법{A method for fabricating semiconductor device using high density plasma oxide}A method for fabricating semiconductor device using high density plasma oxide}

본 발명은 반도체 제조 기술에 관한 것으로, 특히 반도체 소자 제조 공정 중 층간절연막 형성 공정에 관한 것이며, 더 자세히는 고밀도플라즈마(high density plasma, HDP) 산화막을 사용한 층간절연막 형성 공정에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor manufacturing technology, and more particularly, to an interlayer insulating film forming process in a semiconductor device manufacturing process, and more particularly, to an interlayer insulating film forming process using a high density plasma (HDP) oxide film.

반도체 소자는 통상 다층 구조로 이루어지는데, 각각의 층을 이루는 전도라인 간의 절연을 위하여 산화막계 절연막이 사용되고 있다.A semiconductor device usually has a multilayer structure, and an oxide film-based insulating film is used for insulation between conductive lines constituting each layer.

종래에는 워드라인 형성 후, 그리고 비트라인 형성 후 층간절연 및 평탄화를 위하여 BPSG(borophospho silicate glass)막을 주로 사용하고 있다. BPSG막 공정은 BPSG 증착 후 막질의 고밀도화(densification) 및 평탄화를 위한 장시간의 열처리 공정(플로우 공정)이 필수적으로 수반된다. 뿐만 아니라 BPSG 플로우 진행 후에는 CMP를 실시하여 평탄도를 높이고 있다.Conventionally, a borophospho silicate glass (BPSG) film is mainly used for interlayer insulation and planarization after word line formation and after bit line formation. The BPSG film process essentially involves a long time heat treatment process (flow process) for densification and planarization of the film quality after BPSG deposition. In addition, after the BPSG flow, CMP is performed to increase flatness.

그러나, 이와 같이 BPSG막을 사용한 종래의 층간절연막 형성 공정은 BPSG막 내의 붕소와 인의 농도 불균일에 기인하여 BPSG 플로우 공정시 결정 결함(crystal defect)이 발생하는 문제점이 있었다. BPSG 결정 결함은 후속 마스크 공정시 패턴 프로파일을 악화시킬 뿐만 아니라 비트라인 패턴 사이의 간극에 보이드(void)를 유발하는 요인이 되고 있다.However, the conventional interlayer insulating film forming process using the BPSG film has a problem in that crystal defects occur in the BPSG flow process due to the uneven concentration of boron and phosphorus in the BPSG film. BPSG crystal defects not only worsen the pattern profile in subsequent mask processes but also cause voids in the gaps between the bitline patterns.

첨부된 도면 도 1은 종래기술에 따라 비트라인 간극에 BPSG를 매립하고 BPSG 플로우 및 CMP 공정을 실시한 상태의 단면 SEM 사진과 원내를 확대하여 도시한 것으로, 확대도에서 비트라인 간극에 보이드(A)가 발생함을 확인할 수 있다.1 is an enlarged cross-sectional SEM photograph of a state in which a BPSG is embedded in a bit line gap and a BPSG flow and a CMP process are carried out according to the related art, and an enlarged view shows voids (A) in the bit line gap. You can see that occurs.

또한, 이처럼 BPSG막을 사용하는 층간절연막 형성 공정은 장시간의 BPSG 플로우 공정에 따른 생산성 저하와 열적 부담(thermal budget)이 우려된다.In addition, the interlayer insulating film forming process using the BPSG film is concerned about productivity degradation and thermal budget due to a long BPSG flow process.

그리고, BPSG의 웨이퍼 센터/에지 간의 큰 초기 두께 차이값(500∼700Å)은 후속 CMP 공정 후에도 전체 평탄도를 떨어뜨리는 요인이 되고 있다. 통상적으로, CMP 공정 후의 웨이퍼 센터/에지 간의 높이 차는 700∼1000Å에 이른다.In addition, a large initial thickness difference value (500 to 700 GPa) between wafer centers / edges of the BPSG is a factor of lowering the overall flatness even after a subsequent CMP process. Typically, the height difference between the wafer centers / edges after the CMP process amounts to 700 to 1000 mW.

상기와 같은 종래기술의 문제점을 해결하기 위하여 제안된 본 발명은, 웨이퍼 전체의 평탄도를 증대시킬 수 있는 반도체 소자 제조방법을 제공하는데 그 목적이 있다.The present invention proposed to solve the problems of the prior art as described above, an object of the present invention is to provide a method for manufacturing a semiconductor device that can increase the flatness of the entire wafer.

또한 본 발명은, 층간절연막 형성시 열적 부담을 줄이고 비트라인 간극을 보이드 없이 매립할 수 있는 반도체 소자 제조방법을 제공하는데 그 목적이 있다.In addition, an object of the present invention is to provide a method for manufacturing a semiconductor device that can reduce the thermal burden when forming the interlayer insulating film and can fill the bit line gap without voids.

도 1은 종래기술에 따라 비트라인 간극에 BPSG를 매립하고 BPSG 플로우 및 CMP 공정을 실시한 상태의 단면 SEM 사진.1 is a cross-sectional SEM photograph of a state in which BPSG is embedded in a bit line gap and a BPSG flow and a CMP process are performed according to the prior art.

도 2a 및 도 2b는 본 발명의 일 실시예에 따른 반도체 소자 제조 공정도.2A and 2B illustrate a semiconductor device manufacturing process according to an embodiment of the present invention.

도 3은 BPSG막을 증착한 웨이퍼의 프로파일을 모식화하여 나타낸 도면.3 is a diagram schematically illustrating a profile of a wafer on which a BPSG film is deposited.

도 4는 HDP 산화막을 증착한 웨이퍼 웨이퍼의 프로파일을 모식화하여 나타낸 도면.4 is a diagram schematically illustrating a profile of a wafer wafer on which an HDP oxide film is deposited.

도 5a 및 도 5b는 각각 비트라인 형성 후 층간절연막으로 HDP 산화막을 증착한 상태의 단면 SEM 사진.5A and 5B are cross-sectional SEM photographs of HDP oxides deposited as interlayer dielectrics after bit line formation.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

20 : 하부층20: lower layer

21 : BPSG막21: BPSG film

22 : 비트라인22: bit line

23 : 측벽 스페이서23: sidewall spacer

24 : HDP 산화막24: HDP oxide film

상기의 기술적 과제를 달성하기 위한 본 발명의 특징적인 반도체 소자 제조방법은, 비트라인이 형성된 전체 구조 상부에 평탄화 절연막으로 BPSG막을 증착하는 제1 단계; 상기 BPSG막 상에 비트라인을 형성하는 제2 단계; 상기 비트라인이형성된 전체 구조 상부에 고밀도플라즈마(HDP) 산화막을 증착하는 제3 단계; 및 화학적기계적 연마(CMP) 공정을 실시하여 상기 고밀도플라즈마 산화막을 평탄화시키는 제4 단계를 포함하여 이루어진다.A characteristic semiconductor device manufacturing method of the present invention for achieving the above technical problem, the first step of depositing a BPSG film with a planarization insulating film on the entire structure of the bit line; Forming a bit line on the BPSG film; Depositing a high density plasma (HDP) oxide layer on the entire structure of the bit line; And a fourth step of planarizing the high density plasma oxide film by performing a chemical mechanical polishing (CMP) process.

바람직하게 본 발명은, 열처리를 실시하여 상기 고밀도플라즈마 산화막을 치밀화하는 제5 단계를 더 포함하여 이루어진다.Preferably, the present invention further comprises a fifth step of densifying the high-density plasma oxide film by performing heat treatment.

또한, 본 발명의 특징적인 반도체 소자 제조방법은, 비트라인이 형성된 웨이퍼 상부에 층간절연막으로 고밀도플라즈마 산화막을 증착하되, 상기 고밀도플라즈마 산화막 증착시, SiH4/O2/He = 80∼120/110∼150/80∼120sccm의 증착 소오스의 유량, 25000∼35000/25000∼3000W의 저주파 파워/고주파 바이어스 파워 조건을 사용한다.In addition, the characteristic semiconductor device manufacturing method of the present invention, while depositing a high density plasma oxide film as an interlayer insulating film on the wafer on which the bit line is formed, when the high density plasma oxide film, SiH 4 / O 2 / He = 80 ~ 120/110 A flow rate of a deposition source of ˜150 / 80 to 120 sccm and a low frequency power / high frequency bias power condition of 25000 to 35000/25000 to 3000W are used.

바람직하게, 상기 고밀도플라즈마 산화막 증착시, 25000∼35000의 증착율, 15∼25의 식각/증착 비율을 적용한다.Preferably, in the deposition of the high density plasma oxide film, a deposition rate of 25000 to 35000 and an etching / deposition ratio of 15 to 25 are applied.

즉, 본 발명은 워드라인 층간절연막으로는 BPSG(borophospho silicate glass)막을 사용하고, 비트라인 층간절연막으로는 HDP(high density palsma) 산화막을 사용하는 기술이다. BPSG막은 웨이퍼의 센터 부분이 에지 부분에 비해 두껍게 증착되는 성질이 있으며, HDP 산화막은 그와 반대로 웨이퍼의 에지 부분이 센터 부분에 비해 두껍게 증착되는 성질이 있어 웨이퍼 전체적인 두께 균일도를 확보할 수 있다. 또한, HDP 산화막 증착시 증착율을 감소시켜 식각/증착 비율을 높이고, 고주파 바이어스 파워를 증가시킴으로써 HDP 산화막의 갭필링 특성을 향상시킬 수있다.That is, the present invention uses a borophospho silicate glass (BPSG) film as a word line interlayer insulating film and a high density palsma (HDP) oxide film as the bit line interlayer insulating film. The BPSG film has a property of depositing the center portion of the wafer thicker than the edge portion, and the HDP oxide film has the property of depositing the edge portion of the wafer thicker than the center portion, on the contrary, to secure the overall thickness uniformity of the wafer. In addition, it is possible to improve the gap peeling characteristics of the HDP oxide film by reducing the deposition rate during the deposition of the HDP oxide film to increase the etching / deposition ratio and increasing the high frequency bias power.

이하, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 보다 용이하게 실시할 수 있도록 하기 위하여 본 발명의 바람직한 실시예를 소개하기로 한다.Hereinafter, preferred embodiments of the present invention will be introduced in order to enable those skilled in the art to more easily carry out the present invention.

첨부된 도면 도 2a 및 도 2b는 본 발명의 일 실시예에 따른 반도체 소자 제조 공정을 도시한 것으로, 이하 이를 참조하여 설명한다.2A and 2B illustrate a semiconductor device manufacturing process according to an embodiment of the present invention, which will be described below with reference to the drawings.

본 실시예에 따르면, 우선 도 2a에 도시된 바와 같이 워드라인이 형성된 하부층(20) 상에 층간절연막으로 BPSG막(21)을 증착하고, 통상의 비트라인 형성 공정을 실시하여 비트라인(22) 및 측벽 스페이서(23)를 형성한 다음, 전체 구조 상부에 HDP 산화막(24)을 6000∼8000Å 두께로 증착한다. 이때, 증착율을 감소시켜 식각/증착 비율을 높이고, 고주파 바이어스 파워를 증가시킴으로써 HDP 산화막(24)의 갭필링 특성을 보완한다. 또한, HDP 산화막(24) 증착시 HDP 챔버의 사이드측의 증착 균일도를 향상시키기 위하여 가스 노즐의 수향을 24개 이상으로 증가시키고, 노즐의 길이를 증가시키는 것이 바람직하며, 비트라인과 후속 캐패시터의 패턴 쉬프트 및 붕괴를 방지하기 위하여 HDP 산화막(24)의 막질을 치밀화하기 위한 열처리를 실시하는 것이 바람직하다.According to the present embodiment, first, as shown in FIG. 2A, the BPSG film 21 is deposited on the lower layer 20 having the word line as an interlayer insulating film, and the bit line 22 is formed by performing a conventional bit line forming process. And the sidewall spacers 23 are formed, and then the HDP oxide film 24 is deposited to a thickness of 6000 to 8000 Å over the entire structure. At this time, the deposition rate is reduced to increase the etching / deposition ratio, and the high frequency bias power is increased to compensate for the gap peeling characteristic of the HDP oxide film 24. In addition, in order to improve the deposition uniformity on the side of the HDP chamber when the HDP oxide film 24 is deposited, it is preferable to increase the direction of the gas nozzle to 24 or more, and to increase the length of the nozzle, and to pattern the bit line and the subsequent capacitor. In order to prevent shift and collapse, it is preferable to perform a heat treatment for densifying the film quality of the HDP oxide film 24.

HDP 산화막(24)의 증착 레시피(recipe)는 다음과 같다.The deposition recipe of the HDP oxide film 24 is as follows.

가) 증착 소오스의 유량 : SiH4/O2/He = 80∼120/110∼150/80∼120sccmA) Flow rate of deposition source: SiH 4 / O 2 / He = 80 ~ 120/110 ~ 150/80 ~ 120sccm

나) 파워 : 저주파 파워/고주파 바이어스 파워 = 25000∼35000/25000∼3000WB) Power: Low frequency power / High frequency bias power = 25000 ~ 35000/25000 ~ 3000W

다) 증착율 : 25000∼35000C) Deposition Rate: 25000 ~ 35000

라) 식각/증착 비율 : 15∼25D) Etch / Deposition Ratio: 15 ~ 25

다음으로, 도 2b에 도시된 바와 같이 CMP 공정을 실시하여 HDP 산화막(24)을 평탄화시킨다.Next, as shown in FIG. 2B, the CMP process is performed to planarize the HDP oxide film 24.

첨부된 도면 도 3은 BPSG막을 증착한 웨이퍼의 프로파일을 모식화하여 나타낸 것으로, 웨이퍼(30)의 에지 부분에 비해 센터 부분의 BPSG막(31) 두께가 상대적으로 두껍게 나타나고 있다.FIG. 3 schematically illustrates a profile of a wafer on which a BPSG film is deposited, and the thickness of the BPSG film 31 in the center portion is relatively thick as compared to the edge portion of the wafer 30.

한편, 첨부된 도면 도 4는 HDP 산화막을 증착한 웨이퍼 웨이퍼의 프로파일을 모식화하여 나타낸 것으로, 웨이퍼(40)의 센터 부분에 비해 에지 부분의 HDP 산화막(41)의 두께가 상대적으로 두껍게 나타나고 있다.On the other hand, Figure 4 is a schematic representation of the profile of the wafer wafer on which the HDP oxide film is deposited, the thickness of the HDP oxide film 41 of the edge portion is relatively thick compared to the center portion of the wafer 40.

이와 같은 BPSG막과 HDP 산화막의 증착 성질을 이용하여 전술한 일 실시예와 같이 워드라인 층간절연막으로 BPSG막을 사용하고 비트라인 층간절연막으로 HDP 산화막을 사용하면 상호 보완적인 작용을 유발하여 웨이퍼 전체적인 평탄도를 증대시킬 수 있다.By using the deposition properties of the BPSG film and the HDP oxide film, the BPSG film is used as the wordline interlayer insulating film and the HDP oxide film is used as the bitline interlayer insulating film as described in the above-described embodiment, thereby inducing a mutually complementary action to improve the overall flatness of the wafer. Can be increased.

첨부된 도면 도 5a 및 도 5b는 각각 비트라인 형성 후 층간절연막으로 HDP 산화막을 증착한 상태의 단면 SEM 사진으로, HDP 산화막 증착시 증착율이 높고 고주파 바이어스 파워가 낮은 경우 비트라인 간극에 보이드가 발생(도 5a 참조)하는 반면, HDP 산화막 증착시 증착율이 낮고 고주파 바이어스 파워가 높은 경우에는 비트라인 간극에 보이드가 발생하지 않음(도 5b 참조)을 확인할 수 있다. 즉, 증착율이 높으면 HDP 산화막 증착시 식각 작용이 상대적으로 활발해짐을 의미하며, 고주파 바이어스 파워를 증대시키면 챔버 바텀 쪽으로 증착 소오스 입자의 직진성이 증대되어 갭필링 특성이 개선되는 것이다.5A and 5B are cross-sectional SEM photographs in which HDP oxides are deposited as interlayer insulating films after bit line formation, respectively, and voids are generated in the bit line gaps when the deposition rate is high and the high frequency bias power is low when HDP oxides are deposited ( On the other hand, when the deposition rate is low and the high frequency bias power is high when the HDP oxide film is deposited, it can be seen that no void occurs in the bit line gap (see FIG. 5B). That is, a high deposition rate means that the etching operation becomes relatively active when the HDP oxide film is deposited. Increasing the high frequency bias power increases the straightness of the deposition source particles toward the bottom of the chamber, thereby improving the gap filling property.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.

전술한 본 발명은 BPSG와 HDP 산화막의 증착 특성을 이용하여 웨이퍼 전체적인 평탄도를 향상시키는 효과가 있으며, HDP 산화막 증착시 증착 조건을 조절하여 비트라인 간극을 보이드 없이 매립할 수 있으며, BPSG 플로우를 위한 장시간의 열처리를 생략할 수 있어 열적 부담을 줄이는 효과가 있다.The present invention described above has the effect of improving the overall flatness of the wafer by using the deposition characteristics of the BPSG and HDP oxide film, it is possible to fill the bit line gap without voids by adjusting the deposition conditions during HDP oxide deposition, BPSG flow for Since the heat treatment for a long time can be omitted, there is an effect of reducing the thermal burden.

Claims (6)

비트라인이 형성된 전체 구조 상부에 평탄화 절연막으로 BPSG막을 증착하는 제1 단계;Depositing a BPSG film with a planarization insulating film over the entire structure where the bit lines are formed; 상기 BPSG막 상에 비트라인을 형성하는 제2 단계;Forming a bit line on the BPSG film; 상기 비트라인이 형성된 전체 구조 상부에 고밀도플라즈마(HDP) 산화막을 증착하는 제3 단계; 및Depositing a high density plasma (HDP) oxide film on the entire structure of the bit line; And 화학적기계적 연마(CMP) 공정을 실시하여 상기 고밀도플라즈마 산화막을 평탄화시키는 제4 단계A fourth step of planarizing the high density plasma oxide film by performing a chemical mechanical polishing (CMP) process; 를 포함하여 이루어진 반도체 소자 제조방법.Semiconductor device manufacturing method comprising a. 제1항에 있어서,The method of claim 1, 열처리를 실시하여 상기 고밀도플라즈마 산화막을 치밀화하는 제5 단계를 더 포함하여 이루어진 것을 특징으로 하는 반도체 소자 제조방법.And a fifth step of densifying the high-density plasma oxide film by performing heat treatment. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 고밀도플라즈마 산화막 증착시,When the high density plasma oxide film deposition, SiH4/O2/He = 80∼120/110∼150/80∼120sccm의 증착 소오스의 유량, 25000∼35000/25000∼3000W의 저주파 파워/고주파 바이어스 파워 조건을 사용하는 것을 특징으로 하는 반도체 소자 제조방법.SiH 4 / O 2 / He = 80 to 120/110 to 150/80 to 120 sccm flow rate of deposition source, using a low frequency power / high frequency bias power conditions of 25000 ~ 35000/25000 ~ 3000W using a semiconductor device manufacturing Way. 제3항에 있어서,The method of claim 3, 상기 고밀도플라즈마 산화막 증착시,When the high density plasma oxide film deposition, 25000∼35000의 증착율, 15∼25의 식각/증착 비율을 적용하는 것을 특징으로 하는 반도체 소자 제조방법.A deposition rate of 25000 to 35000 and an etching / deposition ratio of 15 to 25 are applied. 비트라인이 형성된 웨이퍼 상부에 층간절연막으로 고밀도플라즈마 산화막을 증착하되, 상기 고밀도플라즈마 산화막 증착시, SiH4/O2/He = 80∼120/110∼150/80∼120sccm의 증착 소오스의 유량, 25000∼35000/25000∼3000W의 저주파 파워/고주파 바이어스 파워 조건을 사용하는 것을 특징으로 하는 반도체 소자 제조방법.But depositing a high density plasma oxide film as the interlayer insulating film on the wafer upper bit line is formed, the high density plasma oxide film during the deposition, SiH 4 / O 2 / He = 80~120 / flow rate, 25 000 of the evaporation source of 110~150 / 80~120sccm A low frequency power / high frequency bias power condition of ˜35000 / 25000 to 3000W is used. 제5항에 있어서,The method of claim 5, 상기 고밀도플라즈마 산화막 증착시,When the high density plasma oxide film deposition, 25000∼35000의 증착율, 15∼25의 식각/증착 비율을 적용하는 것을 특징으로 하는 반도체 소자 제조방법.A deposition rate of 25000 to 35000 and an etching / deposition ratio of 15 to 25 are applied.
KR1020000048162A 2000-08-19 2000-08-19 A method for fabricating semiconductor device using high density plasma oxide KR20020014956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000048162A KR20020014956A (en) 2000-08-19 2000-08-19 A method for fabricating semiconductor device using high density plasma oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000048162A KR20020014956A (en) 2000-08-19 2000-08-19 A method for fabricating semiconductor device using high density plasma oxide

Publications (1)

Publication Number Publication Date
KR20020014956A true KR20020014956A (en) 2002-02-27

Family

ID=19684065

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000048162A KR20020014956A (en) 2000-08-19 2000-08-19 A method for fabricating semiconductor device using high density plasma oxide

Country Status (1)

Country Link
KR (1) KR20020014956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040050517A (en) * 2002-12-10 2004-06-16 주식회사 하이닉스반도체 Method for fabricating semiconductor device
KR20060073286A (en) * 2004-12-24 2006-06-28 동부일렉트로닉스 주식회사 Method and apparatus for manufacturing insulating layer with improved gap filling performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040050517A (en) * 2002-12-10 2004-06-16 주식회사 하이닉스반도체 Method for fabricating semiconductor device
KR20060073286A (en) * 2004-12-24 2006-06-28 동부일렉트로닉스 주식회사 Method and apparatus for manufacturing insulating layer with improved gap filling performance

Similar Documents

Publication Publication Date Title
KR100689826B1 (en) High density plasma chemical vapor deposition methods using a fluorine-based chemical etching gas and methods of fabricating a semiconductor device employing the same
JP5063135B2 (en) Manufacturing method of semiconductor device
JP2000077404A (en) Forming method of insulating film
US20090004839A1 (en) Method for fabricating an interlayer dielectric in a semiconductor device
US5575886A (en) Method for fabricating semiconductor device with chemical-mechanical polishing process for planarization of interlayer insulation films
US7026256B2 (en) Method for forming flowable dielectric layer in semiconductor device
KR20020014956A (en) A method for fabricating semiconductor device using high density plasma oxide
KR100301530B1 (en) Mehtod for forming inter layer insulting film in the semiconductor device
KR100538811B1 (en) Method of manufacturing semiconductor device
KR100695431B1 (en) Method for forming a contact hole in semiconductor device
KR20120098044A (en) Method for fabricating semiconductor device
US20070273003A1 (en) Semiconductor device and manufacturing method thereof
KR100623595B1 (en) Method for planarize dielectric layer in semiconductor device
KR100567021B1 (en) Method for forming inter metal dielectric layer utilizing FSG material
KR100607820B1 (en) Method for Manufacturing Inter Metal Dielectrics of Semiconductor Devices
US20040266218A1 (en) Methods for forming a gap filling layer using high density plasma
JP2908200B2 (en) Method for manufacturing semiconductor device
KR100637095B1 (en) Method of manufacturing semiconductor device
KR100898588B1 (en) Method of gapfilling in semiconductor device
KR100322890B1 (en) Method for forming oxide layer of semiconductor device
KR20010010919A (en) A method for forming interlayer dielectric layer
KR100534026B1 (en) Method of hdp-cvd process for filling high aspect ratio gaps
KR100407996B1 (en) Method for manufacturing of teos-o3 usg film
KR100604412B1 (en) Method for planing layer for a semiconductor fabrication process
KR100527866B1 (en) Method for filling inter-metallic dielectric

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid