KR20010059397A - Dielectric ceramic compositions - Google Patents

Dielectric ceramic compositions Download PDF

Info

Publication number
KR20010059397A
KR20010059397A KR1019990066794A KR19990066794A KR20010059397A KR 20010059397 A KR20010059397 A KR 20010059397A KR 1019990066794 A KR1019990066794 A KR 1019990066794A KR 19990066794 A KR19990066794 A KR 19990066794A KR 20010059397 A KR20010059397 A KR 20010059397A
Authority
KR
South Korea
Prior art keywords
dielectric
composition
dielectric ceramic
value
added
Prior art date
Application number
KR1019990066794A
Other languages
Korean (ko)
Other versions
KR100355615B1 (en
Inventor
안달
이경호
Original Assignee
안달
이경호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안달, 이경호 filed Critical 안달
Priority to KR1019990066794A priority Critical patent/KR100355615B1/en
Publication of KR20010059397A publication Critical patent/KR20010059397A/en
Application granted granted Critical
Publication of KR100355615B1 publication Critical patent/KR100355615B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE: Provided is a microwave dielectric ceramic composition which is produced by simple manufacturing process with economical manufacturing unit cost, and shows excellent sintering property and dielectric properties such as a dielectric constant of about 40 and a quality coefficient value of more than 8,000. CONSTITUTION: The microwave dielectric ceramic composition is represented by the general formula of xBiVO4+(1-x)ZnWO4, wherein the molar ratio of the BiVO4(x) is 0.45-0.55 and 3.0 wt.% of CaTiO3 based on the total composition is added to the composition. When the x is 0.5, 2.0-3.0 wt.% of CaTiO3 is added to the composition based on the total composition.

Description

유전체 세라믹 조성물{DIELECTRIC CERAMIC COMPOSITIONS}Dielectric Ceramic Composition {DIELECTRIC CERAMIC COMPOSITIONS}

본 발명은 마이크로파용 유전체 세라믹 조성물에 관한 것으로, 보다 상세하게는 예를 들어, 마이크로파 대역에서 작동되는 유전체 안테나와 같은 마이크로파 디바이스용 유전체 세라믹 조성물에 관한 것이다.The present invention relates to dielectric ceramic compositions for microwaves, and more particularly to dielectric ceramic compositions for microwave devices such as dielectric antennas operating in microwave bands.

최근들어 이동 통신 및 위성 방송 등의 정보 통신 기기의 이용 확대로 마이크로파를 이용하는 유전체 세라믹 소자에 대한 관심이 고조되고 있다. 특히 이동 통신 매체로서는 자동차 전화, 무선 전화, 페이저, GPS(Global Positioning System) 등을 들 수 있는데, 마이크로파용 유전체 세라믹은 이들 시스템에서 여파기(filter), 듀플렉서(duplexer) 및 안테나의 수동소자부품의 재료로 사용된다.Recently, with the expansion of the use of information communication devices such as mobile communication and satellite broadcasting, interest in dielectric ceramic devices using microwaves is increasing. In particular, mobile communication media include automobile telephones, cordless telephones, pagers, and GPS (Global Positioning System). Microwave dielectric ceramics are materials of passive components of filters, duplexers and antennas in these systems. Used as

안테나는 대역통과 여파기 및 듀플렉서와 같이 수동소자에 속하지만 작동방법이나 요구되는 유전특성에 차이가 있다. 여파기나 듀플렉서의 경우 특정신호에 대한 선택성이 우수해야하므로 특정주파수에 대한 공진대역폭이 좁아야 하며 따라서 품질계수가 높고 온도계수는 0에 수렴할수록 유리하다. 반면에 안테나의 경우는 일단 여러 신호를 수신 받아야하므로 신호의 응답성이 여파기 또는 듀플렉서보다는 커야하고 따라서 유전체의 품질계수 및 공진주파수 온도계수가 각각 8000정도및 + 50 ppm/℃ 정도로 요구되고 있다.Antennas belong to passive devices, such as bandpass filters and duplexers, but differ in how they are operated and required dielectric characteristics. In case of filter or duplexer, the selectivity of specific signal should be excellent, so the resonance bandwidth for specific frequency should be narrow. Therefore, the higher the quality factor and the higher the temperature coefficient is, the more advantageous it is. On the other hand, in the case of an antenna, since multiple signals must be received, the response of the signal must be greater than that of the filter or duplexer. Therefore, the quality factor and the resonant frequency temperature coefficient of the dielectric are required to be about 8000 and +50 ppm / ° C, respectively.

유전체 세라믹 조성물에 대한 연구는 최초로 TiO2에 대해서 시작된 이래 많은 TiO2계에 대한 연구가 수행되어 졌다. 그 결과 현재 사용되고 있는 마이크로파 유전체 조성들은 Ba2Ti9O20, (Zr,Sn)TiO4, BaO-RE2O3-TiO2(Re : Rare earth), BaO-Nd2O3-TiO2계(BNT계)등 많은 TiO2계와, 최근에는 Ba(Mg1/3Ta2/3)O3, Ba(Zn1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3,Sr(Mg1/3Ta2/3)O3, Sr(Zn1/3Ta2/3)O3등과 같은 복합 페로브스카이트 구조를 갖는 유전체들이 많이 발견되었으며, 또한 두 종류의 페로브스카이트의 고용체를 이용하여 새로운 유전체 재료를 개발하려는 노력이 시도되고 있다.Since the beginning of the study of the dielectric ceramic composition was first started for TiO 2 has been studied for many TiO 2 system. As a result, currently used microwave dielectric compositions include Ba 2 Ti 9 O 20 , (Zr, Sn) TiO 4 , BaO-RE 2 O 3 -TiO 2 (Re: Rare earth), BaO-Nd 2 O 3 -TiO 2 Many TiO 2 systems such as (BNT), Ba (Mg 1/3 Ta 2/3 ) O 3 , Ba (Zn 1/3 Ta 2/3 ) O 3 , Ba (Mg 1/3 Nb 2 / 3 ) Many dielectrics with complex perovskite structures, such as O 3, Sr (Mg 1/3 Ta 2/3 ) O 3 , Sr (Zn 1/3 Ta 2/3 ) O 3 , have been found. Efforts have been made to develop new dielectric materials using solid solutions of the kind of perovskite.

그러나, BNT계는 다른 마이크로파용 유전체에 비해 Q값(Quality-factor; Q×f)이 2000(1GHz) 정도로 작다는 단점이 있으며 공진주파수가 1GHz이하로 제한되는 문제점이 있다. 그리고 Nd2O3는 희토류 금속으로 다른 원소에 비해 고가의 원소라는 단점이 있다.However, the BNT system has a disadvantage in that the Q-factor (Q × f) is as small as 2000 (1 GHz) than other microwave dielectrics, and the resonance frequency is limited to 1 GHz or less. Nd 2 O 3 is a rare earth metal and has a disadvantage of being an expensive element compared to other elements.

한편, (Zr,Sn)TiO4계는 높은 Q값과 안정된 온도 특성으로 가장 널리 상용화된 재료로 유전율의 범위는 30-40, Q값은 4GHZ에서 8000정도이며 공진주파수 온도계수는 -30∼+30ppm/℃ 범위에 있다. 그러나 이 계는 일반적인 고상 반응을 통해 제조하는 경우 하소 온도가 1100℃이상이며 소결조제의 첨가 없이는 1600℃이하에서는 소결이 힘든 난소결성 물질로 알려져 있다. 따라서 소결 온도를 낮추기 위하여CuO, Co2O3, ZnO 등의 소결 조제를 사용하나 소결 조제의 첨가가 조성물 자체의 물성을 저하시킨다고 알려져 있다. 따라서 가장 경제적인 고상법 대신에 Sol-Gel이나 알코옥사이드법, 공침법등과 같은 액상법을 이용한 분말합성이 시도되고 있다. 그러나 이러한 방법은 공정이 복잡할 뿐 아니라 제조단가의 상승을 초래한다고 하는 문제점을 가지고 있다.Meanwhile, the (Zr, Sn) TiO 4 system is the most widely commercialized material with high Q and stable temperature characteristics. The dielectric constant is in the range of 30-40 and Q is 4GH Z to 8000, and the resonant frequency temperature coefficient is -30 ~. It is in the range of +30 ppm / ° C. However, this system is known to be a sinterable material that is difficult to sinter at 1600 ° C or less without the addition of a sintering aid when the calcination temperature is higher than 1100 ° C when manufactured through a general solid phase reaction. Therefore, sintering aids such as CuO, Co 2 O 3 and ZnO are used to lower the sintering temperature, but it is known that the addition of the sintering aid lowers the physical properties of the composition itself. Therefore, instead of the most economical solid phase method, powder synthesis using a liquid phase method such as Sol-Gel, alcohol oxide method, coprecipitation method, etc. has been attempted. However, this method has a problem that the process is not only complicated but also leads to an increase in manufacturing cost.

Ba(Zn1/3Ta2/3)O3로 대표되는 복합페로브스카이트계 유전체 역시 소결 온도가 1550℃가 넘는 난소결성 물질로 소결이 어려운 단점을 가지고 있어 소결온도를 낮추기 위하여 첨가되는 원소나 화합물(BaZrO3, Mn등)까지 감안하면 6-8가지 이상의 성분이 포함되어 지므로 공정인자를 제어하기 어려운 문제점을 안고 있다.Composite perovskite-based dielectrics, represented by Ba (Zn 1/3 Ta 2/3 ) O 3, are also difficult to sinter with sintering temperatures of more than 1550 ° C. Considering the compounds (BaZrO 3 , Mn, etc.) it is difficult to control the process factors because more than 6-8 components are included.

현재의 무선전화상의 RF부품은 개별부품으로 PCB(Printed Circuit Board)상에 분산 적용되기 때문에 각각의 크기가 소형화되더라도 전체크기의 소형화에는 한계가 있다.RF parts in current wireless telephones are distributed as separate parts on a printed circuit board (PCB), so even if each size is small, there is a limit to the miniaturization of the overall size.

최근 일본 미국을 비롯한 선진국에서는 통신기기의 소형화, 집적화, 복합화, 고신뢰성화, 고기능화를 위해 RF-IC, MMIC(Microwave Monolithic IC)등 개별 부품들의 모듈화를 시도하고 있고 이는 MCM-C(Multi-Chip Module by Cofiring)의 기술에 의해 현실화되고 있다. MCM-C 기술은 세라믹 개별부품으로 이용되고 있는 평면형 패치 안테나, 듀플렉서 혹은 대역통과 여파기 등의 소자를 하나의 구조물에 전극 패턴과 함께 동시소결하여 일체화시킴으로써 제품의 소형화 및 대량생산을 이룰수 있는 기술이다.Recently, advanced countries including Japan and the United States are attempting to modularize individual components such as RF-IC and Microwave Monolithic IC (MMIC) for miniaturization, integration, complexation, high reliability, and high functionality of communication devices. by Cofiring). MCM-C technology is a technology that enables the miniaturization and mass production of products by simultaneously sintering and integrating devices such as planar patch antennas, duplexers or bandpass filters, which are used as individual ceramic components, together with electrode patterns in one structure.

그러나 현재까지 연구 개발된 마이크로파용 유전체 세라믹 조성물들의 경우 소결온도가 매우 높아 상대적으로 가격이 높은 Pt 또는 Pd를 전극으로 사용해야하는 문제점이 있다. Pt 및 Pd를 전극으로 사용하는 경우 이들의 단가는 제조단가의 약 60%를 차지하기 때문에 이러한 높은 전극단가를 감소시키는 것이 RF 모듈화에서 해결해야 할 가장 중요한 문제중 하나이다. 이러한 이유로 보다 경제적이고 전기전도도가 매우 우수한 Ag 또는 Cu 같은 전극재료가 중요시되며 Ag(960℃) 또는 Cu(1083℃)와의 동시소결을 위해서는 그 용융점에 상응하는 소결온도를 갖는 저온소결용 세라믹 유전체가 개발되어야 한다.However, the microwave ceramic ceramic compositions researched and developed up to now have a problem that Pt or Pd having a relatively high sintering temperature is used as an electrode. In the case of using Pt and Pd as electrodes, their unit costs account for about 60% of the manufacturing cost, so reducing such high electrode unit cost is one of the most important problems to be solved in RF modularization. For this reason, electrode materials such as Ag or Cu, which are more economical and have excellent electrical conductivity, are important. For co-sintering with Ag (960 ° C) or Cu (1083 ° C), a low-temperature sintering ceramic dielectric having a sintering temperature corresponding to its melting point is used. Should be developed.

이러한 요구에 부응하기 위하여, 지금까지 보고된 저온소결용 유전체 세라믹 조성물을 보면 BaO-PbO-Nd2O3-TiO2계(소결온도 1300℃) 유전체에 글래스(glass)를 첨가하여 소결온도를 900℃로 낮추었으며 그 특성은 유전율 67, Q값이 5.1GHz에서 570, 그리고 공진주파수 온도계수가 20ppm/℃이다. 또한 CaZrO3계(소결온도 1350℃) 유전체에 글래스(glass)를 첨가하여 소결온도를 980℃로 낮추었으며 그 특성은 유전율 25, Q값이 5.1GHz에서 700, 그리고 공진주파수 온도계수가 10ppm/℃ 정도의 값을 갖는다.In order to meet this demand, the low-temperature sintered dielectric ceramic composition reported so far is characterized by adding glass (glass) to the BaO-PbO-Nd 2 O 3 -TiO 2 -based dielectric (sintering temperature of 1300 ° C) to obtain a sintering temperature of 900. The characteristics were lowered to ℃, the dielectric constant 67, Q value of 570 at 5.1GHz, and the resonant frequency temperature coefficient of 20ppm / ℃. In addition, glass was added to CaZrO 3 system (sintering temperature 1350 ℃) to reduce the sintering temperature to 980 ℃. The characteristics of the dielectric constant were 25, Q value of 700 at 5.1GHz, and resonant frequency temperature of about 10ppm / ℃. Has the value of.

한편, 한국특허출원 제 97-1942 호로 제안된 유전체 세라믹 조성물 ZnNb2O6에 CuO, V2O5, Bi2O3, Sb2O5등의 소결조제를 첨가하여 소결온도를 900℃ 이하로 낮출 수있었다. 그러나, ZnNb2O6계의 경우 유전 특성이 우수하나 공진주파수 온도계수가 비교적 큰 음(-)값을 갖고 있어 실제 유전체 재료에 응용하는데는 한계가 있다.Meanwhile, a sintering aid such as CuO, V 2 O 5 , Bi 2 O 3 , Sb 2 O 5, etc. is added to the dielectric ceramic composition ZnNb 2 O 6 proposed in Korean Patent Application No. 97-1942 to obtain a sintering temperature of 900 ° C. or lower. Could lower. However, the ZnNb 2 O 6 system has excellent dielectric properties but has a relatively large negative value due to its relatively high resonant frequency, which limits its application to actual dielectric materials.

본 발명은 상술한 바와 같은 종래기술의 문제점을 인식한 바탕에서 별도의 소결조재의 첨가 없이도 소결온도를 900℃ 이하로 낮출 수 있는 유전체 세라믹조성물에 대하여 예의 연구한 결과, BiVO4가 800℃에서 소결이 가능할 뿐만 아니라 유전율(εr)이 70정도로 상당히 높은 값을 가지며 품질계수값(Qxf)이 10000을 상회하는 등 우수한 유전특성을 갖는다는 사실을 발견하여본 발명을 완성하였다.The present invention is based on the recognition of the problems of the prior art as described above, as a result of a thorough study on the dielectric ceramic composition that can lower the sintering temperature to 900 ℃ or less without the addition of a separate sintering aid, BiVO 4 sintered at 800 ℃ Not only is this possible, but the dielectric constant (ε r ) has a very high value of about 70 and the quality factor (Qxf) exceeds 10000. The present invention has been completed.

따라서, 본 발명의 목적은 제조공정이 간단하고 제조단가면에서 경제적일뿐아니라 저융점의 전극이 사용가능한 우수한 소결특성과 함께 안테나와 같은 마이크로파 디바이스용 유전체로의 응용에 적합한 유전특성을 갖는 마이크로파 유전체세라믹조성물을 제공하고자 하는 것이다.Accordingly, an object of the present invention is a microwave dielectric ceramic having a dielectric process suitable for application to a dielectric for microwave devices such as an antenna, with a simple manufacturing process, economical in terms of manufacturing cost, and excellent sintering characteristics that low melting point electrodes can be used. It is to provide a composition.

이와 같은 목적을 달성하기 위하여 본 발명에 따르면, 일반식 xBiVO4+ (1-x)ZnWO4로 표시되며 BiVO4의 몰분율 x=0.45~0.55 범위의 값을 가지며, 여기에 전체조성물에 대하여 CaTiO3가 3중량% 이하로 첨가되는 것을 특징으로 하는 마이크로파 유전체 세라믹 조성물이 제공된다.In order to achieve the above object, according to the present invention, it is represented by the general formula xBiVO 4 + (1-x) ZnWO 4 and has a value in the range of mole fraction x = 0.45 to 0.55 of BiVO 4 , wherein CaTiO 3 is used for the whole composition. Is added in an amount of up to 3% by weight, the microwave dielectric ceramic composition is provided.

BiVO4는 유전율과 품질계수값이 비교적 큰 값을 가지므로 안테나의 유전재료로 사용되기에 적당하다. 그러나, 공진주파수 온도계수(τf)값이 -207 ppm/℃로 상당히 큰 음(-)의 값을 나타내므로 그 자체로는 실제응용에 한계가 있다. 따라서, 본 발명자는 ZnWO4의 유전특성을 측정한 결과 1150℃에서 소결하였을 때 유전율이 15정도로 낮으나, 품질계수값이 96000으로 상당히 높은값을 나타내는 것으로 확인되어 BiVO4에 ZnWO4를 적절한 몰분율로 첨가하여 조정함으로서 유전특성의 향상을 도모하였다. 아울러, BiVO4에 ZnWO4를 첨가하는 것만으로는 공진주파수 온도계수의 조절에 한계가 있어 품질계수값이 낮은 대신 온도계수가 800ppm/℃ 정도로 매우 큰 양(+)의 값을 갖는 CaTiO3를 첨가하였다.BiVO 4 has a relatively large value of dielectric constant and quality factor and is suitable for use as a dielectric material of an antenna. However, since the resonant frequency temperature coefficient τ f represents a very large negative value of −207 ppm / ° C., the practical application itself is limited. Thus, the present inventor has a dielectric constant is low, but to about 15, the quality factor value when sintering the results 1150 ℃ of measuring the dielectric properties of ZnWO 4 is showed a significantly higher value of the 96000 was added to ZnWO 4 to BiVO 4 with the appropriate mole fraction The adjustment was made to improve the dielectric characteristics. In addition, by adding ZnWO 4 to BiVO 4 alone, there is a limit to the control of the resonant frequency temperature coefficient. Therefore, CaTiO 3 having a very large positive value of about 800 ppm / ℃ is added instead of low quality coefficient value. .

몰분율 x의 값을 0.45~0.55의 범위로 한정한 이유는 x가 0.45 미만일 경우에는 유전율의 저하와 함께 품질계수값이 지나치게 작아지게 되어 바람직하지 못하고, 반대로 x가 0.55을 초과할 경우에는 공진주파수 온도계수 값이 지나치게 큰 음(-)의 값을 가지게 됨은 물론 품질계수값이 저하하여 바람직스럽지 못하다. 따라서 본 발명에서는 x의 값을 특정범위로 한정함으로써 우수한 유전특성과 소결특성을 유지하는 유전체 세라믹 조성물을 얻을 수 있다.The reason for limiting the mole fraction x to the range of 0.45 to 0.55 is that when x is less than 0.45, the dielectric constant decreases and the quality factor value becomes too small. On the contrary, when x exceeds 0.55, the resonance frequency thermometer It is not desirable to have a negative value which is too large, and of course, the value of the quality factor is lowered. Therefore, in the present invention, by limiting the value of x to a specific range, it is possible to obtain a dielectric ceramic composition that maintains excellent dielectric and sintering characteristics.

또한, 본 발명에서 첨가되는 CaTiO3는 본 발명 조성물의 공진주파수 온도계수를 조절할 목적으로 첨가되는데 그 첨가량이 3중량%를 초과하게 되면 품질계수값이 지나치게 낮아지게 되어 바람직스럽지 못하다.In addition, CaTiO 3 added in the present invention is added for the purpose of adjusting the resonant frequency temperature coefficient of the composition of the present invention, if the addition amount exceeds 3% by weight is not preferable because the quality coefficient value is too low.

이하에서는 실시예를 통하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

고순도(99.9%)의 Bi2O3와 V2O5분말을 1:1 몰분율로 칭량하고 분말 대 증류수의 비가 1:1에서 지르코니아 볼을 이용하여 24시간 습식혼합후 120℃에서 건조시켰다. 건조된 분말을 알루미나 도가니에 넣고 600~650℃에서 12시간 하소시켜 BiVO4분말을 얻었다. 한편, 원료분말로서 99.9%의 ZnO와 WO3를 사용한 것을 제외하고는 BiVO4를 합성한 방법과 동일한 방법으로 ZnWO4를 합성하였다.High purity (99.9%) Bi 2 O 3 and V 2 O 5 powders were weighed in a 1: 1 molar fraction and dried at 120 ° C. after wet mixing for 24 hours using zirconia balls in a 1: 1 ratio of powder to distilled water. The dried powder was placed in an alumina crucible and calcined at 600-650 ° C. for 12 hours to obtain BiVO 4 powder. On the other hand, ZnWO 4 was synthesized by the same method as that of BiVO 4 except that 99.9% of ZnO and WO 3 were used as raw material powders.

각 합성한 BiVO4와 ZnWO4분말을 정량비(x = 0.45 ~ 0.55)에 따라 혼합하고 여기에 공진주파수 온도계수의 조절목적으로 CaTiO3를 중량비로 1~3% 첨가한 후 얻은 혼합분말을 24시간 볼밀링하여 80MPa의 압력으로 직경 15mm ×두께 7mm의 원판 형상으로 일축가압성형을 하였다. 성형체를 875℃에서 소결하여 치밀체를 얻었다. 하소 및 소결시 승온속도는 5℃/min이었고 이후 노냉하였다. 소결된 시편의 양편을 알루미나 페이스트 1㎛과 0.3㎛을 이용 경면처리후 품질계수값(Q*f), 공진주파수 온도계수(τf) 및 유전율(εr)을 네트워크 분석기(HP8753D)를 이용하여 하키-콜만(Hakki-Coleman)의 평형도체판법(post resonator method)으로 측정하였다.Each of the synthesized BiVO 4 and ZnWO 4 powders were mixed according to the quantitative ratio (x = 0.45 to 0.55) and CaTiO 3 was added 1 to 3% by weight to adjust the resonance frequency temperature coefficient. Time-axis milling was performed to form a uniaxial pressurized mold in a disk shape having a diameter of 15 mm and a thickness of 7 mm at a pressure of 80 MPa. The compact was sintered at 875 ° C to obtain a compact. The rate of temperature increase during calcination and sintering was 5 ° C./min and then furnace cooled. Both surfaces of the sintered specimens were alumina paste 1㎛ and 0.3㎛, after mirror treatment quality factor (Q * f), resonant frequency temperature coefficient (τ f ) and dielectric constant (ε r ) by using a network analyzer (HP8753D) It was measured by the Hokki-Coleman post resonator method.

(비교예)(Comparative Example)

실시예에서와 동일한 방법으로 제조한 BiVO4와 ZnWO4분말을 정량비(x = 0.1 ~ 1.0)에 따라 혼합한 후, 여기에 CaTiO3를 첨가하지 않은 것을 제외하고는 실시예에서와 동일한 방법으로 성형체를 얻었다. 이 성형체를 x=1인 경우는 800℃,x=0.1~0.6인 경우는 850℃에서 소결하여 치밀체를 얻었다. 하소 및 소결시 승온속도는 5℃/min이었고 이후 노냉하였다. 소결된 시편의 양편을 알루미나 페이스트 1㎛과 0.3㎛을 이용 경면처리후 품질계수값(Q*f), 공진주파수 온도계수(τf) 및 유전율(εr)을 네트워크 분석기(HP8753D)를 이용하여 하키-콜만(Hakki-Coleman)의 평형도체판법(post resonator method)으로 측정하였다.After mixing BiVO 4 and ZnWO 4 powder prepared in the same manner as in Example according to the quantitative ratio (x = 0.1 ~ 1.0), except that CaTiO 3 was not added thereto in the same manner as in Example A molded article was obtained. In the case where x = 1, the molded body was sintered at 800 ° C and in the case of x = 0.1 to 0.6, a compact was obtained. The rate of temperature increase during calcination and sintering was 5 ° C./min and then furnace cooled. Both surfaces of the sintered specimens were alumina paste 1㎛ and 0.3㎛, after mirror treatment quality factor (Q * f), resonant frequency temperature coefficient (τ f ) and dielectric constant (ε r ) by using a network analyzer (HP8753D) It was measured by the Hokki-Coleman post resonator method.

이상의 결과를 표1에 나타내었다.The above results are shown in Table 1.

본 발명에 따른 유전체 세라믹 조성물의 소결온도 및 유전특성Sintering Temperature and Dielectric Properties of Dielectric Ceramic Compositions According to the Present Invention 시료번호Sample Number xx CaTiO3(중량%)CaTiO 3 (wt%) 유전율(εr)Permittivity (ε r ) 품질계수(Q*f)Quality factor (Q * f) 온도계수(τf)(ppm/℃)Temperature coefficient (τ f ) (ppm / ℃) 소결온도(℃)Sintering Temperature (℃) 비교예Comparative example 1One 1One -- 7070 1124011240 -207-207 800800 22 0.10.1 -- 19.8119.81 53195319 -73.88-73.88 850850 33 0.20.2 -- 22.6122.61 24642464 -90.05-90.05 850850 44 0.30.3 -- 27.0727.07 22992299 -111.13-111.13 850850 55 0.40.4 -- 33.9533.95 13411341 -139.21-139.21 850850 66 0.450.45 -- 34.9734.97 97129712 -161.33-161.33 850850 77 0.50.5 -- 37.2637.26 1280112801 -181.17-181.17 850850 88 0.550.55 -- 38.0338.03 1093510935 -189.53-189.53 850850 99 0.60.6 -- 40.0340.03 37143714 -193.54-193.54 850850 실시예Example 1010 0.450.45 1.01.0 37.5437.54 90339033 -117.54-117.54 875875 1111 0.450.45 2.02.0 36.6936.69 84438443 1919 875875 1212 0.450.45 3.03.0 36.0536.05 79947994 5151 875875 1313 0.50.5 1.01.0 42.8742.87 1161811618 -138-138 875875 1414 0.50.5 2.02.0 40.5640.56 92429242 2020 875875 1515 0.50.5 3.03.0 40.6140.61 85108510 5858 875875 1616 0.550.55 1.01.0 45.9745.97 97239723 -140-140 875875 1717 0.550.55 2.02.0 45.1745.17 89018901 2424 875875 1818 0.550.55 3.03.0 47.2247.22 80348034 6161 875875

표 1에서 보는바와 같이, BiVO4의 유전율이 70이며 품질계수(Q*f) 11240, 공진주파수 온도계수 -207ppm/℃를 보였으며 소결온도는 800℃로 매우 낮았다. ZnWO4는 유전특성을 측정한 결과 1150℃에서 소결하였을 경우 유전율이 15정도로 낮으나높은 품질계수값을 나타내는 ZnWO4를 BiVO4에 일정 몰분율로 첨가시킴으로써 유전특성의 향상을 도모하였다. ZnWO4의 첨가는 소결온도를 800℃에서 850℃으로 증가시켰으나 목적한 소결온도에 부합되었다. CaTiO3를 첨가하지 않은 경우에 있어서 유전율은 몰분율의 변화에 따라 εr=19.81~37.26 의 값을 보였고 상대적으로 높은 유전율을 갖는 BiVO4의 비가 증가할수록 증가하였다. τf의 경우도 상대적으로 큰 음(-)의 값을 보이는 BiVO4의 함량이 증가할수록 큰 음(-)의 값을 보였다. 그러나 품질계수값은 두상의 몰분율에 관계없이 BiVO4:ZnWO4의 몰분율이 특정의 범위에 있는 경우 최대값을 나타내었다. 이는 몰분율이 특정범위에 있는 경우, 두 상의 미세구조가 가장 균일하게 형성된 것에 기인한 것으로 추정된다.As shown in Table 1, BiVO 4 has a dielectric constant of 70, a quality factor (Q * f) of 11240, a resonant frequency temperature coefficient of -207ppm / ° C, and a sintering temperature of 800 ° C. ZnWO 4 was improved dielectric properties by the addition of 4 ZnWO case hayeoteul sintered at 1150 ℃ results of measuring the dielectric properties dielectric constant is low, but showing a high quality factor value to about 15 at a constant mole fraction of the BiVO 4. The addition of ZnWO 4 increased the sintering temperature from 800 ° C to 850 ° C but met the desired sintering temperature. In case CaTiO 3 was not added, the dielectric constant was ε r = 19.81 ~ 37.26 with the change of mole fraction and increased as the ratio of BiVO 4 with relatively high dielectric constant increased. In the case of τ f , as the BiVO 4 content increased, the negative value increased. However, the value of the quality factor was the maximum when the mole fraction of BiVO 4 : ZnWO 4 was in a specific range regardless of the mole fraction of the two phases. This is presumed to be due to the most uniform formation of the microstructure of the two phases when the mole fraction is in a certain range.

ZnWO4의 첨가로 온도계수가 감소하였으나 만족할만한 결과를 얻지는 못하였다. 따라서 본 발명의 목적에 맞게 온도계수를 조절하기 위하여 가능성이 있는 조성의 선택이 필요하였고 선택된 조성에 양(+)의 온도계수를 갖는 CaTiO3를 첨가하여 유전특성의 변화를 살펴보았다. 즉, 몰분율 x 값이 0.45, 0.5, 0.55인 경우(시료번호 6, 7, 8) 유전율 34.97~38.03, 품질계수 9712~12801 정도로 양호하나 온도계수는 -181.53~-189.53으로 비교적 큰 음(-)의 값을 나타내었다. 따라서, 온도계수의 조절을 위해 x = 0.45, 0.5, 0.55의 조성물에 양(+)의 온도계수(800 ppm/℃)를 갖는 CaTiO3를 중량비로 1~3% 첨가시켰다. 이때 소결온도는 870℃이었다. 표 1 에서 보인바 대로, CaTiO3가 첨가될수록(시료번호 10~18) 온도계수가 음의 값에서 양의 값으로 변화되었다. 한편 상대적으로 낮은 품질계수(2000)를 갖는 CaTiO3의 첨가는 품질계수의 감소를 가져왔으나 그 정도가 미약하여 모두 8000 이상의 값을 보였다. CaTiO3의 첨가가 2~3%일때 유전율 36.05~47.22, 품질계수 7994~9242, 온도계수 19~61로 조절할 수 있었다.The addition of ZnWO 4 decreased the temperature coefficient but did not yield satisfactory results. Therefore, in order to adjust the temperature coefficient according to the purpose of the present invention, it was necessary to select a potential composition, and CaTiO 3 having a positive temperature coefficient was added to the selected composition to examine the change in dielectric properties. That is, when the mole fraction x value is 0.45, 0.5, 0.55 (Sample Nos. 6, 7, 8), the dielectric constant is 34.97 ~ 38.03 and the quality coefficient is 9712 ~ 12801, but the temperature coefficient is -181.53 ~ -189.53, which is relatively large negative (-). The value of is shown. Therefore, CaTiO 3 having a positive temperature coefficient (800 ppm / ° C.) was added in a weight ratio of 1 to 3% to the composition of x = 0.45, 0.5, 0.55 to adjust the temperature coefficient. At this time, the sintering temperature was 870 ℃. As shown in Table 1, as CaTiO 3 was added (Sample Nos. 10-18), the temperature coefficient changed from negative to positive. On the other hand, the addition of CaTiO 3 having a relatively low quality factor (2000) resulted in a decrease in the quality factor, but the degree was low, and all showed a value of 8000 or more. When CaTiO 3 was added 2 ~ 3%, the dielectric constant was 36.05 ~ 47.22, quality factor 7994 ~ 9242, temperature coefficient 19 ~ 61.

한편, x값이 0.45 미만이거나 0.55를 초과할 경우에는 품질계수값이 1341에서 5391사이로 매우 낮아 안테나용 유전체 재료로는 부적합하였다.On the other hand, when the x value is less than 0.45 or more than 0.55, the quality factor value is very low, ranging from 1341 to 5391, which is unsuitable as an antenna dielectric material.

상기한 바와 같이 본 발명에 따른 유전체 조성물은 간단한 제조 공정을 갖고 있으며, 유전율이 40정도이고 품질계수값이 8000 이상으로서 우수한 유전특성을 가지며 소결온도 역시 870℃정도로 낮아 900℃ 이하에서 값싼 Ag 전극과의 동시 소성이 가능하여 최근 전자기기 회로 소자의 소형화에 부응하는 유전체 안테나와 같은 적층형 유전체 재료로 사용이 용이한 유용한 발명이다.As described above, the dielectric composition according to the present invention has a simple manufacturing process, has a dielectric constant of about 40 and a quality coefficient of 8000 or more, and has excellent dielectric properties. It is a useful invention that can be used simultaneously as a laminated dielectric material such as a dielectric antenna capable of co-firing at the same time to meet the miniaturization of electronic circuit elements.

Claims (2)

일반식 xBiVO4+ (1-x)ZnWO4로 표시되며, BiVO4의 몰분율 x=0.45~0.55 범위의 값을 가지며, 여기에 전체조성물에 대하여 CaTiO3가 3.0중량% 이하로 첨가되는 것을 특징으로 하는 마이크로파 유전체 세라믹 조성물.It is represented by the general formula xBiVO 4 + (1-x) ZnWO 4 and has a value in the range of mole fraction x = 0.45 to 0.55 of BiVO 4 , wherein CaTiO 3 is added in an amount of 3.0 wt% or less based on the total composition. Microwave dielectric ceramic composition. 제 1항에 있어서, x = 0.5일 경우 CaTiO3가 2.0내지 3.0중량%인것을 특징으로 하는 마이크로파용 유전체 세라믹 조성물.The dielectric ceramic composition for microwave according to claim 1, wherein when x = 0.5, CaTiO 3 is 2.0 to 3.0% by weight.
KR1019990066794A 1999-12-30 1999-12-30 Dielectric ceramic compositions KR100355615B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990066794A KR100355615B1 (en) 1999-12-30 1999-12-30 Dielectric ceramic compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990066794A KR100355615B1 (en) 1999-12-30 1999-12-30 Dielectric ceramic compositions

Publications (2)

Publication Number Publication Date
KR20010059397A true KR20010059397A (en) 2001-07-06
KR100355615B1 KR100355615B1 (en) 2002-10-12

Family

ID=19633929

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990066794A KR100355615B1 (en) 1999-12-30 1999-12-30 Dielectric ceramic compositions

Country Status (1)

Country Link
KR (1) KR100355615B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454711B1 (en) * 2002-04-24 2004-11-05 주식회사 지믹스 Microwave dielectric ceramic compositions
CN104193336A (en) * 2014-08-29 2014-12-10 桂林电子科技大学 Low-sintering-temperature microwave dielectric ceramic material and preparation method thereof
CN108538607A (en) * 2018-04-28 2018-09-14 天津大学 Type II heterojunction WO3-ZnWO4Thin-film photoelectric anode, preparation method and application thereof
CN111484328A (en) * 2020-04-09 2020-08-04 咸阳陶瓷研究设计院有限公司 Microwave dielectric ceramic material and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845348A (en) * 1994-07-29 1996-02-16 Ube Ind Ltd Dielectric porcelain composition
JPH0864031A (en) * 1994-08-19 1996-03-08 Ube Ind Ltd Dielectric porcelain composition
US5879812A (en) * 1995-06-06 1999-03-09 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitor and method of producing the same
JP3630205B2 (en) * 1997-03-24 2005-03-16 Tdk株式会社 Method for manufacturing dielectric ceramic material
KR100261549B1 (en) * 1997-12-23 2000-07-15 최병국 Dielectric ceramic composition for microwave

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454711B1 (en) * 2002-04-24 2004-11-05 주식회사 지믹스 Microwave dielectric ceramic compositions
CN104193336A (en) * 2014-08-29 2014-12-10 桂林电子科技大学 Low-sintering-temperature microwave dielectric ceramic material and preparation method thereof
CN108538607A (en) * 2018-04-28 2018-09-14 天津大学 Type II heterojunction WO3-ZnWO4Thin-film photoelectric anode, preparation method and application thereof
CN111484328A (en) * 2020-04-09 2020-08-04 咸阳陶瓷研究设计院有限公司 Microwave dielectric ceramic material and preparation method and application thereof

Also Published As

Publication number Publication date
KR100355615B1 (en) 2002-10-12

Similar Documents

Publication Publication Date Title
KR100426219B1 (en) Dielectric Ceramic Compositions and Manufacturing Method of Multilayer components thereof
KR100203846B1 (en) Dielectric ceramic composition
KR100292915B1 (en) Dielectric ceramic composition
KR100401942B1 (en) Dielectric Ceramic Compositions and Manufacturing Process the same
JP3011123B2 (en) Dielectric ceramic composition
US7138351B2 (en) Phosphate-based ceramic compositions with low dielectric constant and method for manufacturing dielectric substrate using the same
US7189673B2 (en) Dielectric material
KR100355615B1 (en) Dielectric ceramic compositions
KR100401943B1 (en) Dielectric Ceramic Compositions and Manufacturing Method using the same compositions
KR100471932B1 (en) Low Temperature Co-Firing Ceramic (LTCC) Composition for Microwave Frequency
KR100592585B1 (en) Low-fire High-permittivity Dielectric Compositions with Adjustable Temperature Coefficient
KR100402469B1 (en) Microwave Dielectric Ceramic Compositions
KR100454711B1 (en) Microwave dielectric ceramic compositions
KR20020086169A (en) Low temperature fired dielectric ceramic compositions for microwave passive devices
KR100234017B1 (en) Dielectric ceramic composition
JP4494931B2 (en) Dielectric porcelain composition and electronic component using the same
KR20050105392A (en) Microwave dielectric ceramic composition for low temperature firing and preparation method thereof
KR100234018B1 (en) Dielectric ceramic compositions
KR100373694B1 (en) Dielectric Ceramic Compositions
KR100582983B1 (en) Microwave Dielectric Ceramic Composition for Low Temperature Firing and Preparation Method Thereof
KR100824351B1 (en) Low temperature co-fired microwave dielectric ceramics and the manufacturing method thereof
KR100609383B1 (en) Dielectric ceramics composition with high dielectric coefficient microwave for low temperature sintering and preparing method thereof
KR20000031734A (en) Microwave dielectric ceramic composition
KR100234019B1 (en) Dielectric ceramic compositions
JP3597244B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee