KR20010082847A - 기판의 내장홈 형성방법 - Google Patents

기판의 내장홈 형성방법 Download PDF

Info

Publication number
KR20010082847A
KR20010082847A KR1020000008326A KR20000008326A KR20010082847A KR 20010082847 A KR20010082847 A KR 20010082847A KR 1020000008326 A KR1020000008326 A KR 1020000008326A KR 20000008326 A KR20000008326 A KR 20000008326A KR 20010082847 A KR20010082847 A KR 20010082847A
Authority
KR
South Korea
Prior art keywords
substrate
metal
etching
etched
liquid crystal
Prior art date
Application number
KR1020000008326A
Other languages
English (en)
Other versions
KR100668251B1 (ko
Inventor
장윤경
김웅권
Original Assignee
구본준, 론 위라하디락사
엘지.필립스 엘시디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구본준, 론 위라하디락사, 엘지.필립스 엘시디 주식회사 filed Critical 구본준, 론 위라하디락사
Priority to KR1020000008326A priority Critical patent/KR100668251B1/ko
Publication of KR20010082847A publication Critical patent/KR20010082847A/ko
Application granted granted Critical
Publication of KR100668251B1 publication Critical patent/KR100668251B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95053Bonding environment
    • H01L2224/95085Bonding environment being a liquid, e.g. for fluidic self-assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • H01L2924/15155Shape the die mounting substrate comprising a recess for hosting the device the shape of the recess being other than a cuboid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

본 발명은 별도의 제작공정을 통해 제작된 스위칭소자 블록과 기판에 상기 스위칭소자 블록이 악착될 내장홈을 형성하고, 소자산포기술을 이용하여 상기 스위칭소자 블록을 상기 내장홈에 안착한 후, 액정 표시장치를 제작하는 방법에 있어서, 상기 내장홈을 형성하기 위해 기판을 구비하는 단계와; 상기 기판 상에 금속과 포토레지스트를 순서대로 적층하는 단계와; 상기 포토레지스트를 소정의 마스크를 사용하여 노광하고, 현상하는 단계와; 상기 포토레지스트의 현상에 의해 노출된 금속을 1차 금속 식각하는 단계와; 상기 1차 금속 식각된 금속에 의해 노출된 기판을 상기 1차 금속 식각된 부분의 금속의 가장자리가 오버행이 형성되도록 1차 기판 식각하는 단계와; 상기 1차 기판식각 후에, 상기 1차 금속식각에 의해 형성된 금속의 오버행 형상을 상기 1차 금속식각에 의에 식각된 기판의 안쪽으로 과식각되게 2차 금속 식각하는 단계와; 상기 2차 금속식각 후에 1차 기판 식각된 기판을 상기 2차 금속 식각된 금속의 가장자리가 오버행이 형성되도록 2차 기판 식각하는 단계를 포함하는 기판의 내장홈 형성방법에 관해 개시하고 있다.

Description

기판의 내장홈 형성방법{method for etching substrate}
본 발명은 화상 표시장치에 관한 것으로, 더욱 상세하게는 대면적 액정 표시장치의 제작에 있어서, 소자산포(fluidic self assembly : FSA)기술을 이용하여 제작되는 대면적 액정표시장치에 관한 것이다.
일반적으로, 액정 표시장치의 구동원리는 액정의 광학적 이방성과 분극성질을 이용한다. 액정은 구조가 가늘고 길기 때문에 분자의 배열에 방향성을 갖고 있으며, 인위적으로 액정에 전기장을 인가하여 분자배열의 방향을 제어할 수 있다.
따라서, 상기 액정의 분자배열 방향을 임의로 조절하면, 액정의 분자배열이 변하게 되고, 광학적 이방성에 의하여 상기 액정의 분자 배열 방향으로 빛이 굴절하여 화상정보를 표현할 수 있다.
현재는 반도체 공정을 이용하여 제작되는 박막 트랜지스터와 상기 박막 트랜지스터에 연결된 화소전극이 행렬 방식으로 배열된 능동행렬 액정 표시장치(Active Matrix LCD : AM-LCD)가 해상도 및 동영상 구현능력이 우수하여 가장 주목 받고 있다.
일반적으로 액정 표시장치를 구성하는 기본적인 부품인 액정 패널의 구조를 살펴보면 다음과 같다.
도 1은 일반적인 액정 패널의 단면을 도시한 단면도이다.
액정 패널(20)은 여러 종류의 소자들이 형성된 두 장의 기판(2, 4)이 서로 대응되게 형성되어 있고, 상기 두 장의 기판(2, 4) 사이에 액정층(10)이 개재된 형태로 위치하고 있다.
상기 액정 패널(20)에는 색상을 표현하는 컬러필터가 형성된 상부 기판(4)과 상기 액정층(10)의 분자 배열방향을 변환시킬 수 있는 스위칭 회로가 내장된 하부 기판(2)으로 구성된다.
상기 상부 기판(4)에는 색을 구현하는 컬러필터층(8)과, 상기 컬러필터층(8)을 덮는 공통전극(12)이 형성되어 있다. 상기 공통전극(12)은 액정(10)에 전압을 인가하는 한쪽전극의 역할을 한다. 상기 하부 기판(2)은 스위칭 역할을 하는 박막 트랜지스터(S)와, 상기 박막 트랜지스터(S)로부터 신호를 인가받고 상기 액정(10)으로 전압을 인가하는 다른 한쪽의 전극역할을 하는 화소전극(14)으로 구성된다.
상기 화소전극(14)이 형성된 부분을 화소부(P)라고 한다.
그리고, 상기 상부 기판(4)과 하부 기판(2)의 사이에 주입되는 액정(10)의 누설을 방지하기 위해, 상기 상부 기판(4)과 하부 기판(2)의 가장자리에는 실란트(sealant : 6)로 봉인되어 있다.
상기 도 1에 도시된 하부 기판(2)의 평면도를 나타내는 도 2를 참조하여 하부 기판(2)의 작용과 구성을 상세히 설명하면 다음과 같다.
하부 기판(2)에는 화소전극(14)이 형성되어 있고, 상기 화소전극(14)의 수직 및 수평 배열 방향에 따라 각각 데이터 배선(24) 및 게이트 배선(22)이 형성되어 있다.
그리고, 능동행렬 액정 표시장치의 경우, 화소전극(14)의 한쪽 부분에는 상기 화소전극(14)에 전압을 인가하는 스위칭 소자인 박막 트랜지스터(S)가 형성되어 있다. 상기 박막 트랜지스터(S)는 게이트 전극(26), 소스 및 드레인 전극(28, 30)으로 구성되며, 상기 게이트 전극(26)은 상기 게이트 배선(22)에 연결되어 있고, 상기 소스 전극(28)은 상기 데이터 배선(24)에 연결되어 있다.
그리고, 상기 드레인 전극(30)은 상기 화소전극(14)에 통상적으로 콘택홀(미도시)을 통해 전기적으로 연결되어 있다.
상술한 능동행렬 액정 표시장치의 동작을 살펴보면 다음과 같다.
스위칭 박막 트랜지스터의 게이트 전극(26)에 전압이 인가되면, 데이터 신호가 화소전극(14)으로 인가되고, 게이트 전극(26)에 신호가 인가되지 않는 경우에는 화소전극(14)에 데이터 신호가 인가되지 않는다.
일반적으로 하부 기판의 제조공정은 만들고자 하는 각 소자에 어떤 물질을 사용하는가 혹은 어떤 사양에 맞추어 설계하는가에 따라 결정되는 경우가 많다.
예를 들어, 과거 소형 액정 표시장치의 경우는 별로 문제시되지 않았지만, 18인치 이상의 대면적, 고해상도(예를 들어 SXGA, UXGA 등) 액정 표시장치의 경우에는 게이트 배선 및 데이터 배선에 사용되는 재질의 고유 저항값이 화질의 우수성을 결정하는 중요한 요소가 된다. 따라서, 대면적/고해상도의 액정 표시소자의 경우에는 게이트 배선 및 데이터 배선의 재질로 알루미늄 또는 알루미늄 합금과 같은 저항이 낮은 금속을 사용하는 것이 바람직하다.
이하, 종래의 능동행렬 액정 표시장치의 제조공정을 도 3a 내지 도 3e를 참조하여 상세히 설명한다.
일반적으로 액정 표시장치에 사용되는 박막 트랜지스터의 구조는 역 스태거드(Inverted Staggered)형 구조가 많이 사용된다. 이는 구조가 가장 간단하면서도 성능이 우수하기 때문이다.
또한, 상기 역 스태거드형 박막 트랜지스터는 채널부의 형성 방법에 따라 백 채널 에치형(back channel etch : EB)과 에치 스타퍼형(etch stopper : ES)으로 나뉘며, 그 제조 공정이 간단한 백 채널 에치형 구조가 적용되는 액정 표시소자 제조공정에 관해 설명한다.
먼저, 기판(1)에 이물질이나 유기성 물질의 제거와 증착될 게이트 물질의 금속 박막과 유리기판의 접촉성(adhesion)을 좋게하기 위하여 세정을 실시한 후, 스퍼터링(sputtering)에 의하여 금속막을 증착한다.
도 3a는 상기 금속막 증착 후에 제 1 마스크로 패터닝하여 게이트 전극(30)과 스토리지 전극(32)를 형성하는 단계이다.
능동 행렬 액정 표시장치의 동작에 중요한 게이트 전극(30)에 사용되는 금속은 RC 딜레이(delay)를 작게 하기 위하여 저항이 작은 알루미늄이 주류를 이루고 있으나, 순수 알루미늄은 화학적으로 내식성이 약하고, 후속의 고온 공정에서 힐락(hillock) 형성에 의한 배선 결함문제를 야기시키므로, 알루미늄 배선의 경우는 합금의 형태로 쓰이거나 적층구조가 적용되기도 한다.
상기 게이트 전극(30) 및 스토리지 전극(32) 형성후, 그 상부 및 노출된 기판 전면에 걸쳐 게이트 절연막(34)을 증착한다. 또한, 상기 게이트 절연막(34) 상에 연속으로 반도체 물질인 비정질 실리콘(a-Si:H)과 불순물이 함유된 비정질 실리콘(n+a-Si:H)을 증착한다.
상기 반도체 물질 증착후에 제 2 마스크로 패터닝하여 액티브층(36)과 상기 액티브층과 동일 크기의 오믹 접촉층(ohmic contact layer : 38)을 형성한다(도 3b).
상기 오믹 접촉층(38)은 추후 생성될 금속층과 상기 액티브층(36)과의 접촉저항을 줄이기 위한 목적이다.
도 3c에 도시된 공정은 투명한 도전물질(Transparent Conducting Oxide : TCO)을 증착하고 제 3 마스크로 패터닝하여 화소전극(40)을 형성하는 공정이다. 상기 투명한 도전물질은 광 투과성이 우수한 ITO(Indium Tin Oxide)가 주로 쓰인다.
상기 화소전극(40)은 스토리지 전극(32)과 겹쳐지는 형태로 구성되며, 이는 상기 스토리지 전극(32)과 함께 스토리지 캐패시터를 형성하기 위함이다.
이후, 도 3d에 도시된 바와 같이 금속층을 증착하고 제 4 마스크로 패터닝하여 소스 전극(42) 및 드레인 전극(44)을 형성한다. 상기 드레인 전극(44)은 상기 화소전극(40)과 소정의 위치에서 접촉하도록 구성된다. 상기 소스 및 드레인 전극(42, 44)은 크롬(Cr) 또는 몰리브덴(Mo) 등의 단일 금속을 사용한다.
그리고, 상기 소스 및 드레인 전극(42, 44)을 마스크로 하여 상기 소스 전극(42)과 상기 드레인 전극(44) 사이에 존재하는 오믹 접촉층을 제거한다. 만약, 상기 소스 전극(42)과 상기 드레인 전극(44) 사이에 존재하는 오믹 접촉층을 제거하지 않으면 박막 트랜지스터(S)의 전기적 특성에 심각한 문제를 발생시킬 수 있으며, 성능에서도 큰 문제가 생긴다.
상기 오믹 접촉층(38)의 제거에는 신중한 주의가 요구된다. 실제 오믹 접촉층(38)의 식각시에는 그 하부에 형성된 액티브층(36)과 식각 선택비가 없으므로 액티브층(36)을 약 50 ∼ 100 nm 정도 과식각을 시키는데, 식각 균일도(etching uniformity)는 박막 트랜지스터(S)의 특성에 직접적인 영향을 미친다.
최종적으로 도 3e에 도시된 바와 같이 절연막을 증착하고 제 5 마스크로 패터닝하여 액티브층(36)을 보호하기위해 보호막(46)을 형성한다.
상기 보호막(46)은 액티브층(36)의 불안정한 에너지 상태 및 식각시 발생하는 잔류물질에 의해 박막 트랜지스터 특성에 나쁜 영향을 끼칠 수 있으므로 무기질의 실리콘 질화막(SiNx) 내지는 실리콘 산화막(SiO2)이나 유기질의 BCB(BenzoCycloButene) 등으로 형성한다.
또한, 상기 보호막(46)은 박막 트랜지스터(S)의 채널영역과 화소영역(P)의 주요 부분을 후속 공정시 발생 가능한 습기나 스크래치(scratch)성 불량으로부터 보호하기 위하여 높은 광투과율과 내습 및 내구성이 있는 물질을 증착한다.
상술한 공정에 의해서 액정 표시장치의 박막 트랜지스터 기판은 완성되게 된다.
상기와 같이 종래의 액정 표시장치의 경우에는 박막 트랜지스터 기판인 하판을 제조하기 위해 고온(약 300 ℃ 이상)에서 이루어지는 절연막 및 액티브층 공정을 거쳐야 하고, 이로인해 기판(1)의 열 수축/팽창에 의한 변형이 발생할 수 있다. 이로 인해 박막 트랜지스터를 형성할 때, 미스-얼라인으로 인한 소자의 특성저하와 불량이 발생할 수 있는 단점이 있다.
상기와 같은 현상(기판의 열수축/팽창의 문제)은 기판(1)의 크기가 커지면 더욱더 심화된다.
즉, 다시 설명하면, 상기 박막 트랜지스터는 각 구성요소(게이트 전극, 게이트 절연막, 액티브층 등)마다 증착, 포토리소그라피(photo-lithography), 식각(etching)의 공정을 여러번 반복한 결과로 형성되는데, 이러한 다수의 반복적인 공정은 배선의 단락과 단선등을 유발할 수 있는 여러조건들을 거치게 되고, 이러한 복잡한 공정이 행해지는 동안 상기 기판의 왜곡이나 소자의 디펙트(defect)와 같은 다수의 위험을 가만해야 한다.
또한, 현재 박막 트랜지스터의 액티브층으로 사용되는 비정질 실리콘은 그 전기적 특성상(이동도가 약 1 cm2/Vs) 대면적의 액정 표시장치에 적용하는데 문제가 있다. 즉, 이동도가 현저히 작기 때문에 상기 비정질 실리콘을 대면적의 액정 표시장치(약 20" 이상의 면적)의 스위칭 소자로 사용할 경우 잔상(residual image) 등의 화질저하를 가져올 수 있는 단점이 있다.
또한, 종래의 기술로 대면적의 액정 표시장치를 제작할 경우 고가의 CVD 장비를 별도로 도입해야 하기 때문에 제품 원가가 상승하는 문제점이 있다.
상기와 같은 문제점을 해결하기 위해 본 발명에서는 화질의 특성저하와 제작공정이 용이한 대면적의 액정 표시장치를 제공하는데 그 목적이 있다.
도 1은 일반적인 액정 표시장치의 단면을 도시한 단면도.
도 2는 일반적인 액정 표시장치의 한 화소부에 해당하는 평면을 도시한 평면도.
도 3a 내지 도 3d는 도 2의 절단선 Ⅲ-Ⅲ으로 자른 단면의 제작공정을 도시한 공정도.
도 4는 본 발명에 따른 나노블록의 단면을 도시한 도면.
도 5는 본 발명에 따른 나노블록 내에 집적된 스위칭 소자의 단면을 도시한 도면.
도 6은 본 발명에 따른 나노블록의 등가회로를 도시한 회로도.
도 7은 본 발명에 따른 나노블록이 안착될 기판의 형상을 도시한 도면.
도 8a 내지 도 8e는 본 발명의 제 1 실시예에 따른 기판식각 공정을 도시한 도면.
도 9는 본 발명의 제 2 실시예에 따른 내장홈과 배선을 갖는 기판을 도시한 도면.
<도면의 주요 부분에 대한 부호의 설명>
200 : 나노블록 100 : 스위칭 소자
170 : 게이트 또는 데이터 배선 300 : 내장홈
상기와 같은 목적을 달성하기 위해 본 발명에서는 기판에 스위칭 소자가 집적된 나노블록을 안착하기 위한 내장홈 형성방법으로써, 기판을 구비하는 단계와; 상기 기판 상에 금속과 포토레지스트를 순서대로 적층하는 단계와; 상기 포토레지스트를 소정의 마스크를 사용하여 노광하고, 현상하는 단계와; 상기 포토레지스트의 현상에 의해 노출된 금속을 1차 금속 식각하는 단계와; 상기 1차 금속 식각된 금속에 의해 노출된 기판을 상기 1차 금속 식각된 부분의 금속의 가장자리가 오버행이 형성되도록 1차 기판 식각하는 단계와; 상기 1차 기판식각 후에, 상기 1차 금속식각에 의해 형성된 금속의 오버행 형상을 상기 1차 금속식각에 의에 식각된 기판의 안쪽으로 과식각되게 2차 금속 식각하는 단계와; 상기 2차 금속식각 후에 1차 기판 식각된 기판을 상기 2차 금속 식각된 금속의 가장자리가 오버행이 형성되도록 2차 기판 식각하는 단계를 포함하는 기판의 내장홈 형성방법을 제공한다.
이하, 첨부된 도면을 참조하여 본 발명의 구성을 상세히 설명한다.
종래의 액정 표시장치와 비교해서 본 발명에 따른 액정 표시장치의 가장 큰 특징은 스위칭 소자를 별도의 제작공정을 통해 미리 제작한다는 것과 상기 미리 제작된 스위칭 소자를 소자산포기술(Fluide Self Assembly ; FSA)을 통해 기판에 내장하는 것이다.
여기서, 별도로 제작된 스위칭 소자는 그 크기가 수십 μm 정도로 매우 미세하기 때문에 나노블록이라 칭한다. 상기 나노블록은 반도체 웨이퍼 상에 스위칭 소자를 형성하고, 추후에 개별적으로 절단하여 형성한다.
먼저, 상기 스위칭 소자로 쓰이는 나노블록에 관해 설명하면 다음과 같다.
도 4는 본 발명에 따른 나노블록(200)의 단면을 도시한 단면도로서, 상기 나노블록(200)은 다수개의 스위칭 소자(박막 트랜지스터 ; 100)를 포함하고 있다.
상기 박막 트랜지스터(100)는 웨이퍼(50) 상에 형성되며, 그 단면구조는 도 5에서 설명한다.
상기 나노블록(200)은 사다리꼴의 형상을 취한다.
도 5는 상기 나노블록(200)에 형성된 박막 트랜지스터의 단면적인 구조를 도시한 단면도로써, 그 제작은 반도체 웨이퍼(wafer ; 50) 상에서 이루어진다.
상기 도 5에 도시된 박막 트랜지스터(100)를 일반적으로 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)라 부르며, 그 구성을 살펴보면 다음과 같다.
먼저, 웨이퍼(50)와 상기 웨이퍼(50) 에는 불순물 반도체 영역(60)이 위치하고, 상기 불순물 영역(60)의 일부가 노출되는 절연막(52)이 상기 웨이퍼(50) 상에형성된다. 그리고, 상기 불순물 영역(60)과 각각 접촉하는 소스 및 드레인 전극(56, 58)이 상기 절연막(52) 상에 위치하고, 상기 소스 및 드레인 전극(56, 58)의 사이에 게이트 전극(54)이 형성된다.
상기 반도체 웨이퍼(50)는 단결정 실리콘(C-Si) 또는 갈늄-아사니이드(GaAs) 등이 사용될 수 있으며, 상기 불순물 영역(60)은 상기 반도체 웨이퍼(50)에 불순물(원소주기율표 상의 3족 내지 5족의 원소인 붕소(B) 또는 인(P))을 주입하여 형성한다.
도 6은 상술한 나노블록(200)의 박막 트랜지스터(100)가 형성된 부분의 회로를 도시한 회로도로서, 4개의 박막 트랜지스터(100)가 상/하/좌/우의 대칭을 이루며 형성되어 있다.
상기 각 박막 트랜지스터(100)는 게이트 전극(54)과 소스 및 드레인 전극(56, 58)으로 구성되며, 상기 게이트 전극(54)은 두 개의 게이트 패드(54a, 54b)와 접촉하며, 상기 각 게이트 패드(54a, 54b)는 서로 대칭적인 구조를 취한다.
또한, 상기 소스 전극(56)은 데이터 패드(56a)와 접촉하며, 상기 드레인 전극(45b)은 드레인 패드(58a)와 접촉한다.
그리고, 상기 드레인 패드(58a)를 일 전극으로 하는 스토리지 캐패시터(70)가 형성되며, 상기 스토리지 캐패시터(70)의 타 전극은 공통전극 패드(72)로 한다.
여기서, 상기 데이터 패드(56a)는 나머지 3개의 소스 전극(56)과 공통적으로 연결되며, 각각 따로 형성할 수 있을 것이다. 즉, 도 6에 도시된 나노블록(200)의 회로도에는 하나의 데이터 패드(56a)에 4개의 소스전극(56)이 각각 연결되어 있지만, 각각 4개의 데이터 패드와 각각 연결되게 소스 전극을 형성할 수 있을 것이다.
또한, 상기 공통전극 패드(70)는 각각 형성된 다수개의 스토리지 캐패시터와 공통적으로 접촉하고 있다.
상술한 나노블록(200)은 4개의 박막 트랜지스터(100)와 상기 각 박막 트랜지스터(100)의 소스 전극(56)에 신호를 인가하는 데이터 패드(56a)와 상기 드레인 패드(58a)에 연결된 스토리지 캐패시터(70)와 상기 스토리지 캐패시터(70)에 공통적으로 연결된 공통전극 패드(72)로 구성된다.
전기한바 있지만, 도 6에 도시된 나노블록의 회로도에 의하면, 4개의 박막 트랜지스터(100)는 한 개의 데이터 패드(56a)에 각각의 소스 전극(56)이 연결되어 있으며, 데이터 패드(56a)에 신호가 인가되면, 각각의 박막 트랜지스터(100)는 각 게이트 전극(54)의 신호인가에 따라 개별적으로 동작하게 된다.
한편, 상술한 다수개의 박막 트랜지스터와 스토리지 캐패시터가 형성된 나노블록을 기판에 배치하기 위한 FSA 기술을 설명하면 다음과 같다.
도 7은 상기 나노블록(200)이 안착될 기판(1)의 단면을 도시한 단면도이다.
스위칭 소자인 나노블록(200)을 배치하기 위해 기판(1)을 준비하고, 상기 나노블록(200)을 배치할 부분을 소정의 방법으로 식각하여, 상기 나노블록(200)이 안착되는 내장홈(300)을 형성한다. 이 때, 상기 내장홈(300)은 상기 나노블록(200)의 하부형태(즉, 사다리꼴 형상의 나노블록에서 그 길이가 작은 쪽)에 맞추어 제작된 것이다.
이와 같이 제작된 기판을 계면활성제가 함유된 유동액에 담그고, 상기 유동액에 잠긴 기판 상에 소정의 방법으로 나노블록(200)을 산포한다.
이 때, 상기 나노블록(200)이 상기 유동액을 따라 흐르다 기판(1)의 식각홈인 내장홈(200)에 안착되도록 함으로서 기판(1)에 스위칭소자(즉, 나노블록)를 형성하게 된다.
상기와 같이 별도로 제작한 스위칭 소자인 나노블록(200)을 기판(1)에 형성된 내장홈(300)에 안착하는 기술을 소자산포기술(Fluide Self Assembly ; FSA)이라 칭한다. 상기 소자산포기술에 관해서는 미국특허 "제 5904545"호에 개시되어 있다.
종래의 액정 표시장치의 제작공정에서는 화소전극이 형성되는 하판에 스위칭 소자인 박막 트랜지스터의 제작공정과 화소전극의 형성공정을 동일 기판에서 진행하였으나, 본 발명에서는 별도의 제작공정을 통해 스위칭소자를 제작한다.
본 발명에 따른 스위칭 소자인 나노블록의 제작은 일반적인 비정질 실리콘 박막 트랜지스터와 같은 3단자 소자로 그 역할은 상기 비정질 실리콘 박막 트랜지스터와 같은 스위칭 역할을 하며, 전기적 특성은 단결정 실리콘 또는 갈륨-아사나이드의 웨이퍼 상에서 제조되기 때문에 일반적으로 비정질 실리콘을 사용하는 박막 트랜지스터보다 우수하다.
상술한 FSA 기술은 상기 나노블록(200)의 방향까지는 제어하지 못하게 된다.
따라서, 상기 나노블록(200)의 회로도인 도 6에 도시한 바와 같이 4개의 박막 트랜지스터(100)는 각각 대칭적인 구조를 취하도록 설계되며, 상기 각 박막 트랜지스터에 신호를 인가하는 데이터 패드, 게이트 패드 등의 단자들도 역시 대칭적인 구조를 갖게 된다.
또한, 상기 나노블록(200)의 회로구성은 특성에 맞게끔 변경이 가능하며, 도 6에 도시된 회로도에는 한정되지 않는다. 예를 들어, 상기 나노블록(200)에 한 개의 박막 트랜지스터를 형성하고, 각 패드를 어떤 위치에서 보아도 서로 대칭적인 구조를 갖도록 형성할 수 있을 것이다.
제 1 실시예
하기 기술될 내용은 상술한 나노블록(200)과 이를 이용한 소자산포기술(FSA)을 통해 상기 나노블록(200)을 내장홈(300)이 형성된 기판에 안착시킬 때, 상기 나노블록(200)이 상기 내장홈(300)에 안전하게 안착되도록 상기 내장홈을 형성하는 방법에 관한 것이다.
즉, 도 7에 도시된 도면에서와 같이 직선 형태의 경사면을 갖는 내장홈(300)은 나노블록(200)이 안착되더라도 내장홈(300)의 내부에서 상기 나노블록(200)이 뒤틀릴 수 있기 때문에 좀 특별한 구조를 가져야 한다. 이를 위해 본 발명에서는 내장홈의 내부에 상기 나노블록(200)을 지지할 수 있는 지지부가 형성된 내장홈을 만드는 것이다.
도 8a 내지 도 8d는 본 발명의 제 1 실시예에 따른 기판(1)에 내장홈(300)을 형성하는 공정을 도시한 도면으로, 먼저 도 8a에 관해 설명하면, 도 8a는 기판(1) 상에 금속층(150)과 포토레지스트(PR ; 160)를 형성하고, 사진식각 공정을 통해 내장홈이 형성될 영역(H)의 PR을 패터닝한다.
여기서, 상기 금속층(150)은 추후 공정에서 기판(1)의 식각시 사용되는기판(1)의 식각액에 의해 식각되지 않는 금속을 사용하는데 몰리브덴(Mo), 크롬(Cr), 텅스텐(W) 등의 내식성이 강한 금속이 사용된다.
도 8b는 상기 도 8a에서 패터닝된 PR(160)을 마스크로하여 노출된 금속층(150)과 기판(1)을 1차 식각하는 단계를 도시한 도면이다.
여기서, 상기 기판(1)의 1차 식각시 상기 패터닝된 금속층(152)의 가장자리가 오버행(overhang ; O) 형상을 같도록 과식각한다.
이 때, 상기 기판(1)의 1차 식각시 최종적으로 형성될 내장홈의 전체 깊이의 약 2/3 정도만 식각한다.
도 8c는 도 8b에서 오버행 형상을 갖도록 1차 식각에 의해 패터닝된 금속층(152)의 오버행(O)의 가장자리를 2차 식각각하여 그 상에 형성된 패터닝된 PR(160)의 가장자리가 오버행 형상이 되도록 즉, 상기 금속층(152)을 과식각한다.
도 8d는 2차 식각된 금속층(152)을 마스크로하여 상기 기판(1)을 2차 식각하는 단계를 도시하고 있다.
상기 기판(1)의 2차 식각은 내장홈의 전체 깊이의 1/3을 식각하게 된다.
상기와 같이 기판(1)을 2차 식각하게 되면 1차 식각에 의해 패터닝된 기판(1)의 모서리부분(I)이 전체적으로 다른 부분보다 식각이 빨리되기 때문에 도 8e에 도시된바와 같이 최종적으로 형성되는 내장홈(300)에는 두 군데의 지지부가 형성된다.
이후, 상기 내장홈의 형성시 내장홈 이외의 부분이 식각되는 것을 방지하기 위해 형성된 금속층(152)과 PR(160)을 제거하여 내장홈이 형성된 기판을 완성한다.
상술한바와 같이 본 발명에 따라 기판(1)을 식각하여 내장홈을 형성하면, 상기 내장홈의 둘레부분에 형성된 지지부에 의해 내장되는 나노블록(200)이 상기 내장홈에 안전하게 안착되는 효과가 있다.
제 2 실시예
본 발명에 따른 제 2 실시예는 상기 내장홈의 형성시 마스크로 사용한 금속층(152)을 사용하여 배선을 형성하는 것에 관한 것이다.
즉, 도 9에 도시된 도면에서와 같이, 내장홈(300)의 형성시 마스크 금속으로 사용된 금속층을 패터닝하여 게이트 또는 데이터 배선(170)을 형성한다.
본 발명에서는 기판(1)을 식각하여 내장홈(300)과 상기 내장홈(300)의 형성시 사용된 금속층을 재활용하여 게이트 배선 또는 데이터 배선을 형성하는 것에 관한 것이므로 구체적인 액정 표시장치의 제작방법에 관해서는 설명하지 않는다.
상기와 같이 마스크(즉, 기판의 식각 방지막)로 사용한 금속층을 재활용하여 게이트 배선 또는 데이터 배선을 형성함으로서, FSA 기술을 사용한 액정 표시장치의 제조공정이 단순해지는 장점이 있다.
상술한 바와 같이 본 발명에 따른 실시예는 다른 공정을 통해 미리 제작된 스위칭 소자가 집적된 나노블록을 내장하는 기판의 내장홈 형성 방법에 관한 것으로, 본 발명에 따른 내장홈 형성방법에 의해 형성된 내장홈에 사다리꼴 형상의 나노블록이 안착되면, 지지부에 의해 내장홈의 내부에 완전하게 안착될 수 있는 장점이 있다.
또한, 내장홈의 형성시 기판의 식각 방지 마스크로 사용된 금속층을 재활용하여 데이터 또는 게이트 배선을 형성함으로써, 추후 액정 표시장치의 제작시 제작공정이 감소되는 장점이 있다.

Claims (5)

  1. 기판에 스위칭 소자가 집적된 나노블록을 안착하기 위한 내장홈 형성방법으로써,
    기판을 구비하는 단계와;
    상기 기판 상에 금속과 포토레지스트를 순서대로 적층하는 단계와;
    상기 포토레지스트를 소정의 마스크를 사용하여 노광하고, 현상하는 단계와;
    상기 포토레지스트의 현상에 의해 노출된 금속을 1차 금속 식각하는 단계와;
    상기 1차 금속 식각된 금속에 의해 노출된 기판을 상기 1차 금속 식각된 부분의 금속의 가장자리가 오버행이 형성되도록 1차 기판 식각하는 단계와;
    상기 1차 기판식각 후에, 상기 1차 금속식각에 의해 형성된 금속의 오버행 형상을 상기 1차 금속식각에 의에 식각된 기판의 안쪽으로 과식각되게 2차 금속 식각하는 단계와;
    상기 2차 금속식각 후에 1차 기판 식각된 기판을 상기 2차 금속 식각된 금속의 가장자리가 오버행이 형성되도록 2차 기판 식각하는 단계
    를 포함하는 기판의 내장홈 형성방법.
  2. 청구항 1에 있어서,
    상기 기판은 유리인 기판의 내장홈 형성방법.
  3. 청구항 1에 있어서,
    상기 1차 기판식각에 의해 식각된 기판의 깊이는 2차 기판식각에 의해 식각된 깊이의 1/3 근처인 기판의 내장홈 형성방법.
  4. 청구항 1에 있어서,
    상기 금속은 몰리브덴, 텅스텐, 크롬 등으로 구성된 집단에서 선택한 물질인 기판의 내장홈 형성방법.
  5. 청구항 1에 있어서,
    상기 제 2 기판식각 후, 상기 제 2 금속 식각된 금속을 소정의 마스크로 패터닝하여 배선을 형성하는 단계를 더욱 포함하는 기판의 내장홈 형성방법.
KR1020000008326A 2000-02-21 2000-02-21 기판의 내장홈 형성방법 KR100668251B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000008326A KR100668251B1 (ko) 2000-02-21 2000-02-21 기판의 내장홈 형성방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000008326A KR100668251B1 (ko) 2000-02-21 2000-02-21 기판의 내장홈 형성방법

Publications (2)

Publication Number Publication Date
KR20010082847A true KR20010082847A (ko) 2001-08-31
KR100668251B1 KR100668251B1 (ko) 2007-01-12

Family

ID=19648512

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000008326A KR100668251B1 (ko) 2000-02-21 2000-02-21 기판의 내장홈 형성방법

Country Status (1)

Country Link
KR (1) KR100668251B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491787A (zh) * 2019-08-21 2019-11-22 上海交通大学 湿法干法叠加套刻加工不同深度芯片槽的方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187711B1 (ko) 2012-02-27 2012-10-08 (주) 이피웍스 폐기용 웨이퍼를 이용한 트레이 및 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3225772B2 (ja) * 1995-01-30 2001-11-05 株式会社日立製作所 液晶表示装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491787A (zh) * 2019-08-21 2019-11-22 上海交通大学 湿法干法叠加套刻加工不同深度芯片槽的方法及装置
CN110491787B (zh) * 2019-08-21 2021-12-10 上海交通大学 湿法干法叠加套刻加工不同深度芯片槽的方法及装置

Also Published As

Publication number Publication date
KR100668251B1 (ko) 2007-01-12

Similar Documents

Publication Publication Date Title
KR100583979B1 (ko) 액정 표시장치 제조방법 및 그 제조방법에 따른액정표시장치
KR100287666B1 (ko) 액티브매트릭스기판
KR100673331B1 (ko) 액정 표시장치 제조방법 및 그 제조방법에 따른액정표시장치
KR20010038386A (ko) 액정 표시장치 제조방법 및 그 제조방법에 따른 액정표시장치
KR20010038385A (ko) 액정 표시장치 제조방법 및 그 제조방법에 따른 액정표시장치
KR100660809B1 (ko) 액정 표시장치 제조방법 및 그 제조방법에 따른 액정표시장치
KR20010056591A (ko) 액정 표시장치 제조방법 및 그 제조방법에 따른액정표시장치
US6950164B2 (en) Array substrate for IPS mode liquid crystal display device and method for fabricating the same
KR100668251B1 (ko) 기판의 내장홈 형성방법
KR100660812B1 (ko) 액정 표시장치 및 그 제조방법
KR100309210B1 (ko) 액정 표시장치 제조방법 및 그 제조방법에 따른 액정표시장치
KR100488338B1 (ko) 박막트랜지스터 액정표시장치용 어레이기판 및 그의제조방법
KR100591900B1 (ko) 액정 표시장치
KR101097675B1 (ko) 박막 트랜지스터 및 그 제조 방법
KR100642721B1 (ko) 액정 표시장치 제조방법
KR100443538B1 (ko) 액정표시장치용 어레이기판과 그 제조방법
KR100658977B1 (ko) 액정 표시장치 및 그 제조방법
KR100591899B1 (ko) 액정 표시장치
KR100660808B1 (ko) 박막 트랜지스터 어레이 기판, 액정 표시장치
KR100591898B1 (ko) 액정 표시장치
KR100333270B1 (ko) 액정 표시장치 제조방법 및 그 제조방법에 따른 액정표시장치
KR100781596B1 (ko) 액정 표시장치
KR100333272B1 (ko) 액정 표시장치 제조방법 및 그 제조방법에 따른 액정 표시장치
KR20010082840A (ko) 액정 표시장치 제조방법 및 그 제조방법에 따른 액정표시장치
KR100679513B1 (ko) 액정표시장치의 어레이 기판

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121228

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131227

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151228

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161214

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171218

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee