KR20020001387A - Method of forming a TiN layer in a semiconductor device - Google Patents

Method of forming a TiN layer in a semiconductor device Download PDF

Info

Publication number
KR20020001387A
KR20020001387A KR1020000036064A KR20000036064A KR20020001387A KR 20020001387 A KR20020001387 A KR 20020001387A KR 1020000036064 A KR1020000036064 A KR 1020000036064A KR 20000036064 A KR20000036064 A KR 20000036064A KR 20020001387 A KR20020001387 A KR 20020001387A
Authority
KR
South Korea
Prior art keywords
gas
reactor
ticl
forming
semiconductor device
Prior art date
Application number
KR1020000036064A
Other languages
Korean (ko)
Other versions
KR100665401B1 (en
Inventor
엄장웅
김용수
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1020000036064A priority Critical patent/KR100665401B1/en
Publication of KR20020001387A publication Critical patent/KR20020001387A/en
Application granted granted Critical
Publication of KR100665401B1 publication Critical patent/KR100665401B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for manufacturing a titanium nitride layer of a semiconductor device is provided to simultaneously improve step coverage and a process rate, by supplying H2 gas together with TiCl4 source to improve an evaporation rate of an atomic layer deposition(ALD) method. CONSTITUTION: TiCl4 source and H2 gas are supplied to a process chamber in which a semiconductor substrate is mounted. The remaining TiCl4 source and byproducts inside the process chamber are eliminated. Process gas is supplied to the process chamber to form TiN. The remaining NH3 gas and byproducts are eliminated. The above-mentioned processes form a cycle, and the cycle is repeatedly performed until a TiN layer of a desired thickness is formed.

Description

반도체 소자의 티타늄 나이트라이드막 형성 방법{Method of forming a TiN layer in a semiconductor device}Method of forming a titanium nitride film of a semiconductor device {Method of forming a TiN layer in a semiconductor device}

본 발명은 반도체 소자의 티타늄 나이트라이드막 형성 방법에 관한 것으로, 특히 ALD법을 이용한 TiN막 형성 시 박막 성장률을 향상시킬 수 있는 반도체 소자의 티타늄 나이트라이드막 형성 방법에 관한 것이다.The present invention relates to a method of forming a titanium nitride film of a semiconductor device, and more particularly to a method of forming a titanium nitride film of a semiconductor device capable of improving a thin film growth rate when forming a TiN film using the ALD method.

기존의 TiCl4를 소오스로 하는 CVD TiN막의 경우, 계단 도포성이 상당히 우수한 것으로 알려져 있으나 종횡비(Aspect Ratio)가 상당히 커질 경우(AR > 20), 홀(Hole) 내부와 표면에 공급되는 플럭스(Flux)의 차이로 인하여 만족할 만한 계단 도포성을 얻을 수 없게 된다. 이러한 기존 CVD법의 단점을 보완하기 위해서는 완전한 표면 반응에 의해서만 박막이 형성되고, 원자층 단위로 박막형성 제어가 가능한 원자층 증착 방법이 최적이라 할 수 있다. 하지만, 원자층 증착(ALD)법에 의한 박막 형성은 사용하는 소오스에 따라 소오스 자체의 분자부피로 인하여, 이론적인 1 싸이클(Cycle) 당 한 개의 단원자층 형성이 불가능하고, 박막 성장률 또한 기존의 CVD법에 비교할 수 없이 낮다. 현재, 원자층 증착장비로 TiCl4소오스를 사용하여 TiN막 형성시, 박막 성장률이 ~0.3Å/cycle(1 cycle time = 0.1 내지 1.5sec)로 기존 TiCl4를 소오스로 하는 CVD TiN의 7Å/sec 내지 10Å/sec에 비해 매우 낮은 성장률을 가지고 있어 실제 반도체 공정 적용시 공정 진행률(Throughput)의 문제로 실제 공정적용에 어려움이 있다.In the case of the conventional CVD TiN film using TiCl 4 as a source, it is known that the step coating property is excellent, but when the aspect ratio is significantly increased (AR> 20), the flux supplied to the inside and the surface of the hole is changed. Due to the difference of), satisfactory step coatability cannot be obtained. In order to make up for the disadvantages of the conventional CVD method, the thin film is formed only by the complete surface reaction, and the atomic layer deposition method capable of controlling the thin film formation on an atomic layer basis is optimal. However, the thin film formation by atomic layer deposition (ALD) method is impossible to form a monoatomic layer per one cycle due to the molecular volume of the source itself depending on the source used, and the thin film growth rate is also lower than that of conventional CVD. It is incomparably low in law. Currently, when the TiN film is formed using TiCl 4 source as an atomic layer deposition equipment, the film growth rate is ~ 0.3kW / cycle (1 cycle time = 0.1 to 1.5sec), and 7kW / sec of CVD TiN using TiCl 4 as the source. It has a very low growth rate compared to the 10 ~ / 10 s / sec is difficult to apply the actual process due to the problem of the process (Throughput) when applying the actual semiconductor process.

따라서, 본 발명은 ALD법을 이용한 TiN막 형성 공정에서 H2가스를 이용하여 TiCl4에 존재하는 Cl기의 일부를 탈착시키고 TiCl4소오스의 부피를 줄여 기판 표면에 흡착되는 TiClx(x=1 내지 4)의 양을 증가시키므로써 박막 성장률을 증가시킬 수있는 반도체 소자의 티타늄 나이트라이드막 형성 방법을 제공하는데 그 목적이 있다.Therefore, in the TiN film formation process using the ALD method, TiCl x (x = 1) is adsorbed onto the substrate surface by desorbing a part of the Cl group present in TiCl 4 using H 2 gas and reducing the volume of the TiCl 4 source. It is an object of the present invention to provide a method for forming a titanium nitride film of a semiconductor device which can increase the growth rate of the thin film by increasing the amount of 4 to 4).

도 1은 본 발명에 따른 반도체 소자의 티타늄 나이트라이드막 형성 방법을 설명하기 위하여 도시한 레시피도.1 is a recipe diagram illustrating a method for forming a titanium nitride film of a semiconductor device according to the present invention.

<도면의 주요 부분에 대한 부호 설명><Description of the symbols for the main parts of the drawings>

A : 제 1 단계 B : 제 2 단계A: First Step B: Second Step

C : 제 3 단계 D : 제 4 단계C: Third Step D: Fourth Step

본 발명에 따른 반도체 소자의 티타늄 나이트라이드막 형성 방법은 반도체 기판이 장착된 반응기 내부로 TiCl4소오스 및 H2가스를 공급하는 제 1 단계, 반응기 내부의 미반응 TiCl4소오스 및 반응 부산물을 제거하는 제 2 단계, 반응기 내부로 반응 가스를 공급하여 TiN을 형성하는 제 3 단계, 미반응 NH3가스 및 반응 부산물을 제거하는 제 4 단계 및 제 1 내지 제 4 단계를 1 싸이클하고, 목표 두께의 TiN막을 형성할 때까지 1 싸이클 계속해서 반복 실시하는 단계를 포함하여 이루어진다.In the method of forming a titanium nitride film of a semiconductor device according to the present invention, a first step of supplying a TiCl 4 source and H 2 gas into a reactor equipped with a semiconductor substrate, removing an unreacted TiCl 4 source and a reaction byproduct in the reactor The second step, the third step of supplying the reaction gas into the reactor to form TiN, the fourth step of removing unreacted NH 3 gas and reaction by-products, and the first to fourth steps are cycled, and the TiN of the target thickness And repeating one cycle continuously until a film is formed.

상기의 단계에서, 반응기는 200 내지 700℃ 범위의 박막형성 온도 및 0.1 내지 100Torr 범위의 박막형성 압력을 유지한다.In the above step, the reactor maintains a thin film forming temperature in the range of 200 to 700 ° C. and a thin film forming pressure in the range of 0.1 to 100 Torr.

TiCl4소오스 및 H2가스는 0.05 내지 10초 범위의 공급시간 동안 반응기 내부로 공급되어 반도체 기판의 표면에 TiClx(x=1 내지 4)를 흡착시킨다.The TiCl 4 source and H 2 gas are fed into the reactor for a feed time ranging from 0.05 to 10 seconds to adsorb TiCl x (x = 1 to 4) on the surface of the semiconductor substrate.

제 2 단계 또는 제 4 단계는 0.05 내지 10초 범위의 공급시간 동안 퍼지 가스를 반응기 내부로 공급하여 실시한다. 퍼지 가스는 불활성 가스 또는 H2가스를 이용한다.The second or fourth step is carried out by supplying purge gas into the reactor for a feed time in the range of 0.05 to 10 seconds. The purge gas uses an inert gas or H 2 gas.

반응 가스는 NH3등의 질소를 포함하는 혼합가스를 이용하며, 0.05 내지 10초 범위의 공급시간동안 반응기 내부로 공급한다.The reaction gas uses a mixed gas containing nitrogen such as NH 3 , and is supplied into the reactor for a supply time in the range of 0.05 to 10 seconds.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail.

도 1은 본 발명에 따른 반도체 소자의 티타늄 나이트라이드막 형성 방법을 설명하기 위하여 도시한 레시피도이다.1 is a recipe diagram illustrating a method of forming a titanium nitride film of a semiconductor device according to the present invention.

도 1을 참조하면, TiN막을 형성하는 공정 단계는 반응기 내부로 TiCl4소오스 및 H2가스를 공급하는 제 1 단계(A), 반응기 내부의 미반응 TiCl4소오스 및 반응 부산물을 제거하는 제 2 단계(B), NH3반응 가스를 공급하는 제 3 단계(C) 및 미반응 NH3가스 및 반응 부산물을 제거하는 제 4 단계(D)로 이루어지며, 제 1 내지 제 4 단계가 1 싸이클(Cycle)을 이룬다. 목표 두께의 TiN막을 형성하기 위해서는 제 1 내지 제 4 단계로 이루어진 싸이클을 계속해서 반복 실시하면 된다. 이때, 반응기는 200 내지 700℃ 범위의 박막형성 온도 및 0.1 내지 100Torr 범위의 박막형성 압력을 유지하며, 각각의 단계에서 반응기로 공급하는 소오스, 반응 가스 및 정화 가스(Purge Gas)는 펄스 형태로 분리해서 공급한다.Referring to FIG. 1, a process of forming a TiN film includes a first step (A) of supplying a TiCl 4 source and a H 2 gas into a reactor, a second step of removing an unreacted TiCl 4 source and a reaction byproduct in the reactor. (B), a third step (C) of supplying the NH 3 reaction gas and a fourth step (D) of removing the unreacted NH 3 gas and the reaction by-products, and the first to fourth steps comprise one cycle (Cycle). ). In order to form a TiN film having a target thickness, a cycle consisting of the first to fourth steps may be repeatedly performed. At this time, the reactor maintains a thin film forming temperature in the range of 200 to 700 ℃ and a thin film forming pressure in the range of 0.1 to 100 Torr, and the source, the reaction gas and the purge gas supplied to the reactor in each step are separated in pulse form. Supply it.

각 단계를 상세히 설명하면 다음과 같다.Each step will be described in detail as follows.

제 1 단계(A)에서는 TiCl4소오스와 H2가스를 동시에 0.05 내지 10초 범위의공급시간동안 반응기 내부로 공급하여 반도체 기판의 표면에 TiClx(x=1 내지 4) 가 흡착되도록 한다.In the first step (A), TiCl 4 source and H 2 gas are simultaneously supplied into the reactor for a supply time ranging from 0.05 to 10 seconds so that TiCl x (x = 1 to 4) is adsorbed onto the surface of the semiconductor substrate.

H2가스는 TiCl4에 포함된 Cl기의 일부를 착탈시켜 부피를 줄인 TiClx(x=1 내지 4)를 생성한다. 부피가 줄어든 TiClx(x=1 내지 4)는 반도체 기판의 표면 커버리지(Coverage)를 증가시켜 박막 증착율을 증가시킨다.The H 2 gas desorbs a portion of the Cl group included in TiCl 4 to produce reduced volume TiCl x (x = 1 to 4). The reduced volume of TiCl x (x = 1 to 4) increases the surface coverage of the semiconductor substrate, thereby increasing the thin film deposition rate.

제 2 단계(B)에서는 퍼지 가스를 0.05 내지 10초 범위의 공급시간 동안 반응기 내부로 공급하여 반응기 내부에 잔류하는 미반응 TiCl4소오스 및 반응 부산물을 반응기 외부로 배출한다.In the second step (B), purge gas is supplied into the reactor for a feeding time ranging from 0.05 to 10 seconds to discharge the unreacted TiCl 4 source and the reaction by-product remaining in the reactor to the outside of the reactor.

반응기 정화를 위한 퍼지 가스는 불활성 가스(Inert Gas)나 H2가스를 이용한다.The purge gas for purifying the reactor uses an inert gas or H 2 gas.

제 3 단계(C)에서는 NH3등의 질소를 포함하는 반응 가스를 0.05 내지 10초 범위의 공급시간동안 반응기 내부로 공급하고, TiClx(x=1 내지 4)와 화학적으로 반응시켜 TiN을 형성한다.In the third step (C), a reaction gas containing nitrogen such as NH 3 is supplied into the reactor for a supply time ranging from 0.05 to 10 seconds, and chemically reacted with TiCl x (x = 1 to 4) to form TiN. do.

제 4 단계(D)에서는 퍼지 가스를 0.05 내지 10초 범위의 공급시간 동안 반응기 내부로 공급하여 반응기 내부에 잔류하는 미반응 반응 가스 및 반응 부산물을 반응기 외부로 배출한다.In the fourth step (D), the purge gas is supplied into the reactor for a feeding time in the range of 0.05 to 10 seconds to discharge the unreacted reaction gas and the reaction by-product remaining in the reactor to the outside of the reactor.

반응기 정화를 위한 퍼지 가스는 불활성 가스(Inert Gas)나 H2가스를 이용한다.The purge gas for purifying the reactor uses an inert gas or H 2 gas.

상술한 바와 같이, 본 발명은 TiCl4소오스와 함께 H2가스를 공급해주어 ALD법의 증착속도를 향상시키므로써 고단차의 계단 도포성 및 공정 진행률을 동시에 향상시키는 효과가 있다.As described above, the present invention improves the deposition rate of the ALD method by supplying H 2 gas together with the TiCl 4 source, thereby improving the step coverage and process progression of the high step.

Claims (6)

반도체 기판이 장착된 반응기 내부로 TiCl4소오스 및 H2가스를 공급하는 제 1 단계;Supplying a TiCl 4 source and a H 2 gas into a reactor equipped with a semiconductor substrate; 상기 반응기 내부의 미반응 TiCl4소오스 및 반응 부산물을 제거하는 제 2 단계;A second step of removing unreacted TiCl 4 sources and reaction byproducts in the reactor; 상기 반응기 내부로 반응 가스를 공급하여 TiN을 형성하는 제 3 단계;Supplying a reaction gas into the reactor to form TiN; 미반응 NH3가스 및 반응 부산물을 제거하는 제 4 단계; 및A fourth step of removing unreacted NH 3 gas and reaction byproducts; And 상기 제 1 내지 제 4 단계를 1 싸이클하고, 목표 두께의 TiN막을 형성할 때까지 상기 1 싸이클 계속해서 반복 실시하는 단계로 이루어지는 것을 특징을 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.And repeating the first cycle until the first to fourth steps are formed and a TiN film having a target thickness is formed. 제 1 항에 있어서,The method of claim 1, 상기 반응기는 200 내지 700℃ 범위의 박막형성 온도 및 0.1 내지 100Torr 범위의 박막형성 압력을 유지하는 것을 특징으로 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.The reactor is a method for forming a titanium nitride film of a semiconductor device, characterized in that for maintaining the film forming temperature in the range of 200 to 700 ℃ and the film forming pressure in the range of 0.1 to 100 Torr. 제 1 항에 있어서,The method of claim 1, 상기 TiCl4소오스 및 H2가스는 0.05 내지 10초 범위의 공급시간동안 반응기 내부로 공급되어 반도체 기판의 표면에 TiClx(x=1 내지 4)를 흡착시키는 것을 특징으로 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.The TiCl 4 source and H 2 gas are supplied into the reactor for a supply time ranging from 0.05 to 10 seconds to adsorb TiCl x (x = 1 to 4) onto the surface of the semiconductor substrate. Film formation method. 제 1 항에 있어서,The method of claim 1, 상기 제 2 단계 또는 제 4 단계는 0.05 내지 10초 범위의 공급시간 동안 퍼지 가스를 반응기 내부로 공급하여 실시하는 것을 특징으로 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.The second step or the fourth step is a method of forming a titanium nitride film of a semiconductor device, characterized in that the purge gas is supplied into the reactor during the supply time range of 0.05 to 10 seconds. 제 4 항에 있어서,The method of claim 4, wherein 상기 퍼지 가스는 불활성 가스 또는 H2가스를 이용하는 것을 특징으로 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.The purge gas is an inert gas or H 2 gas using a titanium nitride film forming method of a semiconductor device. 제 1 항에 있어서,The method of claim 1, 상기 반응 가스는 NH3등의 질소를 포함하는 혼합가스를 이용하며, 0.05 내지 10초 범위의 공급시간동안 반응기 내부로 공급하는 것을 특징으로 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.The reaction gas is a method of forming a titanium nitride film of a semiconductor device, characterized in that for using a mixed gas containing nitrogen, such as NH 3 , supplying into the reactor for a supply time range of 0.05 to 10 seconds.
KR1020000036064A 2000-06-28 2000-06-28 Method of forming a TiN layer in a semiconductor device KR100665401B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000036064A KR100665401B1 (en) 2000-06-28 2000-06-28 Method of forming a TiN layer in a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000036064A KR100665401B1 (en) 2000-06-28 2000-06-28 Method of forming a TiN layer in a semiconductor device

Publications (2)

Publication Number Publication Date
KR20020001387A true KR20020001387A (en) 2002-01-09
KR100665401B1 KR100665401B1 (en) 2007-01-04

Family

ID=19674504

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000036064A KR100665401B1 (en) 2000-06-28 2000-06-28 Method of forming a TiN layer in a semiconductor device

Country Status (1)

Country Link
KR (1) KR100665401B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542247B1 (en) * 2002-07-19 2006-01-16 주식회사 하이닉스반도체 Atomic layer deposition of titanium nitride using batch type chamber and method for fabricating capacitor by the same
WO2006101856A2 (en) * 2005-03-21 2006-09-28 Tokyo Electron Limited A plasma enhanced atomic layer deposition system and method
KR100942958B1 (en) * 2006-09-29 2010-02-17 주식회사 하이닉스반도체 Method for forming thin film and method for forming capacitor of semiconductor device using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920002708B1 (en) * 1990-03-22 1992-03-31 한국과학기술원 Cheomical vapour deposition process of a tin by a plasma
JPH0864676A (en) * 1994-08-17 1996-03-08 Sumitomo Metal Ind Ltd Fabrication of semiconductor device
US5595784A (en) * 1995-08-01 1997-01-21 Kaim; Robert Titanium nitride and multilayers formed by chemical vapor deposition of titanium halides
KR100439050B1 (en) * 1996-12-28 2004-09-04 주식회사 하이닉스반도체 Method for fabricating titanium nitride layer to improve physical property and barrier characteristic
KR100510062B1 (en) * 1998-08-18 2005-11-03 주식회사 하이닉스반도체 Method for forming titanium nitride layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542247B1 (en) * 2002-07-19 2006-01-16 주식회사 하이닉스반도체 Atomic layer deposition of titanium nitride using batch type chamber and method for fabricating capacitor by the same
WO2006101856A2 (en) * 2005-03-21 2006-09-28 Tokyo Electron Limited A plasma enhanced atomic layer deposition system and method
WO2006101856A3 (en) * 2005-03-21 2007-04-26 Tokyo Electron Ltd A plasma enhanced atomic layer deposition system and method
JP2008538127A (en) * 2005-03-21 2008-10-09 東京エレクトロン株式会社 System and method for plasma accelerated atomic layer deposition
KR101251133B1 (en) * 2005-03-21 2013-04-04 도쿄엘렉트론가부시키가이샤 A plasma enhanced atomic layer deposition system and method
US8486845B2 (en) 2005-03-21 2013-07-16 Tokyo Electron Limited Plasma enhanced atomic layer deposition system and method
KR100942958B1 (en) * 2006-09-29 2010-02-17 주식회사 하이닉스반도체 Method for forming thin film and method for forming capacitor of semiconductor device using the same

Also Published As

Publication number Publication date
KR100665401B1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
JP7485736B2 (en) Deposition of Molybdenum-Containing Low-Resistivity Films on Dielectric Materials for 3D NAND Devices
US6200893B1 (en) Radical-assisted sequential CVD
US6451119B2 (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6540838B2 (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
KR100363088B1 (en) Method of manufacturing barrier metal layer using atomic layer deposition method
EP1044288B1 (en) Method for forming a three-component nitride film containing metal and silicon
US8101521B1 (en) Methods for improving uniformity and resistivity of thin tungsten films
US20050186731A1 (en) Atomic layer deposition method of forming an oxide comprising layer on a substrate
US20090041952A1 (en) Method of depositing silicon oxide films
US20060172534A1 (en) Atomic layer deposition methods
US20110027977A1 (en) Deposition of ruthenium or ruthenium dioxide
CN113832446A (en) Vapor deposition of films comprising molybdenum
US7018469B2 (en) Atomic layer deposition methods of forming silicon dioxide comprising layers
US8163648B2 (en) Atomic layer deposition methods
KR100510473B1 (en) Method for forming upper electrode of a capacitor using ALD
KR100665401B1 (en) Method of forming a TiN layer in a semiconductor device
US10269560B2 (en) Atomic layer deposition method for manufacturing semiconductor structure
KR20050002525A (en) The method for manufacturing diffusion protecting layer in semiconductor device
CN110777351B (en) Tungsten deposition method
KR100617883B1 (en) Method for depositing thin film on wafer using ECTDMAT
KR20030058271A (en) Atomic layer deposition process using plasma
KR20030050945A (en) METHOD FOR FORMING TiN THIN FILM
KR20050116492A (en) Method for manufacturing the aluminium oxide thin film of semiconductor devices using the atomic layer deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101125

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee