KR100665401B1 - Method of forming a TiN layer in a semiconductor device - Google Patents

Method of forming a TiN layer in a semiconductor device Download PDF

Info

Publication number
KR100665401B1
KR100665401B1 KR1020000036064A KR20000036064A KR100665401B1 KR 100665401 B1 KR100665401 B1 KR 100665401B1 KR 1020000036064 A KR1020000036064 A KR 1020000036064A KR 20000036064 A KR20000036064 A KR 20000036064A KR 100665401 B1 KR100665401 B1 KR 100665401B1
Authority
KR
South Korea
Prior art keywords
ticl
source
reactor
forming
gas
Prior art date
Application number
KR1020000036064A
Other languages
Korean (ko)
Other versions
KR20020001387A (en
Inventor
엄장웅
김용수
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020000036064A priority Critical patent/KR100665401B1/en
Publication of KR20020001387A publication Critical patent/KR20020001387A/en
Application granted granted Critical
Publication of KR100665401B1 publication Critical patent/KR100665401B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 반도체 소자의 티타늄 나이트라이드막 형성 방법에 관한 것으로, TiCl4 소오스를 이용한 단원자 증착법(Atomic Layer Deposition; ALD)으로 TiN막을 형성하는 공정 기술에서, TiN막 성장시 TiCl4 소오스 자체의 분자 부피로 인하여, 실제로 TiCl4 소오스가 반도체 기판 표면에 흡착된 상태의 커버리지(Coverage)가 한 개의 단원자층(One Monolayer)이 흡착된 상태의 커버리지보다 작아지게 되고, 이로 인하여 박막 성장률이 낮아지는데, 박막 성장률을 향상시키기 위해서는 TiCl4 소오스의 분자 부피를 줄여야 하고, 이러한 방안으로 TiCl4 소오스 공급시 H2를 동시에 공급하여 TiCl4에 존재하는 Cl기의 일부를 탈착시키므로써 반도체 기판의 표면에 흡착되는 TiClx(x=1 내지 4)의 분자 부피를 줄이고 표면에 흡착되는 TiClx(x=1 내지 4) 양을 증가시켜 박막 성장률을 증가시킬 수 있는 반도체 소자의 티타늄 나이트라이드막 형성 방법이 개시된다. The present invention relates to a method of forming a nitride titanium nitride of the semiconductor element layer, TiCl 4, a source for using single atom deposition (Atomic Layer Deposition; ALD) to the process technique for forming a TiN film, TiN film growth during TiCl molecules of 4 source itself Due to the volume, the coverage of the TiCl 4 source adsorbed on the surface of the semiconductor substrate is actually smaller than the coverage of the one monolayer adsorbed, thereby lowering the film growth rate. In order to improve the growth rate, the molecular volume of the TiCl 4 source should be reduced.In this way, the TiCl adsorbed on the surface of the semiconductor substrate by desorbing a part of the Cl group present in TiCl 4 by supplying H 2 simultaneously when supplying the TiCl 4 source. x (x = 1 to 4) to increase the growth rate of the thin film by increasing the TiCl x (x = 1 to 4) to reduce the amount of bulky molecules adsorbed on the surface of The keel can be titanium nitride film formation method of a semiconductor device is disclosed that.

TiN막, TiClx(x=1 내지 4), ALD법, 박막 성장률TiN film, TiClx (x = 1 to 4), ALD method, thin film growth rate

Description

반도체 소자의 티타늄 나이트라이드막 형성 방법{Method of forming a TiN layer in a semiconductor device} Method of forming a titanium nitride film of a semiconductor device             

도 1은 본 발명에 따른 반도체 소자의 티타늄 나이트라이드막 형성 방법을 설명하기 위하여 도시한 레시피도.
1 is a recipe diagram illustrating a method for forming a titanium nitride film of a semiconductor device according to the present invention.

<도면의 주요 부분에 대한 부호 설명><Description of the symbols for the main parts of the drawings>

A : 제 1 단계 B : 제 2 단계A: First Step B: Second Step

C : 제 3 단계 D : 제 4 단계
C: Third Step D: Fourth Step

본 발명은 반도체 소자의 티타늄 나이트라이드막 형성 방법에 관한 것으로, 특히 ALD법을 이용한 TiN막 형성 시 박막 성장률을 향상시킬 수 있는 반도체 소자의 티타늄 나이트라이드막 형성 방법에 관한 것이다.
The present invention relates to a method of forming a titanium nitride film of a semiconductor device, and more particularly to a method of forming a titanium nitride film of a semiconductor device capable of improving a thin film growth rate when forming a TiN film using the ALD method.

기존의 TiCl4를 소오스로 하는 CVD TiN막의 경우, 계단 도포성이 상당히 우수한 것으로 알려져 있으나 종횡비(Aspect Ratio)가 상당히 커질 경우(AR > 20), 홀(Hole) 내부와 표면에 공급되는 플럭스(Flux)의 차이로 인하여 만족할 만한 계단 도포성을 얻을 수 없게 된다. 이러한 기존 CVD법의 단점을 보완하기 위해서는 완전한 표면 반응에 의해서만 박막이 형성되고, 원자층 단위로 박막형성 제어가 가능한 원자층 증착 방법이 최적이라 할 수 있다. 하지만, 원자층 증착(ALD)법에 의한 박막 형성은 사용하는 소오스에 따라 소오스 자체의 분자부피로 인하여, 이론적인 1 싸이클(Cycle) 당 한 개의 단원자층 형성이 불가능하고, 박막 성장률 또한 기존의 CVD법에 비교할 수 없이 낮다. 현재, 원자층 증착장비로 TiCl4 소오스를 사용하여 TiN막 형성시, 박막 성장률이 ~0.3Å/cycle(1 cycle time = 0.1 내지 1.5sec)로 기존 TiCl4를 소오스로 하는 CVD TiN의 7Å/sec 내지 10Å/sec에 비해 매우 낮은 성장률을 가지고 있어 실제 반도체 공정 적용시 공정 진행률(Throughput)의 문제로 실제 공정적용에 어려움이 있다.
In the case of the conventional CVD TiN film using TiCl 4 as a source, it is known that the step coating property is excellent, but when the aspect ratio is significantly increased (AR> 20), the flux supplied to the inside and the surface of the hole is changed. Due to the difference of), satisfactory step coatability cannot be obtained. In order to make up for the disadvantages of the conventional CVD method, the thin film is formed only by the complete surface reaction, and the atomic layer deposition method capable of controlling the thin film formation on an atomic layer basis is optimal. However, the thin film formation by atomic layer deposition (ALD) method is impossible to form a monoatomic layer per one cycle due to the molecular volume of the source itself depending on the source used, and the thin film growth rate is also lower than that of conventional CVD. It is incomparably low in law. Currently, when TiN film is formed using TiCl 4 source as atomic layer deposition equipment, the film growth rate is ~ 0.3kW / cycle (1 cycle time = 0.1 to 1.5sec), and 7kW / sec of CVD TiN using TiCl 4 as the source. It has a very low growth rate compared to the 10 ~ / 10 s / sec is difficult to apply the actual process due to the problem of the process (Throughput) when applying the actual semiconductor process.

따라서, 본 발명은 ALD법을 이용한 TiN막 형성 공정에서 H2 가스를 이용하여 TiCl4에 존재하는 Cl기의 일부를 탈착시키고 TiCl4 소오스의 부피를 줄여 기판 표면에 흡착되는 TiClx(x=1 내지 4)의 양을 증가시키므로써 박막 성장률을 증가시킬 수 있는 반도체 소자의 티타늄 나이트라이드막 형성 방법을 제공하는데 그 목적이 있다.
Therefore, in the TiN film formation process using the ALD method, TiCl x (x = 1) is adsorbed onto the substrate surface by desorbing a part of the Cl group present in TiCl 4 using H 2 gas and reducing the volume of the TiCl 4 source. It is an object of the present invention to provide a method for forming a titanium nitride film of a semiconductor device capable of increasing the growth rate of a thin film by increasing the amount of 4 to 4).

본 발명에 따른 반도체 소자의 티타늄 나이트라이드막 형성 방법은 반도체 기판이 장착된 반응기 내부로 TiCl4 소오스 및 H2 가스를 공급하는 제 1 단계, 반응기 내부의 미반응 TiCl4 소오스 및 반응 부산물을 제거하는 제 2 단계, 반응기 내부로 반응 가스를 공급하여 TiN을 형성하는 제 3 단계, 미반응된 상기 반응 가스 및 반응 부산물을 제거하는 제 4 단계 및 제 1 내지 제 4 단계를 1 싸이클하고, 목표 두께의 TiN막을 형성할 때까지 1 싸이클 계속해서 반복 실시하는 단계를 포함하여 이루어진다.In the method of forming a titanium nitride film of a semiconductor device according to the present invention, a first step of supplying a TiCl 4 source and H 2 gas into a reactor equipped with a semiconductor substrate, removing an unreacted TiCl 4 source and a reaction byproduct in the reactor The second step, the third step of supplying the reaction gas into the reactor to form TiN, the fourth step of removing the unreacted reaction gas and reaction by-products and the first to fourth steps are cycled one by one, And repeating one cycle until the TiN film is formed.

상기의 단계에서, 반응기는 200 내지 700℃ 범위의 박막형성 온도 및 0.1 내지 100Torr 범위의 박막형성 압력을 유지한다.In the above step, the reactor maintains a thin film forming temperature in the range of 200 to 700 ° C. and a thin film forming pressure in the range of 0.1 to 100 Torr.

TiCl4 소오스 및 H2 가스는 0.05 내지 10초 범위의 공급시간 동안 반응기 내부로 공급되어 반도체 기판의 표면에 TiClx(x=1 내지 4)를 흡착시킨다.The TiCl 4 source and H 2 gas are fed into the reactor for a feed time ranging from 0.05 to 10 seconds to adsorb TiCl x (x = 1 to 4) on the surface of the semiconductor substrate.

제 2 단계 또는 제 4 단계는 0.05 내지 10초 범위의 공급시간 동안 퍼지 가스를 반응기 내부로 공급하여 실시한다. 퍼지 가스는 불활성 가스 또는 H2 가스를 이용한다. The second or fourth step is carried out by supplying purge gas into the reactor for a feed time in the range of 0.05 to 10 seconds. The purge gas uses an inert gas or H 2 gas.

반응 가스는 NH3를 이용하며, 0.05 내지 10초 범위의 공급시간 동안 반응기 내부로 공급한다.The reaction gas uses NH 3 and is fed into the reactor for a feed time in the range of 0.05 to 10 seconds.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail.

도 1은 본 발명에 따른 반도체 소자의 티타늄 나이트라이드막 형성 방법을 설명하기 위하여 도시한 레시피도이다.1 is a recipe diagram illustrating a method of forming a titanium nitride film of a semiconductor device according to the present invention.

도 1을 참조하면, TiN막을 형성하는 공정 단계는 반응기 내부로 TiCl4 소오스 및 H2 가스를 공급하는 제 1 단계(A), 반응기 내부의 미반응 TiCl4 소오스 및 반응 부산물을 제거하는 제 2 단계(B), NH3 반응 가스를 공급하는 제 3 단계(C) 및 미반응 NH3 가스 및 반응 부산물을 제거하는 제 4 단계(D)로 이루어지며, 제 1 내지 제 4 단계가 1 싸이클(Cycle)을 이룬다. 목표 두께의 TiN막을 형성하기 위해서는 제 1 내지 제 4 단계로 이루어진 싸이클을 계속해서 반복 실시하면 된다. 이때, 반응기는 200 내지 700℃ 범위의 박막형성 온도 및 0.1 내지 100Torr 범위의 박막형성 압력을 유지하며, 각각의 단계에서 반응기로 공급하는 소오스, 반응 가스 및 정화 가스(Purge Gas)는 펄스 형태로 분리해서 공급한다. Referring to FIG. 1, a process of forming a TiN film includes a first step (A) of supplying a TiCl 4 source and a H 2 gas into a reactor, a second step of removing an unreacted TiCl 4 source and a reaction byproduct in the reactor. (B), a third step (C) of supplying the NH 3 reaction gas and a fourth step (D) of removing the unreacted NH 3 gas and the reaction by-products, and the first to fourth steps comprise one cycle (Cycle). ). In order to form a TiN film having a target thickness, a cycle consisting of the first to fourth steps may be repeatedly performed. At this time, the reactor maintains a thin film forming temperature in the range of 200 to 700 ℃ and a thin film forming pressure in the range of 0.1 to 100 Torr, and the source, the reaction gas and the purge gas supplied to the reactor in each step are separated in pulse form. Supply it.

각 단계를 상세히 설명하면 다음과 같다. Each step will be described in detail as follows.

제 1 단계(A)에서는 TiCl4 소오스와 H2 가스를 동시에 0.05 내지 10초 범위의 공급시간동안 반응기 내부로 공급하여 반도체 기판의 표면에 TiClx(x=1 내지 4) 가 흡착되도록 한다. In the first step (A), TiCl 4 source and H 2 gas are simultaneously supplied into the reactor for a supply time ranging from 0.05 to 10 seconds so that TiCl x (x = 1 to 4) is adsorbed onto the surface of the semiconductor substrate.

H2 가스는 TiCl4에 포함된 Cl기의 일부를 착탈시켜 부피를 줄인 TiClx(x=1 내지 4)를 생성한다. 부피가 줄어든 TiClx(x=1 내지 4)는 반도체 기판의 표면 커버리지(Coverage)를 증가시켜 박막 증착율을 증가시킨다. The H 2 gas desorbs a portion of the Cl group included in TiCl 4 to produce reduced volume TiCl x (x = 1 to 4). The reduced volume of TiCl x (x = 1 to 4) increases the surface coverage of the semiconductor substrate, thereby increasing the thin film deposition rate.

제 2 단계(B)에서는 퍼지 가스를 0.05 내지 10초 범위의 공급시간 동안 반응기 내부로 공급하여 반응기 내부에 잔류하는 미반응 TiCl4 소오스 및 반응 부산물을 반응기 외부로 배출한다. In the second step (B), purge gas is supplied into the reactor for a feeding time ranging from 0.05 to 10 seconds to discharge the unreacted TiCl 4 source and the reaction by-product remaining in the reactor to the outside of the reactor.

반응기 정화를 위한 퍼지 가스는 불활성 가스(Inert Gas)나 H2 가스를 이용한다. The purge gas for purifying the reactor uses an inert gas or H 2 gas.

제 3 단계(C)에서는 NH3인 반응 가스를 0.05 내지 10초 범위의 공급시간 동안 반응기 내부로 공급하고, TiClx(x=1 내지 4)와 화학적으로 반응시켜 TiN을 형성한다. In the third step (C), a reaction gas of NH 3 is supplied into the reactor for a feeding time ranging from 0.05 to 10 seconds, and chemically reacted with TiCl x (x = 1 to 4) to form TiN.

제 4 단계(D)에서는 퍼지 가스를 0.05 내지 10초 범위의 공급시간 동안 반응기 내부로 공급하여 반응기 내부에 잔류하는 미반응 반응 가스 및 반응 부산물을 반응기 외부로 배출한다. In the fourth step (D), the purge gas is supplied into the reactor for a feeding time in the range of 0.05 to 10 seconds to discharge the unreacted reaction gas and the reaction by-product remaining in the reactor to the outside of the reactor.

반응기 정화를 위한 퍼지 가스는 불활성 가스(Inert Gas)나 H2 가스를 이용한다.
The purge gas for purifying the reactor uses an inert gas or H 2 gas.

상술한 바와 같이, 본 발명은 TiCl4 소오스와 함께 H2 가스를 공급해주어 ALD법의 증착속도를 향상시키므로써 고단차의 계단 도포성 및 공정 진행률을 동시에 향상시키는 효과가 있다.
As described above, the present invention improves the deposition rate of the ALD method by supplying H 2 gas together with the TiCl 4 source, thereby improving the step coverage and process progression of the high step.

Claims (6)

반도체 기판이 장착된 반응기 내부로 TiCl4 소오스 및 H2 가스를 공급하는 제 1 단계;Supplying a TiCl 4 source and a H 2 gas into a reactor equipped with a semiconductor substrate; 상기 반응기 내부의 미반응 TiCl4 소오스 및 반응 부산물을 제거하는 제 2 단계;A second step of removing unreacted TiCl 4 sources and reaction byproducts in the reactor; 상기 반응기 내부로 반응 가스를 공급하여 TiN을 형성하는 제 3 단계;Supplying a reaction gas into the reactor to form TiN; 미반응된 상기 반응 가스 및 반응 부산물을 제거하는 제 4 단계; 및 A fourth step of removing the unreacted reaction gas and reaction byproducts; And 상기 제 1 내지 제 4 단계를 1 싸이클하고, 목표 두께의 TiN막을 형성할 때까지 상기 1 싸이클 계속해서 반복 실시하는 단계로 이루어지는 것을 특징을 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.And repeating the first cycle until the first to fourth steps are formed and a TiN film having a target thickness is formed. 제 1 항에 있어서, The method of claim 1, 상기 반응기는 200 내지 700℃ 범위의 박막형성 온도 및 0.1 내지 100Torr 범위의 박막형성 압력을 유지하는 것을 특징으로 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.The reactor is a method for forming a titanium nitride film of a semiconductor device, characterized in that for maintaining the film forming temperature in the range of 200 to 700 ℃ and the film forming pressure in the range of 0.1 to 100 Torr. 제 1 항에 있어서,The method of claim 1, 상기 TiCl4 소오스 및 H2 가스는 0.05 내지 10초 범위의 공급시간동안 반응기 내부로 공급되어 반도체 기판의 표면에 TiClx(x=1 내지 4)를 흡착시키는 것을 특징으로 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.The TiCl 4 source and H 2 gas are supplied into the reactor for a supply time ranging from 0.05 to 10 seconds to adsorb TiCl x (x = 1 to 4) onto the surface of the semiconductor substrate. Film formation method. 제 1 항에 있어서,The method of claim 1, 상기 제 2 단계 또는 제 4 단계는 0.05 내지 10초 범위의 공급시간 동안 퍼지 가스를 반응기 내부로 공급하여 실시하는 것을 특징으로 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.The second step or the fourth step is a method of forming a titanium nitride film of a semiconductor device, characterized in that the purge gas is supplied into the reactor during the supply time range of 0.05 to 10 seconds. 제 4 항에 있어서,The method of claim 4, wherein 상기 퍼지 가스는 불활성 가스 또는 H2 가스를 이용하는 것을 특징으로 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.The purge gas is a method of forming a titanium nitride film of a semiconductor device, characterized in that for using an inert gas or H 2 gas. 제 1 항에 있어서,The method of claim 1, 상기 반응 가스는 NH3를 이용하며, 0.05 내지 10초 범위의 공급시간동안 반응기 내부로 공급하는 것을 특징으로 하는 반도체 소자의 티타늄 나이트라이드막 형성 방법.The reaction gas is NH 3 , the method of forming a titanium nitride film of a semiconductor device, characterized in that for supplying the inside of the reactor for a supply time range of 0.05 to 10 seconds.
KR1020000036064A 2000-06-28 2000-06-28 Method of forming a TiN layer in a semiconductor device KR100665401B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000036064A KR100665401B1 (en) 2000-06-28 2000-06-28 Method of forming a TiN layer in a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000036064A KR100665401B1 (en) 2000-06-28 2000-06-28 Method of forming a TiN layer in a semiconductor device

Publications (2)

Publication Number Publication Date
KR20020001387A KR20020001387A (en) 2002-01-09
KR100665401B1 true KR100665401B1 (en) 2007-01-04

Family

ID=19674504

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000036064A KR100665401B1 (en) 2000-06-28 2000-06-28 Method of forming a TiN layer in a semiconductor device

Country Status (1)

Country Link
KR (1) KR100665401B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542247B1 (en) * 2002-07-19 2006-01-16 주식회사 하이닉스반도체 Atomic layer deposition of titanium nitride using batch type chamber and method for fabricating capacitor by the same
US8486845B2 (en) * 2005-03-21 2013-07-16 Tokyo Electron Limited Plasma enhanced atomic layer deposition system and method
KR100942958B1 (en) * 2006-09-29 2010-02-17 주식회사 하이닉스반도체 Method for forming thin film and method for forming capacitor of semiconductor device using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910016962A (en) * 1990-03-22 1991-11-05 이상수 Plasma Chemical Vapor Deposition of TiN
JPH0864676A (en) * 1994-08-17 1996-03-08 Sumitomo Metal Ind Ltd Fabrication of semiconductor device
US5595784A (en) * 1995-08-01 1997-01-21 Kaim; Robert Titanium nitride and multilayers formed by chemical vapor deposition of titanium halides
KR19980055965A (en) * 1996-12-28 1998-09-25 김영환 Titanium Nitride Film Manufacturing Method
KR20000014184A (en) * 1998-08-18 2000-03-06 김영환 TiN NITRITE FILM FORMING METHOD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910016962A (en) * 1990-03-22 1991-11-05 이상수 Plasma Chemical Vapor Deposition of TiN
JPH0864676A (en) * 1994-08-17 1996-03-08 Sumitomo Metal Ind Ltd Fabrication of semiconductor device
US5595784A (en) * 1995-08-01 1997-01-21 Kaim; Robert Titanium nitride and multilayers formed by chemical vapor deposition of titanium halides
KR19980055965A (en) * 1996-12-28 1998-09-25 김영환 Titanium Nitride Film Manufacturing Method
KR20000014184A (en) * 1998-08-18 2000-03-06 김영환 TiN NITRITE FILM FORMING METHOD

Also Published As

Publication number Publication date
KR20020001387A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
TWI819196B (en) STRUCTURE INCLUDING SiOC LAYER AND METHOD OF FORMING SAME
JP7485736B2 (en) Deposition of Molybdenum-Containing Low-Resistivity Films on Dielectric Materials for 3D NAND Devices
US20210225643A1 (en) Method for deposition of silicon nitride layer using pretreatment, structure formed using the method, and system for performing the method
US6540838B2 (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6451119B2 (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
EP1125324B1 (en) Radical-assisted sequential cvd
JP2001303251A (en) Method for manufacturing barrier metal film utilizing atomic layer deposition method
US7358188B2 (en) Method of forming conductive metal silicides by reaction of metal with silicon
US7411254B2 (en) Semiconductor substrate
KR100519376B1 (en) Method for Forming Barrier Layer of Semiconductor Device
KR100753276B1 (en) Atomic layer deposition methods of forming silicon dioxide comprising layers
TW201712143A (en) Method of fabricating nitride film which is capable of stably maintaining the film quality while easily adjusting compressive stress
US8163648B2 (en) Atomic layer deposition methods
KR100665401B1 (en) Method of forming a TiN layer in a semiconductor device
TWI283006B (en) Method for forming tungsten nitride film
KR20050002525A (en) The method for manufacturing diffusion protecting layer in semiconductor device
CN110777351B (en) Tungsten deposition method
KR100268804B1 (en) Metal wiring formation method of semiconductor device
US11370669B2 (en) Amorphous silicon doped yttrium oxide films and methods of formation
KR100695511B1 (en) Method for manufacturing the aluminium oxide thin film of semiconductor devices using the atomic layer deposition
KR100617883B1 (en) Method for depositing thin film on wafer using ECTDMAT
KR20030050945A (en) METHOD FOR FORMING TiN THIN FILM

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101125

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee