WO2001033616A1 - Method and apparatus for thin film deposition - Google Patents

Method and apparatus for thin film deposition Download PDF

Info

Publication number
WO2001033616A1
WO2001033616A1 PCT/JP2000/007338 JP0007338W WO0133616A1 WO 2001033616 A1 WO2001033616 A1 WO 2001033616A1 JP 0007338 W JP0007338 W JP 0007338W WO 0133616 A1 WO0133616 A1 WO 0133616A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
supply line
chamber
gas supply
thin film
Prior art date
Application number
PCT/JP2000/007338
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuo Tokai
Toshiyuki Tsukamoto
Seiji Arima
Original Assignee
Applied Materials Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc. filed Critical Applied Materials Inc.
Publication of WO2001033616A1 publication Critical patent/WO2001033616A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a thin film forming apparatus and a thin film forming method for supplying a processing gas into a chamber and forming a thin film on a semiconductor wafer disposed inside the chamber.
  • a thin film forming apparatus such as an epitaxial growth apparatus is widely used.
  • a process gas is supplied such as S i H 4 in the inner part of the chamber, the semiconductor wafer disposed in the interior of the chamber to form a thin film such as S i.
  • Si or the like adheres to the exposed surface of the susceptor on which the semiconductor wafer is mounted and the inner wall surface of the chamber due to the processing gas, and the Si is deposited before the next thin film forming process. It is necessary to remove deposits such as.
  • a method is known in which a cleaning gas containing HC 1 is supplied into a chamber and the deposits are removed by reacting HC 1 with Si. .
  • a corrosive gas such as HC1 gas
  • a corrosive gas supply line for supplying the corrosive gas is provided by the corrosive gas and residual moisture and residual oxygen.
  • the inner wall surfaces of pipes, valves, and the like are likely to corrode, and the corrosion becomes a factor in con- duction in the next thin film formation process.
  • purging the above corrosive gas supply line with N 2 gas, H 2 gas, etc. may be considered.However, in order to sufficiently remove moisture, oxygen, etc. remaining in the corrosive gas supply line, Needs a very long time.
  • the present invention solves the above-mentioned problems, and performs the above-mentioned corrosive gas treatment in a relatively short time. It is an object of the present invention to provide a thin film forming apparatus and a thin film forming method capable of reducing contamination from a supply line.
  • a thin film forming apparatus is a thin film forming apparatus that supplies a processing gas into a chamber and forms a thin film on a semiconductor wafer disposed inside the chamber.
  • a corrosive gas supply line for supplying a corrosive gas into the chamber, and a silicon compound-containing gas containing a silicon compound before supplying the corrosive gas into the chamber through the corrosive gas supply line.
  • a gas supply means for supplying a silicon compound-containing gas to a corrosive gas supply line.
  • a thin film forming method of the present invention is a thin film forming method for supplying a processing gas into a chamber and forming a thin film on a semiconductor device disposed inside the chamber.
  • a corrosive gas supply step of supplying a corrosive gas through a corrosive gas supply line into the chamber; and supplying the corrosive gas to the inside of the chamber in the corrosive gas supply step.
  • FIG. 1 is a configuration diagram of a thin film forming apparatus.
  • FIG. 2 is a configuration diagram of the chamber.
  • FIG. 1 is a configuration diagram of an epitaxy growth apparatus according to the present embodiment.
  • the epitaxy growth apparatus 10 includes a chamber section 12, a vacuum pump 14, and a gas supply section 16.
  • a chamber section 12 As shown in FIG. 1, the epitaxy growth apparatus 10 according to the present embodiment includes a chamber section 12, a vacuum pump 14, and a gas supply section 16.
  • a vacuum pump 14 As shown in FIG. 1, the epitaxy growth apparatus 10 according to the present embodiment includes a chamber section 12, a vacuum pump 14, and a gas supply section 16.
  • a gas supply section 16 As shown in FIG. 1, the epitaxy growth apparatus 10 according to the present embodiment includes a chamber section 12, a vacuum pump 14, and a gas supply section 16.
  • FIG. 2 is a configuration diagram of the chamber section 12. As shown in FIG. 2, the chamber section 12 has a configuration in which a wafer support section 20 for supporting a semiconductor wafer 100 is provided inside a chamber 18 made of quartz glass.
  • the wafer support part 20 includes a disk-shaped susceptor 22 on which the semiconductor wafer 100 is placed, a support shaft 24 that supports the susceptor 22 at three points from below, and a susceptor that supports the semiconductor wafer 100. And a lift mechanism 26 that moves up and down with respect to 22. In cooperation with the lift mechanism 26 and a wafer transfer robot (not shown), the semiconductor substrate 100 is placed on the susceptor 22 and the semiconductor wafer 100 is placed on the susceptor 22. Can be carried out from
  • S i monocrystal e.g. S i H 4 gas, S i H 2 C 1 2 gas, S i HC 1 3 gas), Kiyariagasu (such as H 2 gas),
  • a cleaning gas for example, HC 1 gas
  • a supply port 28 for supplying as a laminar flow is provided inside the container. Further, the side surface of the chamber 18 is opposed to the supply port 28 described above. The portion is provided with an exhaust port 30 that exhausts air to reduce the pressure inside the chamber 18.
  • halogen lamps 32 for heating the inside of the chamber 18 and heating the semiconductor wafer 1 10 arranged inside the chamber 18 are arranged in each of the upper and lower portions of the chamber 18. ing.
  • the semiconductor lamp 100 is heated to 500 to 1200 ° C. by the halogen lamp 32.
  • a vacuum pump 14 is connected to the exhaust port 30 of the chamber 18, and the inside of the chamber 18 can be depressurized by driving the vacuum pump 14. Further, the vacuum pump 14 is connected to an external gas processing facility 110, and the gas sucked by the vacuum pump 14 is subjected to necessary processing by the gas processing facility 110 and then released into the atmosphere. .
  • the gas supply unit 16 includes a processing gas supply line (not shown) for supplying a processing gas into the chamber 18, and a gas containing HC 1 as a cleaning gas (hereinafter referred to as an HC 1 gas) inside the chamber 18. ) and HC 1 gas supply line 32 for supplying a gas containing S iH 4 (silicon compound) to HC 1 gas supply line 32 (hereinafter, referred to as S iH 4 gas) and S iH 4 gas supply line 34 for supplying , HC1 gas in HC 1 gas supply line 32 and the S iH 4 gas supply line 34, control unit 36 for controlling the flow rate or the like of S iH 4 Gasuso is that of the flow rate and the process gas (silicon compound containing gas supplying means)
  • HC1 gas supply line 32 and S iH 4 gas supply line 34 is coupled upstream of the valve 40 (h Yamba 18 opposite).
  • the processing gas and the HC1 gas are supplied to the inside of the chamber 18 after being mixed with the carrier gas.
  • the HC 1 gas supply line 32 mainly includes a metal pipe 42, and connects an HC 1 gas cylinder 112 provided outside and the valve 40.
  • the HC 1 gas supply line 32 is provided with a valve 44, a mass flow controller (hereinafter referred to as MFC) 46, a valve 48, a pressure gauge 50, and a regulator 52 in order from the downstream side (the valve 40 side). Further, a valve 54 is provided at a position close to the HC 1 gas cylinder 112.
  • MFC mass flow controller
  • S i H 4 gas supply line 34 is also you are connected primarily Made up of a metallic pipe 56, and a S i H 4 gas cylinder 1 14 and the valve 40 provided outside.
  • the SiH 4 gas supply line 34 is provided with a valve 58, an MFC 60, a valve 62, a pressure gauge 64, a regulator 66, and a valve 68 in order from the downstream side (the valve 40 side).
  • the control unit 36 opens and closes the valves 44, 48, 54, sets the flow rate of the MFC 46, sets the flow rate, and refers to the pressure value measured by the pressure gauge 50 provided in the HC 1 gas supply line 32.
  • the flow rate of the HC 1 gas flowing through the HC 1 gas supply line 32 is controlled by controlling the valve opening degree of the HC 1 gas. Further, with reference to the pressure value measured by the S i H 4 pressure gauge 64 provided in the gas supply line 34, the opening and closing of the valves 58, 6 2, 68, the flow rate setting value of the MF C 60, Regiyure Isseki 66 that controls the flow rate of the S i H 4 gas flowing into the S i H 4 gas supply line 34 by Rukoto to control the valve opening. Further, by controlling the flow rate and the like of the processing gas flowing through the processing gas supply line (not shown) and controlling the opening and closing of the valve 40, the type of gas (processing gas, cleaning gas) supplied to the chamber 18 is controlled.
  • control unit 36 in particular, before supplying HC 1 gas into the chamber 18 through the HC 1 gas supply line 32, so as to supply the S i H 4 gas into the HC 1 gas supply line 32, HC 1 It controls the opening and closing of a valve 44 and the like provided in the gas supply line 32, the opening and closing of a valve 58 and the like provided in the SiH 4 gas supply line 34, and the opening and closing of the valve 44. A specific control procedure will be described later.
  • the heating section 38 heats the HC 1 gas supply line 32. More specifically, the heating section
  • valve opening of the regulator 52 was fully opened, the valves 44, 48, and 40 were opened, and the flow rate set value of the MFC 46 was set to the maximum value.
  • the inside of the chamber 18 and the HC 1 gas supply line 32 is evacuated using the pump 14.
  • the S i H 4 gas Close the valves 58 and 62 of the supply line 34 and set the flow rate of the MFC 60 to 0.
  • the interior of the chamber 18 and the HC 1 gas supply line 32 are evacuated using the vacuum pump 14 with the valve 40 in mind.
  • HC 1 gas which is a cleaning gas
  • the above series of processes may be performed each time before supplying the cleaning gas HC 1 gas into the chamber 18, and every time the cleaning gas HC 1 gas is supplied into the chamber 18 several times. You may go to
  • the epitaxial growth apparatus 10 supplies the Si 1 H 4 gas to the HC 1 gas supply line 32 before supplying the HC 1 gas to the inside of the chamber 18 through the HC 1 gas supply line 32.
  • a protective film made of SiO 2 is formed on the inner surface of the HC 1 gas supply line 32.
  • the thickness of the protective film formed on the inner surface of the HC 1 gas supply line 32 can be appropriately designed by changing the amount of SiH 4 gas supplied, the amount of heating, and the like. In order to effectively prevent corrosion of the inner surface of the supply line 32, the thickness is preferably 100 nm or more. Further, in the method of purging with N 2 gas, H 2 gas, or the like as in the above-described conventional technology, it is possible to prevent corrosion caused by moisture and oxygen that later enters the HC 1 gas supply line 32 due to leakage or the like. Although it is not possible, in the epitaxial growth apparatus 10 according to the present embodiment, such corrosion can be prevented.
  • the epitaxy growth apparatus 10 is a simple process of supplying the SiH 4 gas to the HC 1 gas supply line 32 by the above-described HC 1 gas supply. Inner surface to form a protective film consisting of S I_ ⁇ second line 32, it causes decline the configuration evening mineralocorticoids one Chillon is, as described above prior art N 2 gas, the upper Symbol HC only purge process such as H 2 gas 1Completely removes water, oxygen, etc. remaining in the gas supply line 32, and can reduce the amount of contaminants in an extremely short time compared to the case where contaminants are reduced.
  • HC 1 gas supply line 32 to the S i H 4 gas processing and N 2 gas supplies may perform processing that combines purging such as H 2 gas reduces the con evening Mineshiyon. Also in this case, it is possible to perform the process for reducing the contamination in an extremely short time as compared with the case where only the purge process of N 2 gas, H 2 gas, or the like is performed.
  • the formation of the protective film can be promoted by heating the HC 1 gas supply line 32 by the heating unit 38.
  • the process for reducing the contamination can be performed in a shorter time.
  • the present invention is applied to the HC 1 gas supply line 32 for supplying the HC 1 gas as the cleaning gas. It is also possible to apply the present invention to supply lines, such as S i H 2 C 1 2, S i HC 1 3, S i C 1 4 is a gas. Further, in the epitaxial growth apparatus 10 according to the above-described embodiment, the Si 1 H 4 was supplied to the HC 1 gas supply line 32, but this was caused by another gas containing a silicon compound, for example, Si 2 2 H 6, may be an S i 3 H 8.
  • an epitaxial growth apparatus has been described as an example, but the present invention can be applied to other thin film forming apparatuses such as a PVD apparatus and a CVD apparatus.
  • the thin film forming apparatus and the thin film forming method of the present invention can be used in a semiconductor manufacturing process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

An epitaxial growth device (10) comprises a chamber (12) for enclosing semiconductor wafers (100), and a gas supply (16) for supplying process gas to the chamber. The gas supply (16) includes a HCl supply line (32) for supplying the chamber with HCl gas as a cleaning gas, a SiH4 supply line (34) for supplying a SiH4 gas to the HCl supply line (32), a controller (36), and a heater (38). The controller (36) controls the flow rate of the HCl gas and the SiH4 gas to supply the SiH4 gas to the HCl supply line (32) before the HCl gas is supplied to the chamber (18) through the HCl supply line (32). The heater (38) heats the HCl supply line (32).

Description

明細:  Details:
薄膜形成装置及び薄膜形成方法  Thin film forming apparatus and thin film forming method
技術分野 Technical field
本発明は、 チャンバの内部に処理ガスを供給し、 当該チャンバの内部に配置さ れた半導体ウェハに薄膜を形成する薄膜形成装置及び薄膜形成方法に関するもの である。  TECHNICAL FIELD The present invention relates to a thin film forming apparatus and a thin film forming method for supplying a processing gas into a chamber and forming a thin film on a semiconductor wafer disposed inside the chamber.
背景技術 Background art
半導体製造プロセスにおいては、 例えばェビ夕キシャル成長装置のような薄膜 形成装置が広く用いられている。 かかる薄膜形成装置においては、 チャンバの内 部に S i H 4などの処理ガスを供給し、 当該チャンバの内部に配置された半導体 ウェハに S iなどの薄膜を形成する。 しかし、 この場合、 半導体ウェハを搭載す るサセプ夕の露出面やチャンバの内壁面にも、 上記処理ガスによって S iなどが 付着してしまい、 次の薄膜形成処理を行う前に、 かかる S iなどの付着物を除去 する必要がある。 かかる付着物を除去する技術として、 チャンバの内部に H C 1 を含有するクリーニングガスを供給し、 H C 1と S iとを反応させることによつ て当該付着物を除去する方法が知られている。 In a semiconductor manufacturing process, a thin film forming apparatus such as an epitaxial growth apparatus is widely used. In such a thin film forming apparatus, a process gas is supplied such as S i H 4 in the inner part of the chamber, the semiconductor wafer disposed in the interior of the chamber to form a thin film such as S i. However, in this case, Si or the like adheres to the exposed surface of the susceptor on which the semiconductor wafer is mounted and the inner wall surface of the chamber due to the processing gas, and the Si is deposited before the next thin film forming process. It is necessary to remove deposits such as. As a technique for removing such deposits, a method is known in which a cleaning gas containing HC 1 is supplied into a chamber and the deposits are removed by reacting HC 1 with Si. .
発明の開示 Disclosure of the invention
しかし、 上記従来技術には、 以下に示すような問題点があった。 すなわち、 上 記従来技術の如く H C 1ガス等の腐食性ガスをチャンバに供給する場合、 当該腐 食性ガスと残留水分、 残留酸素等により、 当該腐食性ガスを供給するための腐食 性ガス供給ライン (具体的には配管、 バルブ等の内壁面) が腐食しやすくなり、 当該腐食が次の薄膜形成処理におけるコン夕ミネ一シヨンの要因となる。 かかる 腐食を防止する方法として、 上記腐食性ガス供給ラインを N 2ガス、 H 2ガス等で パージすることも考えられるが、 腐食性ガス供給ラインに残留する水分、 酸素等 を十分除去するためには非常に長い時間を必要とする。 However, the above prior art has the following problems. That is, when a corrosive gas such as HC1 gas is supplied to the chamber as in the above-described conventional technology, a corrosive gas supply line for supplying the corrosive gas is provided by the corrosive gas and residual moisture and residual oxygen. (Specifically, the inner wall surfaces of pipes, valves, and the like) are likely to corrode, and the corrosion becomes a factor in con- duction in the next thin film formation process. As a method for preventing such corrosion, purging the above corrosive gas supply line with N 2 gas, H 2 gas, etc., may be considered.However, in order to sufficiently remove moisture, oxygen, etc. remaining in the corrosive gas supply line, Needs a very long time.
そこで、 本発明は、 上記問題点を解決し、 比較的短時間の処理で上記腐食性ガ ス供給ラインからのコンタミネ一シヨンを減少させることができる薄膜形成装置 及び薄膜形成方法を提供することを課題とする。 Then, the present invention solves the above-mentioned problems, and performs the above-mentioned corrosive gas treatment in a relatively short time. It is an object of the present invention to provide a thin film forming apparatus and a thin film forming method capable of reducing contamination from a supply line.
上記課題を解決するために、 本発明の薄膜形成装置は、 チャンバの内部に処理 ガスを供給し、 上記チャンバの内部に配置された半導体ウェハに薄膜を形成する 薄膜形成装置であって、 上記チャンバの内部に腐食性ガスを供給する腐食性ガス 供給ラインと、 上記腐食性ガス供給ラインを通して上記腐食性ガスを上記チャン バの内部に供給する前に、 シリコン化合物を含有するシリコン化合物含有ガスを 上記腐食性ガス供給ラインに供給するシリコン化合物含有ガス供給手段とを備え たことを特徴としている。  In order to solve the above problems, a thin film forming apparatus according to the present invention is a thin film forming apparatus that supplies a processing gas into a chamber and forms a thin film on a semiconductor wafer disposed inside the chamber. A corrosive gas supply line for supplying a corrosive gas into the chamber, and a silicon compound-containing gas containing a silicon compound before supplying the corrosive gas into the chamber through the corrosive gas supply line. A gas supply means for supplying a silicon compound-containing gas to a corrosive gas supply line.
また、 上記課題を解決するために、 本発明の薄膜形成方法は、 チャンバの内部 に処理ガスを供給し、 上記チャンバの内部に配置された半導体ゥ工ノヽに薄膜を形 成する薄膜形成方法であって、 上記チャンバの内部に腐食性ガス供給ラインを通 して腐食性ガスを供給する腐食性ガス供給工程と、 上記腐食性ガス供給工程にお いて上記腐食性ガスを上記チャンバの内部に供給する前に、 シリコン化合物を含 有するシリコン化合物含有ガスを上記腐食性ガス供給ラインに供給するシリコン 化合物含有ガス供給工程とを備えたことを特徴としている。  In order to solve the above problems, a thin film forming method of the present invention is a thin film forming method for supplying a processing gas into a chamber and forming a thin film on a semiconductor device disposed inside the chamber. A corrosive gas supply step of supplying a corrosive gas through a corrosive gas supply line into the chamber; and supplying the corrosive gas to the inside of the chamber in the corrosive gas supply step. And a step of supplying a silicon compound-containing gas containing the silicon compound to the corrosive gas supply line.
腐食性ガス供給ラインを通して腐食性ガスをチャンバの内部に供給する前に、 シリコン化合物を含有するシリコン化合物含有ガスを腐食性ガス供給ラィンに供 給することで、 当該腐食性ガス供給ラインの内面に S i〇2からなる保護膜が形 成される。 その結果、 腐食性ガス供給ラインの内面の腐食に起因するコン夕ミネ —シヨンを減少させることができる。 また、 シリコン化合物含有ガスを腐食性ガ ス供給ラインに供給するという比較的簡易なプロセスによって腐食性ガス供給ラ ィンの内面の腐食を防止するため、 コンタミネーシヨンを減少させるための処理 を比較的短時間で行うことが可能となる。 By supplying a silicon compound-containing gas containing a silicon compound to the corrosive gas supply line before supplying the corrosive gas to the inside of the chamber through the corrosive gas supply line, the inner surface of the corrosive gas supply line is supplied. A protective film made of Si 2 is formed. As a result, it is possible to reduce the contamination caused by corrosion of the inner surface of the corrosive gas supply line. In addition, a comparatively simple process of supplying a silicon compound-containing gas to the corrosive gas supply line to prevent corrosion of the inner surface of the corrosive gas supply line and to compare treatments to reduce contamination. This can be performed in a very short time.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 薄膜形成装置の構成図である。 図 2は、 チャンバの構成図である。 FIG. 1 is a configuration diagram of a thin film forming apparatus. FIG. 2 is a configuration diagram of the chamber.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態にかかる薄膜形成装置について図面を参照して説明する。 本 実施形態にかかる薄膜形成装置は、 半導体ウェハの表面に S i単結晶の薄膜を成 長させるェピタキシャル成長装置である。 まず、 本実施形態にかかるェピ夕キシ ャル成長装置の構成について説明する。 図 1は、 本実施形態にかかるェピタキシ ャル成長装置の構成図である。  A thin film forming apparatus according to an embodiment of the present invention will be described with reference to the drawings. The thin film forming apparatus according to the present embodiment is an epitaxy growth apparatus for growing a Si single crystal thin film on the surface of a semiconductor wafer. First, the configuration of the epitaxial growth apparatus according to the present embodiment will be described. FIG. 1 is a configuration diagram of an epitaxy growth apparatus according to the present embodiment.
本実施形態にかかるェピタキシャル成長装置 1 0は、 図 1に示すように、 チヤ ンバ部 1 2と、 真空ポンプ 1 4とガス供給部 1 6とを備えて構成される。 以下、 各構成要素について詳細に説明する。  As shown in FIG. 1, the epitaxy growth apparatus 10 according to the present embodiment includes a chamber section 12, a vacuum pump 14, and a gas supply section 16. Hereinafter, each component will be described in detail.
図 2は、 チャンバ部 1 2の構成図である。 チャンバ部 1 2は、 図 2に示すよう に、 石英ガラスで構成されたチャンバ 1 8の内部に、 半導体ウェハ 1 0 0を支持 するウェハ支持部 2 0を設けた構成となっている。  FIG. 2 is a configuration diagram of the chamber section 12. As shown in FIG. 2, the chamber section 12 has a configuration in which a wafer support section 20 for supporting a semiconductor wafer 100 is provided inside a chamber 18 made of quartz glass.
ウェハ支持部 2 0は、半導体ゥヱハ 1 0 0を載置する円盤状のサセプ夕 2 2と、 サセプ夕 2 2を下方から 3点で支持する支持シャフト 2 4と、 半導体ウェハ 1 0 0をサセブタ 2 2に対して上下動させるリフト機構 2 6とを備えて構成される。 かかるリフト機構 2 6及びウェハ搬送ロボット (図示せず) との協動により、 半 導体ゥヱハ 1 0 0をサセプ夕 2 2上に配置し、 また、 半導体ウェハ 1 0 0をサセ プ夕 2 2上から搬出することができる。  The wafer support part 20 includes a disk-shaped susceptor 22 on which the semiconductor wafer 100 is placed, a support shaft 24 that supports the susceptor 22 at three points from below, and a susceptor that supports the semiconductor wafer 100. And a lift mechanism 26 that moves up and down with respect to 22. In cooperation with the lift mechanism 26 and a wafer transfer robot (not shown), the semiconductor substrate 100 is placed on the susceptor 22 and the semiconductor wafer 100 is placed on the susceptor 22. Can be carried out from
チャンバ 1 8の側面には、 チャンバ 1 8の内部に配置された半導体ウェハ 1 0 On the side of the chamber 18, there is a semiconductor wafer 10 placed inside the chamber 18.
0の表面に S i単結晶の薄膜を成長させるための処理ガス (例えば S i H 4ガス、 S i H 2 C 1 2ガス、 S i H C 1 3ガス)、 キヤリアガス (例えば H 2ガス)、 チャン ) 1 8の内部に上記処理ガスを供給することによってチャンバ 1 8の内部に付着 したポリシリコンなどの付着物を除去するクリーニングガス(例えば H C 1ガス) をガス供給部 1 6からチャンバ 1 8の内部に層流として供給する供給口 2 8が設 けられている。 また、 チャンバ 1 8の側面であって、 上記供給口 2 8に対向する 部位には、 チャンバ 18の内部を減圧するために排気を行う排気口 30が設けら れている。 Processing gas to 0 surface for growing a thin film of S i monocrystal (e.g. S i H 4 gas, S i H 2 C 1 2 gas, S i HC 1 3 gas), Kiyariagasu (such as H 2 gas), A cleaning gas (for example, HC 1 gas) for removing deposits such as polysilicon adhered to the inside of the chamber 18 by supplying the processing gas into the inside of the chamber 18 is supplied from the gas supply unit 16 to the chamber 18. A supply port 28 for supplying as a laminar flow is provided inside the container. Further, the side surface of the chamber 18 is opposed to the supply port 28 described above. The portion is provided with an exhaust port 30 that exhausts air to reduce the pressure inside the chamber 18.
また、 チャンバ 18の上方及び下方のそれそれには、 チャンバ 18の内部を加 熱し、 当該チャンバ 18の内部に配置された半導体ウェハ 1◦ 0を加熱するため のハロゲンランプ 32がそれぞれ 20本ずつ配置されている。 かかるハロゲンラ ンプ 32によって、 半導体ウェハ 100は、 500〜 1200°Cに加熱される。 チャンバ 18の排気口 30には、 図 1に示すように、 真空ポンプ 14が接続さ れており、 当該真空ポンプ 14を駆動させることにより、 チャンバ 18の内部を 減圧することができる。 また、 真空ポンプ 14は、 外部のガス処理設備 1 10に 接続されており、 真空ポンプ 14によって吸引されたガスは、 ガス処理設備 11 0によって必要な処理がなされた後、 大気中に放散される。  In addition, 20 halogen lamps 32 for heating the inside of the chamber 18 and heating the semiconductor wafer 1 10 arranged inside the chamber 18 are arranged in each of the upper and lower portions of the chamber 18. ing. The semiconductor lamp 100 is heated to 500 to 1200 ° C. by the halogen lamp 32. As shown in FIG. 1, a vacuum pump 14 is connected to the exhaust port 30 of the chamber 18, and the inside of the chamber 18 can be depressurized by driving the vacuum pump 14. Further, the vacuum pump 14 is connected to an external gas processing facility 110, and the gas sucked by the vacuum pump 14 is subjected to necessary processing by the gas processing facility 110 and then released into the atmosphere. .
ガス供給部 16は、 チャンバ 18の内部に処理ガスを供給する処理ガス供給ラ イン (図示せず) と、 チャンバ 18の内部にクリーニングガスである HC 1を含 有するガス(以下、 HC 1ガスという)を供給する HC 1ガス供給ライン 32と、 HC 1ガス供給ライン 32に S iH4 (シリコン化合物)を含有するガス (以下、 S iH4ガスという) を供給する S iH4ガス供給ライン 34と、 HC 1ガス供給 ライン 32及び S iH4ガス供給ライン 34における HC1ガス、 S iH4ガスそ れそれの流量及び上記処理ガスの流量等を制御する制御部 36 (シリコン化合物 含有ガス供給手段) と、 HC 1ガス供給ライン 32を加熱する加熱部 38と、 HThe gas supply unit 16 includes a processing gas supply line (not shown) for supplying a processing gas into the chamber 18, and a gas containing HC 1 as a cleaning gas (hereinafter referred to as an HC 1 gas) inside the chamber 18. ) and HC 1 gas supply line 32 for supplying a gas containing S iH 4 (silicon compound) to HC 1 gas supply line 32 (hereinafter, referred to as S iH 4 gas) and S iH 4 gas supply line 34 for supplying , HC1 gas in HC 1 gas supply line 32 and the S iH 4 gas supply line 34, control unit 36 for controlling the flow rate or the like of S iH 4 Gasuso is that of the flow rate and the process gas (silicon compound containing gas supplying means) A heating section 38 for heating the HC 1 gas supply line 32, and H
C1ガス供給ライン 32及び S iH4ガス供給ライン 34とチャンバ 18の供糸 口 28との間に設けられたバルブ 40とを備えて構成される。 ここで、 HC1ガ ス供給ライン 32と S iH4ガス供給ライン 34とは、 バルブ 40の上流側 (チ ヤンバ 18と反対側) で結合されている。 尚、 上記処理ガス、 HC1ガスは、 キ ャリアガスと混合されてチャンバ 18の内部に供給される。 Configured with a valve 40 provided between the C1 gas supply line 32 and the S iH 4 subjected yarn outlet 28 of the gas supply line 34 and the chamber 18. Here, the HC1 gas supply line 32 and S iH 4 gas supply line 34 is coupled upstream of the valve 40 (h Yamba 18 opposite). The processing gas and the HC1 gas are supplied to the inside of the chamber 18 after being mixed with the carrier gas.
HC 1ガス供給ライン 32は、主として金属製の配管 42から構成されており、 外部に設けられた HC 1ガスシリンダ 112とバルブ 40とを接続している。 ま た、 HC 1ガス供給ライン 32には、 下流側 (バルブ 40側) から順に、 バルブ 44、 マスフローコントローラ (以下、 MFCという) 46、 ノ 'ルブ 48、 圧力 計 50、 レギユレ一夕 52が設けられており、 さらに、 HC 1ガスシリンダ 1 1 2に近い位置にバルブ 54が設けられている。 The HC 1 gas supply line 32 mainly includes a metal pipe 42, and connects an HC 1 gas cylinder 112 provided outside and the valve 40. Ma The HC 1 gas supply line 32 is provided with a valve 44, a mass flow controller (hereinafter referred to as MFC) 46, a valve 48, a pressure gauge 50, and a regulator 52 in order from the downstream side (the valve 40 side). Further, a valve 54 is provided at a position close to the HC 1 gas cylinder 112.
S i H4ガス供給ライン 34も、 主として金属製の配管 56から構成されてお り、 外部に設けられた S i H4ガスシリンダ 1 14とバルブ 40とを接続してい る。 また、 S iH4ガス供給ライン 34には、 下流側 (バルブ 40側) から順に、 バルブ 58、 MFC 60、 バルブ 62、 圧力計 64、 レギユレ一夕 66、 バルブ 68が設けられている。 S i H 4 gas supply line 34 is also you are connected primarily Made up of a metallic pipe 56, and a S i H 4 gas cylinder 1 14 and the valve 40 provided outside. The SiH 4 gas supply line 34 is provided with a valve 58, an MFC 60, a valve 62, a pressure gauge 64, a regulator 66, and a valve 68 in order from the downstream side (the valve 40 side).
制御部 36は、 HC 1ガス供給ライン 32に設けられた圧力計 50によって計 測した圧力値を参照しつつ、 バルブ 44, 48, 54の開閉、 MF C 46の流量 設定値、 レギユレ一夕 52の弁開度を制御することにより HC 1ガス供給ライン 32に流れる HC 1ガスの流量を制御する。 また、 S i H4ガス供給ライン 34 に設けられた圧力計 64によって計測した圧力値を参照しつつ、 バルブ 58, 6 2, 68の開閉、 MF C 60の流量設定値、 レギユレ一夕 66の弁開度を制御す ることにより S i H4ガス供給ライン 34に流れる S i H4ガスの流量を制御す る。さらに、図示しない処理ガス供給ラインに流れる処理ガスの流量等を制御し、 また、 バルブ 40の開閉を制御することにより、 チャンバ 18に供給されるガス 種 (処理ガス、 クリーニングガス) を制御する。 The control unit 36 opens and closes the valves 44, 48, 54, sets the flow rate of the MFC 46, sets the flow rate, and refers to the pressure value measured by the pressure gauge 50 provided in the HC 1 gas supply line 32. The flow rate of the HC 1 gas flowing through the HC 1 gas supply line 32 is controlled by controlling the valve opening degree of the HC 1 gas. Further, with reference to the pressure value measured by the S i H 4 pressure gauge 64 provided in the gas supply line 34, the opening and closing of the valves 58, 6 2, 68, the flow rate setting value of the MF C 60, Regiyure Isseki 66 that controls the flow rate of the S i H 4 gas flowing into the S i H 4 gas supply line 34 by Rukoto to control the valve opening. Further, by controlling the flow rate and the like of the processing gas flowing through the processing gas supply line (not shown) and controlling the opening and closing of the valve 40, the type of gas (processing gas, cleaning gas) supplied to the chamber 18 is controlled.
ここで、 制御部 36は特に、 HC 1ガス供給ライン 32を通して HC 1ガスを チャンバ 18の内部に供給する前に、 HC 1ガス供給ライン 32に S i H4ガス を供給するように、 HC 1ガス供給ライン 32に設けられたバルブ 44等の開閉 等、 S iH4ガス供給ライン 34に設けられたバルブ 58等の開閉等、 及び、 バ ルブ 44の開閉等を制御する。 尚、 具体的な制御手順については後述する。 加熱部 38は、 HC 1ガス供給ライン 32を加熱する。 より詳細には、 加熱部Here, the control unit 36 in particular, before supplying HC 1 gas into the chamber 18 through the HC 1 gas supply line 32, so as to supply the S i H 4 gas into the HC 1 gas supply line 32, HC 1 It controls the opening and closing of a valve 44 and the like provided in the gas supply line 32, the opening and closing of a valve 58 and the like provided in the SiH 4 gas supply line 34, and the opening and closing of the valve 44. A specific control procedure will be described later. The heating section 38 heats the HC 1 gas supply line 32. More specifically, the heating section
38は、 HC 1ガス供給ライン 32に S i H4ガスが供給される際に、 HC 1ガ ス供給ライン 32を加熱する。 38, when the S i H 4 gas is supplied to the HC 1 gas supply line 32, HC 1 gas Heat the feed line 32.
続いて、 HC 1ガス供給ライン 32を通して HC 1ガスをチャンバ 18の内部 に供給する前に、 HC 1ガス供給ライン 32に S i H4ガスを供給するための具 体的な制御手順について説明し、 併せて、 併せて本実施形態にかかる薄膜形成方 法について説明する。 かかる制御を行うためには、 まず、 S i H4ガス供給ライ ン 34のバルブ 58を閉じた状態でバルブ 62 , 68を開き、 S i H4ガス供給 ライン 34のバルブ 58の上流側を S i H4ガスで満たしておく。 Then, the HC 1 gas through HC 1 gas supply line 32 prior to feeding into the chamber 18, describes concrete control procedure for supplying the S i H 4 gas into the HC 1 gas supply line 32 In addition, a method of forming a thin film according to the present embodiment will be described. In order to perform such control, first, S i H opening the valve 62, 68 in four closed valve 58 of the gas supply line 34, upstream of the valve 58 of the S i H 4 gas supply line 34 S i H 4 should be filled with gas.
続いて、 HC 1ガス供給ライン 32のバルブ 54を閉じた状態で、 レギユレ一 夕 52の弁開度を全開にし、 バルブ 44, 48, 40を開き、 MFC 46の流量 設定値を最大として、 真空ポンプ 14を用いてチャンバ 18及び HC 1ガス供給 ライン 32の内部を真空排気する。  Subsequently, with the valve 54 of the HC 1 gas supply line 32 closed, the valve opening of the regulator 52 was fully opened, the valves 44, 48, and 40 were opened, and the flow rate set value of the MFC 46 was set to the maximum value. The inside of the chamber 18 and the HC 1 gas supply line 32 is evacuated using the pump 14.
ここで、 HC 1ガス供給ライン 32に設けられた圧力計 50の指示値が十分真 空状態に近くなつたらバルブ 40を閉じ、 その後、 S i H4ガス供給ライン 34 のバルブ 58を開くとともに MFC 60を一定流量に設定する。 このようにする ことで、 S i H4ガス供給ライン 34から HC 1ガス供給ライン 32のバルブ 5 4の下流側 ( H C 1ガスシリンダ 1 12と反対側) まで、 S i H 4ガスが供給さ れる。 この際、 加熱部 38により、 HC 1ガス供給ライン 32を加熱する。 Here, when the indicated value of the pressure gauge 50 provided in the HC 1 gas supply line 32 is sufficiently close to a vacuum state, the valve 40 is closed, and then the valve 58 of the SiH 4 gas supply line 34 is opened and the MFC is opened. Set 60 to constant flow. In this way, S i H 4 from the gas supply line 34 to the valve 4 on the downstream side of the HC 1 gas supply line 32 (HC 1 gas cylinder 1 12 opposite), S i H 4 gas is supplied is It is. At this time, the HC 1 gas supply line 32 is heated by the heating unit 38.
ここで、 HC 1ガス供給ライン 32に設けられた圧力計 50の指示値と S i H 4ガス供給ライン 34に設けられた圧力計 64の指示値とがほぼ等しくなつたら、 S i H4ガス供給ライン 34のバルブ 58, 62を閉じるとともに、 M F C 60 の流量設定値を 0とする。 Here, when the indicated value of the pressure gauge 50 provided in the HC 1 gas supply line 32 and the indicated value of the pressure gauge 64 provided in the S i H 4 gas supply line 34 become substantially equal, the S i H 4 gas Close the valves 58 and 62 of the supply line 34 and set the flow rate of the MFC 60 to 0.
続いて、 バルブ 40を閧き、 真空ポンプ 14を用いてチャンバ 18及び HC 1 ガス供給ライン 32の内部を真空排気する。  Subsequently, the interior of the chamber 18 and the HC 1 gas supply line 32 are evacuated using the vacuum pump 14 with the valve 40 in mind.
ここで、 HC 1ガス供給ライン 32に設けられた圧力計 50の指示値が十分真 空状態に近くなつたら、 レギユレ一夕 52の弁開度を一旦全閉にしてからバルブ 54を開き、 その後レギユレ一夕 52の弁閧度を調節する。 尚、 HC 1ガス供給 ライン 32に残留した S i H4ガスをパージすべく、 必要に応じてバルブ 54の 開閉を繰り返してもよい。 これに続いて、 HC 1ガス供給ライン 32のバルブ 4 4 , 48を閉じるとともに MF C 46の流量設定値を 0とする。 上記一連の処理 の終了後、 HC 1ガス供給ライン 32を通して、 チャンバ 18の内部に、 クリ一 ニングガスである HC 1ガスを供給する。 尚、 上記一連の処理は、 クリーニング ガスである HC 1ガスをチャンバ 18の内部に供給する前に毎回行ってもよく、 クリーニングガスである H C 1ガスをチャンバ 18の内部に何回か供給する毎に 行っても良い。 Here, when the indicated value of the pressure gauge 50 provided in the HC 1 gas supply line 32 becomes sufficiently close to a vacuum state, the valve opening of the regulator 52 is once completely closed, and then the valve 54 is opened. Adjust the degree of regiyure 52. HC 1 gas supply The valve 54 may be repeatedly opened and closed as necessary to purge the SiH 4 gas remaining in the line 32. Subsequently, the valves 44 and 48 of the HC 1 gas supply line 32 are closed, and the flow rate set value of the MFC 46 is set to 0. After the above series of processing is completed, HC 1 gas, which is a cleaning gas, is supplied into the chamber 18 through the HC 1 gas supply line 32. The above series of processes may be performed each time before supplying the cleaning gas HC 1 gas into the chamber 18, and every time the cleaning gas HC 1 gas is supplied into the chamber 18 several times. You may go to
続いて、 本実施形態にかかるェピタキシャル成長装置の作用及び効果について 説明する。 本実施形態にかかるェピタキシャル成長装置 10は、 HC 1ガス供給 ライン 32を通して HC 1ガスをチャンバ 18の内部に供給する前に、 HC 1ガ ス供給ライン 32に S i H4ガスを供給することで、 HC 1ガス供給ライン 32 の内面に S i 02からなる保護膜が形成される。 その結果、 HC 1ガス供給ライ ン 32にクリ一ニングガスである HC 1ガスを供給する際に、 HC 1ガス供給ラ イン 32の内面の腐食が防止される。 その結果、 半導体ウェハ 100上に薄膜を 形成する際の上記 H C 1ガス供給ライン 32からのコンタミネ一ションを減少さ せることが可能となる。 ここで、 HC 1ガス供給ライン 32の内面に形成される 保護膜の厚みは、 S i H4ガス供給量や加熱量等を変化させることにより、 適宜 設計することが可能であり、 HC 1ガス供給ライン 32の内面の腐食を効果的に 防止するためには、 100 nm以上であることが好適である。 また、 上記従来技 術の如く N2ガス、 H2ガス等のパージによる方法においては、 リーク等によって 後発的に HC 1ガス供給ライン 32に侵入する水分、 酸素に起因する腐食を防止 することができないが、 本実施形態にかかるェピタキシャル成長装置 10におい てはこのような腐食をも防止することが可能となる。 Next, the operation and effects of the epitaxial growth apparatus according to the present embodiment will be described. The epitaxial growth apparatus 10 according to the present embodiment supplies the Si 1 H 4 gas to the HC 1 gas supply line 32 before supplying the HC 1 gas to the inside of the chamber 18 through the HC 1 gas supply line 32. Thus, a protective film made of SiO 2 is formed on the inner surface of the HC 1 gas supply line 32. As a result, when the HC 1 gas, which is the cleaning gas, is supplied to the HC 1 gas supply line 32, corrosion of the inner surface of the HC 1 gas supply line 32 is prevented. As a result, it is possible to reduce the contamination from the HC1 gas supply line 32 when a thin film is formed on the semiconductor wafer 100. Here, the thickness of the protective film formed on the inner surface of the HC 1 gas supply line 32 can be appropriately designed by changing the amount of SiH 4 gas supplied, the amount of heating, and the like. In order to effectively prevent corrosion of the inner surface of the supply line 32, the thickness is preferably 100 nm or more. Further, in the method of purging with N 2 gas, H 2 gas, or the like as in the above-described conventional technology, it is possible to prevent corrosion caused by moisture and oxygen that later enters the HC 1 gas supply line 32 due to leakage or the like. Although it is not possible, in the epitaxial growth apparatus 10 according to the present embodiment, such corrosion can be prevented.
また、 本実施形態にかかるェピタキシャル成長装置 10は、 HC 1ガス供給ラ イン 32に S iH4ガスを供給するという簡易なプロセスで上記 HC 1ガス供給 ライン 32の内面に S i〇2からなる保護膜を形成し、 コン夕ミネ一シヨンを減 少させることで、 上記従来技術の如く N2ガス、 H2ガス等のパージ処理のみで上 記 HC 1ガス供給ライン 32に残留する水分、 酸素等を十分除去し、 コン夕ミネ ーシヨンを減少させる場合と比較して、 極めて短時間で当該コン夕ミネ一シヨン 減少のための処理を行うことが可能となる。 尚、 HC 1ガス供給ライン 32に S i H4ガスを供給する処理と N2ガス、 H2ガス等のパージ処理とを組み合わせた 処理を行ってコン夕ミネーシヨンを減少させてもよい。 この場合も、 N2ガス、 H2ガス等のパージ処理のみを行う場合と比較して、 極めて短時間で当該コン夕 ミネーション減少のための処理を行うことが可能となる。 Further, the epitaxy growth apparatus 10 according to the present embodiment is a simple process of supplying the SiH 4 gas to the HC 1 gas supply line 32 by the above-described HC 1 gas supply. Inner surface to form a protective film consisting of S I_〇 second line 32, it causes decline the configuration evening mineralocorticoids one Chillon is, as described above prior art N 2 gas, the upper Symbol HC only purge process such as H 2 gas 1Completely removes water, oxygen, etc. remaining in the gas supply line 32, and can reduce the amount of contaminants in an extremely short time compared to the case where contaminants are reduced. Becomes Incidentally, HC 1 gas supply line 32 to the S i H 4 gas processing and N 2 gas supplies may perform processing that combines purging such as H 2 gas reduces the con evening Mineshiyon. Also in this case, it is possible to perform the process for reducing the contamination in an extremely short time as compared with the case where only the purge process of N 2 gas, H 2 gas, or the like is performed.
また、 本実施形態にかかるェピタキシャル成長装置 10は、 HC 1ガス供給ラ イン 32を加熱部 38によって加熱することで、 上記保護膜の形成を促進するこ とができる。 その結果、 さらに短時間で、 当該コンタミネーシヨン減少のための 処理を行うことが可能となる。  In addition, in the epitaxial growth apparatus 10 according to the present embodiment, the formation of the protective film can be promoted by heating the HC 1 gas supply line 32 by the heating unit 38. As a result, the process for reducing the contamination can be performed in a shorter time.
上記実施形態にかかるェピタキシャル成長装置 10においては、 クリーニング ガスである H C 1ガスを供給する H C 1ガス供給ライン 32に対して本発明を適 用していたが、 他の腐食性ガス、 例えば処理ガスである S i H2C 12、 S i HC 13、 S i C 14などの供給ラインに対して本発明を適用することも可能である。 また、 上記実施形態にかかるェピ夕キシャル成長装置 10においては、 HC 1 ガス供給ライン 32に S i H4を供給していたが、 これは、 シリコン化合物を含 有する他のガス、 例えば S i 2H6、 S i 3H8などであっても良い。 In the epitaxy growth apparatus 10 according to the above embodiment, the present invention is applied to the HC 1 gas supply line 32 for supplying the HC 1 gas as the cleaning gas. it is also possible to apply the present invention to supply lines, such as S i H 2 C 1 2, S i HC 1 3, S i C 1 4 is a gas. Further, in the epitaxial growth apparatus 10 according to the above-described embodiment, the Si 1 H 4 was supplied to the HC 1 gas supply line 32, but this was caused by another gas containing a silicon compound, for example, Si 2 2 H 6, may be an S i 3 H 8.
また、 上記実施形態においてはェピ夕キシャル成長装置を例にとって説明した が、 本発明は、 PVD装置、 CVD装置などのその他の薄膜形成装置にも適用が 可能である。  Further, in the above embodiment, an epitaxial growth apparatus has been described as an example, but the present invention can be applied to other thin film forming apparatuses such as a PVD apparatus and a CVD apparatus.
産業上の利用可能性  Industrial applicability
本発明は、 薄膜形成装置及び薄膜形成方法は、 半導体製造プロセスにおいて利 用可能である。  INDUSTRIAL APPLICABILITY The thin film forming apparatus and the thin film forming method of the present invention can be used in a semiconductor manufacturing process.

Claims

請求の範囲 The scope of the claims
1 . チャンバの内部に処理ガスを供給し、 前記チャンバの内部に配置された 半導体ウェハに薄膜を形成する薄膜形成装置において、  1. In a thin film forming apparatus for supplying a processing gas into a chamber and forming a thin film on a semiconductor wafer disposed inside the chamber,
前記チャンバの内部に腐食性ガスを供給する腐食性ガス供給ラインと、 前記腐食性ガス供給ラインを通して前記腐食性ガスを前記チャンバの内部に供 給する前に、 シリコン化合物を含有するシリコン化合物含有ガスを前記腐食性ガ ス供給ラインに供給するシリコン化合物含有ガス供給手段と  A corrosive gas supply line for supplying a corrosive gas into the chamber; and a silicon compound-containing gas containing a silicon compound before supplying the corrosive gas into the chamber through the corrosive gas supply line. Means for supplying a gas containing silicon compound to the corrosive gas supply line.
を備えたことを特徴とする薄膜形成装置。 A thin film forming apparatus comprising:
2 . 前記腐食性ガス供給ラインを加熱する加熱手段  2. Heating means for heating the corrosive gas supply line
をさらに備えたことを特徴とする請求項 1に記載の薄膜形成装置。 The thin film forming apparatus according to claim 1, further comprising:
3 . 前記腐食性ガスは、  3. The corrosive gas is
前記チャンバの内部に前記処理ガスを供給することにより前記チャンバの内部 に付着した付着物を除去するクリーニングガスである  A cleaning gas for supplying the processing gas to the inside of the chamber to remove deposits adhered to the inside of the chamber;
ことを特徴とする請求項 1に記載の薄膜形成装置。 2. The thin film forming apparatus according to claim 1, wherein:
4 . 前記クリーニングガスは、 H C 1を含有するガスである  4. The cleaning gas is a gas containing HC1
ことを特徴とする請求項 3に記載の薄膜形成装置。 4. The thin film forming apparatus according to claim 3, wherein:
5 . 前記シリコン化合物含有ガスは、 S i H 4を含有するガスである ことを特徴とする請求項 1に記載の薄膜形成装置。 5. The silicon compound-containing gas, a thin film forming apparatus according to claim 1, characterized in that the gas containing S i H 4.
6 . チャンバの内部に処理ガスを供給し、 前記チャンバの内部に配置された 半導体ウェハに薄膜を形成する薄膜形成方法において、  6. A thin film forming method for supplying a processing gas into a chamber and forming a thin film on a semiconductor wafer disposed inside the chamber.
前記チャンバの内部に腐食性ガス供給ラインを通して腐食性ガスを供給する腐 食性ガス供給工程と、  A corrosive gas supply step of supplying a corrosive gas through a corrosive gas supply line inside the chamber;
前記腐食性ガス供給工程において前記腐食性ガスを前記チャンバの内部に供給 する前に、 シリコン化合物を含有するシリコン化合物含有ガスを前記腐食性ガス 供給ラインに供給するシリコン化合物含有ガス供給工程と  Before supplying the corrosive gas into the chamber in the corrosive gas supply step, supplying a silicon compound-containing gas containing a silicon compound to the corrosive gas supply line;
を備えたことを特徴とする薄膜形成方法。 A method for forming a thin film, comprising:
7 . 前記シリコン化合物含有ガス供給工程において前記シリコン化合物含有 ガスを前記腐食性ガス供給ラインに供給する際に前記腐食性ガス供給ラインを加 熱する加熱工程 7. A heating step of heating the corrosive gas supply line when supplying the silicon compound-containing gas to the corrosive gas supply line in the silicon compound-containing gas supply step.
をさらに備えたことを特徴とする請求項 6に記載の薄膜形成方法。 7. The method for forming a thin film according to claim 6, further comprising:
8 . 前記腐食性ガスは、  8. The corrosive gas is
前記チャンバの内部に前記処理ガスを供給することにより前記チャンバの内部 に付着した付着物を除去するクリーニングガスである  A cleaning gas for supplying the processing gas to the inside of the chamber to remove deposits adhered to the inside of the chamber;
ことを特徴とする請求項 6に記載の薄膜形成方法。 7. The method for forming a thin film according to claim 6, wherein:
9 . 前記クリーニングガスは、 H C 1を含有するガスである  9. The cleaning gas is a gas containing H C 1
ことを特徴とする請求項 8に記載の薄膜形成方法。 9. The method for forming a thin film according to claim 8, wherein:
1 0 . 前記シリコン化合物含有ガスは、 S i H 4を含有するガスである ことを特徴とする請求項 6に記載の薄膜形成方法。 1 0. The silicon compound-containing gas, a thin film forming method according to claim 6, characterized in that the gas containing S i H 4.
PCT/JP2000/007338 1999-10-29 2000-10-20 Method and apparatus for thin film deposition WO2001033616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30967899A JP2001135576A (en) 1999-10-29 1999-10-29 System and method for forming thin film
JP11/309678 1999-10-29

Publications (1)

Publication Number Publication Date
WO2001033616A1 true WO2001033616A1 (en) 2001-05-10

Family

ID=17995969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007338 WO2001033616A1 (en) 1999-10-29 2000-10-20 Method and apparatus for thin film deposition

Country Status (3)

Country Link
JP (1) JP2001135576A (en)
TW (1) TW466278B (en)
WO (1) WO2001033616A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167568A1 (en) * 2000-06-21 2002-01-02 Tokyo Electron Limited Heat treatment apparatus and cleaning method of the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3885692B2 (en) * 2002-08-28 2007-02-21 信越半導体株式会社 Manufacturing method of silicon epitaxial wafer
JP5047223B2 (en) * 2005-03-04 2012-10-10 株式会社ニューフレアテクノロジー Method for avoiding gas mixing in vapor phase growth apparatus
JP4355321B2 (en) 2005-03-04 2009-10-28 株式会社ニューフレアテクノロジー Vapor growth equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101044A (en) * 1992-09-21 1994-04-12 Nippon Sanso Kk Method for plating inner face of pipeline
JPH0774104A (en) * 1993-08-31 1995-03-17 Sony Corp Reaction chamber
JPH07130658A (en) * 1993-10-29 1995-05-19 Tokyo Electron Ltd Processing method and processing apparatus
JP2000058456A (en) * 1998-08-07 2000-02-25 Mitsubishi Materials Silicon Corp Manufacture equipment of epitaxial wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101044A (en) * 1992-09-21 1994-04-12 Nippon Sanso Kk Method for plating inner face of pipeline
JPH0774104A (en) * 1993-08-31 1995-03-17 Sony Corp Reaction chamber
JPH07130658A (en) * 1993-10-29 1995-05-19 Tokyo Electron Ltd Processing method and processing apparatus
JP2000058456A (en) * 1998-08-07 2000-02-25 Mitsubishi Materials Silicon Corp Manufacture equipment of epitaxial wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167568A1 (en) * 2000-06-21 2002-01-02 Tokyo Electron Limited Heat treatment apparatus and cleaning method of the same

Also Published As

Publication number Publication date
TW466278B (en) 2001-12-01
JP2001135576A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
KR100272146B1 (en) Method of manafacturing semiconductor device, apparatus of manufacturing the same, and method of cleaning the same
JP3140068B2 (en) Cleaning method
JP5393895B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
US7156923B2 (en) Silicon nitride film forming method, silicon nitride film forming system and silicon nitride film forming system precleaning method
US7883581B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP3167100B2 (en) Use of SiH4 soak and purge in deposition process
JP3945519B2 (en) Heat treatment apparatus, heat treatment method and storage medium for object to be processed
US5482739A (en) Silicon nitride deposition
US5254176A (en) Method of cleaning a process tube
JP5848832B2 (en) Substrate processing apparatus including a heat shield plate
WO2005088692A1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP2010062230A (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP2007146252A (en) Heat treatment method, heat treatment device, and storage medium
WO2020016914A1 (en) Method for manufacturing semiconductor device, substrate treatment device and program
JP6820793B2 (en) Substrate processing equipment, exhaust pipe coating method and substrate processing method
JP4717495B2 (en) Substrate processing system
TW202104636A (en) Film formation method and film formation apparatus
US20090061651A1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
WO2018179354A1 (en) Production method for semiconductor device, substrate treatment device, and program
WO2001033616A1 (en) Method and apparatus for thin film deposition
JP2010087361A (en) Production process of semiconductor device
JP3729578B2 (en) Semiconductor manufacturing method
WO2021117728A1 (en) Semiconductor device manufacturing method, substrate treatment device, and program
JPH09199424A (en) Epitaxial growth
JP5547425B2 (en) Process and apparatus for processing wafers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)