KR200177261Y1 - Semiconductor manufacturing apparatus - Google Patents
Semiconductor manufacturing apparatus Download PDFInfo
- Publication number
- KR200177261Y1 KR200177261Y1 KR2019960035189U KR19960035189U KR200177261Y1 KR 200177261 Y1 KR200177261 Y1 KR 200177261Y1 KR 2019960035189 U KR2019960035189 U KR 2019960035189U KR 19960035189 U KR19960035189 U KR 19960035189U KR 200177261 Y1 KR200177261 Y1 KR 200177261Y1
- Authority
- KR
- South Korea
- Prior art keywords
- reactor
- gas
- rare
- injected
- door
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45557—Pulsed pressure or control pressure
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45568—Porous nozzles
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
본 고안은 반응로의 도어 및 레어 양쪽에 가수를 주입하는 씨브이디 장치에 관한 것이며 종래의 씨브이디 장치는 반응로의 가스가 주입되는 레어쪽과 가스가 주입되지 않는 도어쪽에 장착된 웨이퍼 위에 원하는 층이 증착되는 비율이 다른 문제점과, 원하는 층에 불순물 원자가 균일하게 도핑되지 않는 문제점이 있었다. 이와같은 문제점을 감안한 본 고안 반응로의 레어 및 도어 양쪽에 가스를 주입시키고 가스주입기를 사용하여 주입되는 가스를 반응로의 안쪽까지 균일하게 주입하는 특징이 있다. 이와같은 특징의 본 고안은 반응로의 레어쪽과 도어쪽에 장착된 실리콘 웨이퍼 위에 원하는 층이 증착되는 비율이 같으며, 균일한 비율로 도핑된 원하는 층을 얻을 수 있는 효과가 있다.The present invention relates to a CD device for injecting water to both the door and the rare stage of the reactor, and the conventional CD device is provided on a wafer mounted on the rare side where the gas of the reactor is injected and the door side where the gas is not injected. There was a problem in that the ratio of the desired layer is deposited, and the problem that the impurity atoms are not uniformly doped in the desired layer. In consideration of such a problem, the gas is injected into both the rare and the door of the reactor, and the gas injected using the gas injector is uniformly injected to the inside of the reactor. The present invention of this feature has the same ratio of depositing a desired layer on the silicon wafer mounted on the rare side and the door side of the reactor, and has the effect of obtaining a desired layer doped at a uniform ratio.
Description
본 고안은 반도체 제조장치에 관한 것으로, 특히 반응로(furnace)의 도어(door) 및 레어(rear) 양쪽에 가스를 주입하는 씨브이디(Chemical Vapor Deposition) 장치에 관한 것이다.The present invention relates to a semiconductor manufacturing apparatus, and more particularly to a chemical vapor deposition apparatus for injecting gas into both the door (door) and the rare (rear) of the furnace (furnace).
종래의 씨브이디 장치는 제1도에 도시된 바와같이 다수의 가열 코일(1a)을 구비하여 각 부분별로 온도의 조절이 가능한 밤응로(1)와 상기 반응로(1)의 레어(8)쪽에 연결되어 반응로(1)의 압력에 따라 개패되는 자동 압력 제어 밸브(2)와 상기 자동 압력 제어 밸브(2)를 통해 반응로(1) 내의 가스를 외부로 배출하는 배기펌프(3)와, 상기 반응로(1)의 레어(8)쪽에 각각의 가스 소스(4), (5)를 연결하는 가스라인(6)으로 구성되며, 이와같이 구성된 씨브이디 장치의 동작을 실리콘 웨이퍼 위에 불순물 원자가 도핑된 다결정 실리콘층을 증착시키는 방법을 예로하여 설명하면 다음과 같다.The conventional CD device is provided with a plurality of heating coils (1a) as shown in Figure 1 and the night furnace (1) and the rare (8) of the reactor (1) capable of adjusting the temperature for each part An automatic pressure control valve 2 connected to the side and opened and closed according to the pressure of the reactor 1, and an exhaust pump 3 for discharging the gas in the reactor 1 to the outside through the automatic pressure control valve 2; And a gas line 6 connecting the respective gas sources 4 and 5 to the rare 8 side of the reactor 1, and the operation of the CD device configured as described above is performed on the silicon wafer. A method of depositing the doped polycrystalline silicon layer is described as an example.
먼저, 반응로(1)내에 실리콘 웨이퍼(7)를 장착하고, 반응로(1)내에 있는 기체를 배기펌프(3)를 사용하여 외부로 배기시켜 다결정 실리콘층 내에 원하지 않는 불순물 원자가 도핑되는 것을 방지한다.First, the silicon wafer 7 is mounted in the reactor 1, and the gas in the reactor 1 is exhausted to the outside using the exhaust pump 3 to prevent the doping of unwanted impurity atoms in the polycrystalline silicon layer. do.
그 다음, 가열 코일(1a)를 사용하여 반응로(1)내를 씨브이디법으로 다결정 실리콘층을 형성시키기에 적합한 온도로 유지시킨다.Then, the heating coil 1a is used to maintain the inside of the reactor 1 at a temperature suitable for forming the polycrystalline silicon layer by the CD method.
그 다음, 사일렌(SiH4) 및 도판트 가스를 사일렌 소스(4) 및 도판트 가스 소스(5)의 가스밸브(11), (11a)를 열어줌으로써, 사일렌과 도판트가스가 반응로(1)의 레어(8)쪽에 연결된 가스라인(6)을 통하여 반응로(1)의 내부로 주입된다. 이때 반응로(1)의 내부로 주입되되는 가스의 양이 많은 경우 자동 압력 제어 밸브(2)가 열리고, 배기펌프(3)에 의해 반응로(1) 밖으로 배기된다.Next, by opening the gas valves 11 and 11a of the silene source 4 and the dopant gas source 5, the silene and the dopant gas are reacted with each other. It is injected into the reactor 1 through the gas line 6 connected to the rare 8 side of (1). At this time, when the amount of gas injected into the reactor 1 is large, the automatic pressure control valve 2 is opened and exhausted out of the reactor 1 by the exhaust pump 3.
상기에서 주입된 사일렌과 도판트 가스가 반응하어 밤응론(1)내의 실리콘 웨이퍼(7)의 표면에는 불순물 원자로 도핑된 다결정 실리콘층이 증착되며, 반응 후 남은 가스는 자동 압럭 제어 밸브(2)를 통한 배기 펌프(3)에 의해 반응로(1) 밖으로 배기된다.The injected silicon and the dopant gas react with each other to deposit a polycrystalline silicon layer doped with an impurity atom on the surface of the silicon wafer 7 in the night condensation furnace 1, and the remaining gas after the reaction is automatically injected into the autoclave control valve 2. Exhaust out of the reactor 1 by means of an exhaust pump 3 through.
그러나, 상기한 종래의 씨브이디 장치는 주입되는 가스의 유량을 조절하기 어렵고, 반응로의 가스가 주입되는 레어쪽과 주입되지 않는 도어쪽에 주입되는 기체의 밀도가 달라 양측에 장착된 웨이퍼에 원하는 층이 증착되는 비율이 다른 문제점과, 원하는 층에 불순물 원자가 균일하게 도핑되지 않는 문제점이 있었다.However, the conventional CD device described above is difficult to control the flow rate of the injected gas, and the density of the gas injected into the rare side into which the gas of the reactor is injected and the non-injected door is different, so that the wafers mounted on both sides are desired. There was a problem that the ratio of the layers deposited was different, and that the impurity atoms were not uniformly doped in the desired layer.
상기한 문제점을 감안한 본 고안은 반응로내로 유입되는 가스의 유량을 조절함이 용이하고, 반응로내에 균일한 기체 밀도를 유지할 수 있는 씨브이디 장치의 제공을 목적으로 한다.The present invention in view of the above problems is to provide a CD device that can easily control the flow rate of the gas flowing into the reactor, and can maintain a uniform gas density in the reactor.
제1도는 종래의 씨브이디 장치의 구조도.1 is a structural diagram of a conventional CD device.
제2도는 본 고안에 의한 씨브이디 장치의 구조도.2 is a structural diagram of the CD device according to the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 반응로 1a : 가열코일1: reactor 1a: heating coil
2, 2a : 자동 압력 제어 밸브 3, 3a : 배기펌프2, 2a: Automatic pressure control valve 3, 3a: Exhaust pump
44a : 사일렌 소스 5, 5a : 도판트 소스44a: Silene sauce 5, 5a: dopant sauce
6, 6a : 가스라인 7 : 웨이퍼6, 6a: gas line 7: wafer
8 : 레어 9 : 도어8: rare 9: door
10 : 가스주입기10 gas injector
상기와 같은 목적은 반응로내에 균일하게 가스를 주입하는 가스주입기를 구비하고 반응로의 양쪽에 가스를 주입 함으로써 달성되는 것으로, 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.The object as described above is achieved by injecting gas into both sides of the reactor with a gas injector for uniformly injecting gas into the reactor, and will be described in detail with reference to the accompanying drawings.
제2도에 도시된 본 고안에 의한 씨브이디장치의 구성도에서와 같이 본고안은 다수의 가열코일(1a)을 구비하여 각 부분별로 온도의 조절이 가능한 반응로(1)와, 상기 반응로(1)의 레어(8)쪽과 도어(9)쪽에 각각 연결되어 반응로(1)의 압력에 따라 자동으로 개폐되는 두개의 자동 압력 제어 밸브(2), (2a)와, 상기 자동 압력 제어 밸브(2),(2a)를 통해 상기 반응로(1) 내의 가스를 외부로 배기하는 배기펌프(3), (3a)와, 실리콘 웨이퍼(7) 위에 원하는 층을 증착시키기 위해 주입되는 가스 소스(4), (4a), (5), (5a) 및 상기 반응로(1)의 레어(8)쪽 및 도어(9)쪽에 각각 연결된 가스라인(6), (6a)과, 상기 반응로(1)의 레어(8)쪽 가스라인(6)에 연결되어 반응로(1)의 안쪽까지 균일하게 가스를 주입하는 가스주입기(10)로 구성되며, 이와같이 구성된 씨브이디 장치의 동작을 실리콘 웨이퍼(8) 위에 불순물 원자가 도핑된 다결정 실리콘층을 증착하는 방법을 예로하여 설명하면 다음과 같다.As in the configuration of the CD device according to the present invention shown in FIG. 2, the present invention includes a plurality of heating coils 1a and a reactor 1 capable of controlling temperature for each part, and the reaction. Two automatic pressure control valves 2 and 2a connected to the rare 8 side and the door 9 side of the furnace 1 and automatically opened and closed according to the pressure of the reactor 1, and the automatic pressure. Exhaust pumps 3 and 3a for exhausting the gas in the reactor 1 to the outside through control valves 2 and 2a, and gases injected to deposit desired layers on the silicon wafer 7. Sources 4, 4a, 5, 5a and gas lines 6, 6a connected to the rare 8 side and the door 9 side of the reactor 1, respectively, and the reaction It is composed of a gas injector 10 connected to the gas line 6 on the rare 8 side of the furnace 1 and uniformly injects gas to the inside of the reactor 1. Silicon wafer ( 8) A method of depositing a polycrystalline silicon layer doped with an impurity atom above will be described as an example.
먼저, 실리콘 웨이퍼(7)를 반응로(1) 내에 수직으로 장착하고, 반응로(1) 내의 기체를 배기펌프(3), (3a)를 사용하여 레어(8)쪽과 도어(9)쪽으로 배기시킨다.First, the silicon wafer 7 is mounted vertically in the reactor 1, and the gas in the reactor 1 is directed toward the rare 8 and the door 9 using the exhaust pumps 3 and 3a. Exhaust.
그 다음, 가열코일(1a)를 사용하여 반응로(1)의 내부를 씨브이디 방법으로 실리콘 웨이퍼 위에 도핑된 다결정 실리콘층의 증착이 이루어지기 적당한 온도로 유지시킨다.Then, using the heating coil 1a, the inside of the reactor 1 is maintained at a temperature suitable for the deposition of the doped polycrystalline silicon layer on the silicon wafer by the CD method.
그 다음, 사일렌 및 도판트 가스를 사일렌 소스(4), (4a) 및 도판트를 가스 소스(5), (5a)의 가스밸브(11), (11a)를 열어줌으로써, 사일레관 도판트 가스를 반응로(1)의 레어(8)쪽과 도어(9)쪽에 각각 연결된 가스라인(6), (6a)을 통하여 반응로(1)내에 내에 주입시킨다. 이때, 반응로(1)의 레어(8)쪽으로 주입되는 사일렌 및 도판트 가스는 불순물 원자의 생성을 막기 위해 석영으로 만든 가스주입기(10)를 통하여 반응로(1)의 내부까지 균일하게 주입된다. 그리고, 주입되는 사일렌 및 도판트 가스의 양이 많은 경우에는 상기 자동 압력 제어 밸브(2), (2a)가 열리고 배기펌프(3), (3a)의 동작에 의해 반응로(1)의 레어(8) 및 도어(9)쪽에서 외부로 사일렌 및 도판트 가스를 배기시켜 반응로(1)내의 사일렌 및 도판트 가스의 양을 조절한다.Then, the sile pipe is opened by opening the gas valves 11 and 11a of the silene source 4, 4a and the dopant gas to the gas source 5, 5a. Dopant gas is injected into the reactor 1 through the gas lines 6 and 6a respectively connected to the rare 8 side and the door 9 side of the reactor 1. At this time, the xylene and dopant gases injected into the rare 8 of the reactor 1 are uniformly injected to the inside of the reactor 1 through the gas injector 10 made of quartz to prevent the generation of impurity atoms. do. In the case where the amount of xylene and dopant gas injected is large, the automatic pressure control valves 2 and 2a are opened, and the rarer of the reactor 1 is operated by the operation of the exhaust pumps 3 and 3a. The amount of the xylene and dopant gas in the reactor 1 is regulated by exhausting the xylene and dopant gas from the side 8 and the door 9 to the outside.
상기한 바와같이 가스가 반응로내에 균일하게 주입되고 그 주입되는 양을 용이하게 조절 함으로써 반응로내의 레어쪽과 도어쪽에 장착된 실리콘 웨이퍼에 원하는 층이 증착되는 비율이 같으며, 실리콘 웨이퍼 위에 균일한 비율로 도핑된 층을 얻을 수 있는 효과가 있다.As described above, the gas is uniformly injected into the reactor, and the amount of the desired layer is deposited on the silicon wafer mounted on the rare side and the door side of the reactor by adjusting the amount of the injected easily. The effect is to obtain a doped layer in proportion.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2019960035189U KR200177261Y1 (en) | 1996-10-24 | 1996-10-24 | Semiconductor manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2019960035189U KR200177261Y1 (en) | 1996-10-24 | 1996-10-24 | Semiconductor manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980021867U KR19980021867U (en) | 1998-07-15 |
KR200177261Y1 true KR200177261Y1 (en) | 2000-05-01 |
Family
ID=19470580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR2019960035189U KR200177261Y1 (en) | 1996-10-24 | 1996-10-24 | Semiconductor manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR200177261Y1 (en) |
-
1996
- 1996-10-24 KR KR2019960035189U patent/KR200177261Y1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR19980021867U (en) | 1998-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4098923A (en) | Pyrolytic deposition of silicon dioxide on semiconductors using a shrouded boat | |
KR100272146B1 (en) | Method of manafacturing semiconductor device, apparatus of manufacturing the same, and method of cleaning the same | |
US7482283B2 (en) | Thin film forming method and thin film forming device | |
US6645835B1 (en) | Semiconductor film forming method and manufacturing method for semiconductor devices thereof | |
KR20070042190A (en) | Elimination of flow and pressure gradients in low species utilization processes | |
JPH01119029A (en) | High speed heat plasma multiple treatment reactor and its application | |
CN110335901A (en) | Photovoltaic cell surface passivation system and passivating method | |
JPS60245231A (en) | Method of depositing borophossilidate glass | |
KR100906048B1 (en) | Lpcvd apparatus and method for fabricating poly silicon on wafer using the lpcvd | |
KR950004588B1 (en) | Manufacturing method of semiconductor substrate | |
KR200177261Y1 (en) | Semiconductor manufacturing apparatus | |
KR20070010026A (en) | Apparatus and process for producing thin films and devices | |
US4703718A (en) | Vapor deposition apparatus and method of using same | |
KR960013526B1 (en) | Chemical vapor phase growth method and chemical vapor phase growth apparatus | |
EP0960435B1 (en) | Methods for minimizing as-deposited stress in tungsten silicide films | |
US6333266B1 (en) | Manufacturing process for a semiconductor device | |
JP4703844B2 (en) | Thermal CVD equipment for forming graphite nanofiber thin films | |
KR0140086Y1 (en) | Low pressure chemical vapor depositing system | |
US6821871B2 (en) | Method for manufacturing semiconductor device, substrate treatment method, and semiconductor manufacturing apparatus | |
US5242666A (en) | Apparatus for forming a semiconductor crystal | |
KR0128025B1 (en) | Rapid thermal processing apparatus with cooling device | |
JPS57132331A (en) | Chemical vapor deposition and device therefor | |
WO2001033616A1 (en) | Method and apparatus for thin film deposition | |
KR0117107Y1 (en) | Device for chemical vapor deposition under low pressure | |
JP3958165B2 (en) | Cleaning method in plasma CVD apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision |
Free format text: TRIAL AGAINST DECISION OF REJECTION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL |
|
B701 | Decision to grant | ||
REGI | Registration of establishment | ||
FPAY | Annual fee payment |
Payment date: 20091222 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |