KR20010057307A - Prediction method of the steel component during mixed grade continuous casting - Google Patents

Prediction method of the steel component during mixed grade continuous casting Download PDF

Info

Publication number
KR20010057307A
KR20010057307A KR1019990059817A KR19990059817A KR20010057307A KR 20010057307 A KR20010057307 A KR 20010057307A KR 1019990059817 A KR1019990059817 A KR 1019990059817A KR 19990059817 A KR19990059817 A KR 19990059817A KR 20010057307 A KR20010057307 A KR 20010057307A
Authority
KR
South Korea
Prior art keywords
tundish
steel
mixed
concentration
time
Prior art date
Application number
KR1019990059817A
Other languages
Korean (ko)
Other versions
KR100419886B1 (en
Inventor
조명종
김상준
Original Assignee
신현준
재단법인 포항산업과학연구원
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신현준, 재단법인 포항산업과학연구원, 이구택, 포항종합제철 주식회사 filed Critical 신현준
Priority to KR10-1999-0059817A priority Critical patent/KR100419886B1/en
Publication of KR20010057307A publication Critical patent/KR20010057307A/en
Application granted granted Critical
Publication of KR100419886B1 publication Critical patent/KR100419886B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Abstract

PURPOSE: A method for predicting a mixing degree of steel types during successive continuous casting of different steel types is provided accurately and easily predict a mixed concentration of steel types depending on time by calculating a mixed concentration of steel types in a Tundish using interpolation and extrapolation of the total average concentration and a mixed concentration of new steel types. CONSTITUTION: The method comprises a first step (S1) of setting initial values on time, mixed concentration of new steel types, total average concentration of a Tundish, mixed concentration of steel types of outlet and total weight of molten steel; a second step (S2) of calculating a total weight of the molten steel flown into the Tundish depending on time; a third step (S3) of calculating a total average concentration of the Tundish in which new steel types and the previous steel types are mixed, wherein the new steel types are flown into the Tundish according to the change of time; a fourth step (S4) of calculating a mixed concentration of steel types discharged through the outlet; and a fifth step (S5) of terminating calculation when the calculated mixed concentration after the fourth step (S4) is more than 0.99, and repeating the second, third and fourth steps (S2,S3,S4) by adding a value of the setting time plus a specific time to the value set in the first step (S1) when the calculated mixed concentration is less than 0.99.

Description

이강종 연연주시 강종 혼합정도 예측방법{PREDICTION METHOD OF THE STEEL COMPONENT DURING MIXED GRADE CONTINUOUS CASTING}Prediction method of mixing steel grades in the performance of two steel grades {PREDICTION METHOD OF THE STEEL COMPONENT DURING MIXED GRADE CONTINUOUS CASTING}

본 발명은 성분이 서로 다른 강을 연이어 연속주조(이하 '이강종 연연주'라 함)할 때에 이강종의 혼합정도를 예측하는 방법에 관한 것으로, 보다 상세하게는임의의 시간동안 턴디쉬에서 혼합된 후 배출되는 강종의 혼합정도를 유체역학적 원리에 따라 턴디쉬 내 전체 평균 농도치를 이용하여 용이하게 예측할 수 있도록 한 이강종 연연주시 강종 혼합정도 예측방법에 관한 것이다.The present invention relates to a method for predicting the degree of mixing of two different steels when continuous casting of different steels (hereinafter, referred to as 'dial steel castings'), and more specifically, after mixing in a tundish for an arbitrary time. This study relates to a method for predicting the mixing degree of steel grades in the performance of two kinds of strands, which makes it easy to predict the mixing degree of the discharged steel grades using the total average concentration value in the tundish according to the hydrodynamic principle.

일반적으로, 제철소의 연주공정은 제강에서 정련이 완료된 용강을 연주 주상으로 운반하여 강의 종류에 따라 냉각방법을 달리하고 주조속도를 결정하여 주편(슬라브, 브룸 또는 빌레트)의 내부 또는 외부 품질을 확보하고 적정길이로 절단한 후 후속공정인 열연공정으로 보내는 공정이다.In general, the regeneration process of steel mills carries molten steel that has been refined in steelmaking to the cast column to vary the cooling method according to the type of steel and to determine the casting speed to secure the internal or external quality of the slabs (slabs, brooms or billets). After cutting to proper length, it is sent to hot rolling process.

따라서, 이러한 연주공정은 일관제철소에서 유일하게 액체와 고체가 공존하는 모든 공정중 가장 중심이 되는 공정이다.Therefore, this regeneration process is the only central process among all processes where liquid and solid coexist in an integrated steelworks.

연주공정에서 래들에 수용된 용강을 일정량씩 조절하면서 몰드(주형)로 공급하도록 된 1차 용기인 턴디쉬(TUNDISH)는 후속래들의 연결, 주조속도의 조절, 용강의 분배 등의 기능을 수행한다.TUNDISH, the primary container designed to supply molten steel contained in the ladle by a certain amount in the playing process, is provided to connect subsequent ladles, adjust casting speed, and distribute molten steel.

통상, 다양한 강종을 효율적으로 생산하기 위해 래들만을 교환한 후 이강종 연연주 조업을 수행하고 있는 바, 이는 턴디쉬 내부에서 래들 교환전의 강종과 교환후의 신강종이 서로 혼합되어 혼합강종이 생기게 되므로 이러한 혼합강종의 연주에 따른 주편을 미리 예측하고 제거하여만 해당 강종의 성분으로만 이루어진 양질의 주편을 생산할 수 있게 된다.In general, in order to efficiently produce a variety of steel grades, only ladles are exchanged, and two kinds of performances are performed. This is because the mixed steel grades before and after ladle exchange are mixed with each other in the tundish to produce mixed steel grades. Only by predicting and removing the cast according to the performance of the steel grade, it is possible to produce a quality cast made of only the steel grade components.

상기한 혼합강종의 배출량 및 시간에 따른 변화량은 턴디쉬의 형상, 시간에 따른 주조속도 변화 및 턴디쉬 용탕의 높이변화 등과 같은 여러 가지 조업 파라미터에 의해 다양하게 표출된다.The discharge amount of the mixed steels and the change amount with time are variously expressed by various operation parameters such as the shape of the tundish, the change in casting speed over time, and the height change of the tundish melt.

이강종 연연주시 혼합강종의 구간을 예측하기 위한 종래의 일예로는 현장에 설치된 턴디쉬와 동일한 모형을 제작하고 강과 유체역학적 물성치가 유사한 물을 가지고 턴디쉬에서 배출되는 시간에 따른 강종 혼합 농도변화를 실험하여 그 결과로부터 예측하도록 한 방법이 공개되어 있다[1992 Steelmaking conference proceedings(pp.573-578), 1992 10th PTD conference proceedings(pp.177-185), 1993 ISIJ vol.33(pp.588-594), 1994 Electric furnace conference proceedings(pp.49-58)].As a conventional example for predicting the section of mixed steel grades during the performance of two steel grades, the same model as the tundish installed in the field is manufactured, and the variation of the steel type mixing concentration according to the time discharged from the tundish with water having similar hydrodynamic properties is experimented. A methodology to predict the results is disclosed [1992 Steelmaking conference proceedings (pp. 573-578), 1992 10th PTD conference proceedings (pp. 177-185), 1993 ISIJ vol. 33 (pp. 588-594). , 1994 Electric furnace conference proceedings (pp. 49-58).

그러나, 상기 방법의 경우에는 특정 턴디쉬에서만 적용 가능하며, 턴디쉬의 형상이나 시간에 따른 조업형태의 변화 등 다양한 조업 파라미터들을 고려하지 않은 경우이므로 이들 파라미터의 개입에 따른 정확한 예측은 불가능하다.However, the above method is applicable only to a specific tundish, and since various operating parameters such as the shape of the tundish and the change of the operation type with time are not considered, accurate prediction due to the intervention of these parameters is impossible.

다른 일 예로는, 턴디쉬를 간단한 유체역학적 구간으로 나누고 각 구간을 대표할 수 있는 다수의 변수를 가진 미분방정식을 해석함으로써 강종의 혼합변화를 예측하도록 하는 방법이 공개되어 있다[1993 Metall.&Materials vol.24B(pp.379-393), 1996 CFD&Heat/Mass Tranfer conference(pp.129-145), 1996 Metall.&Materials vol.27B(pp.617-632)].As another example, a method is disclosed for predicting the mixing change of steel grades by dividing the tundish into simple hydrodynamic sections and interpreting differential equations with multiple variables that can represent each section [1993 Metall. & Materials vol. 24B (pp. 379-393), 1996 CFD & Heat / Mass Tranfer conference (pp. 129-145), 1996 Metall. & Materials vol. 27B (pp. 617-632)].

이 경우에는 상술한 모형실험만을 통한 예측방법에 비해 상당히 진보된 방법이나 여전히 변화폭이 큰 다수개의 변수를 구하기 위해 또다시 많은 모형실험이나 혹은 현장테스트가 요구되므로 예측치를 결정하기가 용이치 못할 뿐만 아니라 턴디쉬의 형상변화나 다양한 조업 파라미터에 따른 변화에 신속하게 대응하기 어려운 단점을 가진다.In this case, it is not easy to determine the prediction value because it requires a lot of model experiments or field tests in order to obtain a number of variables that are considerably more advanced than the above-described model experiments but still have a large variation. It is difficult to quickly respond to changes in the shape of the tundish or changes due to various operating parameters.

본 발명은 상술한 바와 같은 종래 기술에 따른 제반 문제점을 감안하여 이를 해결하고자 창출한 것으로, 턴디쉬 내의 강종 혼합농도치를 전체 평균농도치와 신 강종 혼합농도치의 내외삽법(보간법)을 이용하여 시간에 따른 턴디쉬 배출구의 강종 혼합농도치를 정의하고 내외삽계수를 도출함으로써 시간에 따른 강종 혼합농도를 정확하고 용이하게 예측할 수 있도록 한 이강종 연연주시 강종 혼합정도 예측방법을 제공함에 그 목적이 있다.The present invention has been made in view of the above-described problems according to the prior art, and has been created to solve this problem. The mixed steel concentration in the tundish is determined in time by using the internal and external interpolation (interpolation) of the total average concentration and the new steel mixed mixture. The purpose of the present invention is to provide a method for predicting the degree of mixing of steel grades at different stages of straight-through performance, by defining the steel mixture concentration values of tundish outlets and deriving internal and external insertion coefficients.

도 1의 (가),(나)는 턴디쉬의 형상에 따른 용강의 유동상태를 도시한 예시도,Figure 1 (a), (b) is an exemplary view showing the flow of molten steel according to the shape of the tundish,

도 2는 본 발명에 따른 강종 혼합 농도 예측치를 산출하는 과정을 도시한 플로우챠트,2 is a flowchart illustrating a process of calculating a steel grade mixed concentration prediction value according to the present invention;

도 3은 본 발명에 따른 강종 혼합 예측 결과의 비교 그래프로서, (가)는 하나의 래들에서 4개의 몰드로 용강을 배출시키는 경우의 비교 그래프이고, (나)는 하나의 래들에서 1개의 몰드로 용강을 배출시키는 경우의 비교 그래프.3 is a comparison graph of the steel mixture mixing prediction result according to the present invention, (A) is a comparison graph when the molten steel is discharged from one ladle to four molds, (B) is from one ladle to one mold Comparison graph when discharging molten steel.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 래들, 20 : 턴디쉬,10: ladle, 20: tundish,

100 : 배출구, 110 : 격벽.100: discharge port, 110: bulkhead.

상기한 본 발명의 목적은 시간, 새로운 강종의 혼합농도치, 턴디쉬 전체 평균농도치, 배출구의 강종 혼합농도치 및 용강의 총무게에 대한 초기값을 세팅하는 제1단계와; 상기 제1단계에서 각 변수에 대한 초기값이 세팅되면 후술할 수학식 3에 의해 시간의 변화에 따라 턴디쉬 내부로 유입된 용강의 총무게를 산출하는 제2단계와; 상기 제2단계에서 산출된 용강의 총무게를 후술할 수학식 2에 대입하여 시간의 변화에 따라 턴디쉬 내부로 유입된 새로운 강종과 이전의 강종이 혼합된 턴디쉬 전체의 평균농도치를 산출하는 제3단계와; 상기 제3단계에서 산출된 턴디쉬 전체 평균농도치를 후술할 수학식 1에 대입하여 배출구를 통해 배출되는 강종의 혼합농도치를 산출하는 제4단계와; 상기 제4단계후 산출된 혼합농도치가 0.99 이상이라면 산출작업을 종료하고, 이하라면 상기 설정시간에 특정시간을 더한값을 상기 제1단계에서 설정한 값에 추가하여 상기 제2,3,4단계를 순환반복하여 수행토록 하는 제5단계를 포함하여 구성함에 의해 달성된다.The above object of the present invention is a first step of setting the initial value for the time, the mixed concentration value of the new steel species, the total average concentration value of the tundish, the steel species mixed concentration value of the outlet and the total weight of the molten steel; A second step of calculating a total weight of molten steel introduced into the tundish according to a change in time by using Equation 3 to be described later when the initial value for each variable is set in the first step; Substituting the total weight of the molten steel calculated in the second step into Equation 2 to be described later to calculate the average concentration value of the whole tundish mixed with the new steel species introduced into the tundish with the change of time and the previous steel species Step 3; A fourth step of calculating a mixed concentration value of the steel species discharged through the outlet by substituting the total tundish average concentration value calculated in the third step into Equation 1 to be described later; If the mixed concentration value calculated after the fourth step is 0.99 or more, the calculation operation is terminated. If less, the second, third, fourth step is added by adding a specific time to the set time in addition to the value set in the first step. It is achieved by including a fifth step to be repeated to perform the cycle.

이하에서는, 본 발명에 따른 양호한 일 실시예를 첨부도면에 의거하여 보다 상세하게 설명한다.Hereinafter, a preferred embodiment according to the present invention will be described in more detail on the basis of the accompanying drawings.

도 1의 (가),(나)는 턴디쉬의 형상에 따른 용강의 유동상태를 도시한 예시도이다.Figure 1 (a), (b) is an exemplary view showing the flow of molten steel according to the shape of the tundish.

도시된 (가)는 턴디쉬(20)의 내부 일측에 내화물로 된 격벽(110)이 서로 이격되어 상,하측에 각각 설치되고, 상기 격벽(110)의 대향측 바닥면에는 배출구(100)가 형성된 턴디쉬(20)의 일예로서, 상기 턴디쉬(20)의 상부에 설치된 래들(10)에서 배출된 용강은 상기 격벽(110)에 의해 그 유동형태가 바뀌면서 일부를 와류되고 일부는 상기 배출구(100)를 통해 배출되며 나머지 일부는 턴디쉬(20) 내부를 순환하게 된다.The illustrated (A) is installed on the inner side of the tundish 20, the bulkheads 110 made of refractory are spaced apart from each other, respectively installed on the upper and lower sides, the outlet 100 on the opposite bottom surface of the partition wall 110 As an example of the formed tundish 20, the molten steel discharged from the ladle 10 installed on the upper portion of the tundish 20 is vortexed partly while the flow form is changed by the partition wall 110, and part of the outlet port ( 100 is discharged through the remaining portion is circulated in the tundish (20).

도시된 (나)는 턴디쉬(20) 내부에 아무런 구조물이 설치되지 않은 상태를 나타낸 일 예로서, 상기 턴디쉬(20)로 유입된 용강의 일부는 배출구(100)를 통해 배출되고 나머지 일부는 턴디쉬(20) 내부를 순환하게 된다.As shown (b) shows a state in which no structure is installed inside the tundish 20, a part of the molten steel introduced into the tundish 20 is discharged through the outlet 100 and the other part is The tundish 20 is circulated inside.

이와 같이, 래들(10)로부터 배출되어 턴디쉬(20)로 유입된 용강은 상기 턴디쉬(20)의 크기, 형상에 관계없이 일정량은 배출구(100)를 통해 배출되고 나머지는 그 내부를 순환하면서 새로 유입되는 용강과 혼합되고 또다시 일부는 배출되는 과정을 지속적으로 반복 유지하게 된다.As such, the molten steel discharged from the ladle 10 and introduced into the tundish 20 is discharged through the outlet 100 regardless of the size and shape of the tundish 20 and the rest is circulated therein. It is mixed with freshly introduced molten steel, and some continue to repeat the discharge process.

만약, 이때 새로운 강, 예컨대 이미 턴디쉬(20) 내부로 유입되어 배출되고 있는 강이 아닌 다른 종류의 강이 유입되게 되면, 새로운 강은 턴디쉬(20) 내부의 유동을 따라 흐르면서 이전 강과 혼합되게 된다.If, at this time, a new steel, for example, other types of steel other than the one already introduced into and discharged from the tundish 20 are introduced, the new steel flows along the flow in the tundish 20 to be mixed with the previous steel. do.

즉, 래들(10)로부터 유입된 새로운 강종은 이전 강종과 혼합되면서 상기 턴디쉬(20)의 하부로 내려가게 되고 이때 혼합된 강종의 일부는 배출구(100)를 통해 배출되며, 또 일부는 이전 강종과 계속 혼합되면서 상기 턴디쉬(20) 내부를 재순환하게 되고 일정시간이 경과되면 턴디쉬(20) 내부는 점차 새로운 강종으로 완전히 바뀌게 된다.That is, the new steel grade introduced from the ladle 10 is lowered to the bottom of the tundish 20 while being mixed with the previous steel grade, and a portion of the mixed steel grade is discharged through the outlet 100, and another portion of the old steel grade While continuously mixed with the tundish 20 is recycled and after a predetermined time the tundish 20 inside is gradually changed to a new steel grade.

여기에서, 새로운 강종의 농도치를 1로 정의하고 이전 강종의 농도치를 0으로 정의하여 그 혼합된 정도를 0∼1값으로 나타낼 수 있다.Here, the concentration value of the new steel grade may be defined as 1, and the concentration value of the previous steel grade may be defined as 0, and the mixing degree may be represented as 0 to 1 value.

즉, 새로운 강종의 용강이 이전 강종의 용강과 혼합되는 과정에서 일부 혼합강종은 배출되고 나머지는 계속 턴디쉬(20) 내부를 재순환하면서 이전 강종과 지속적으로 재혼합되므로 특정시간에 턴디쉬(20) 내부의 강종 혼합 농도치의 최저값은 턴디쉬(20)의 배출구(100)가 아닌 턴디쉬(20) 내부의 어느지점에 존재하게 되고, 배출구(100)에서는 강종 혼합치의 최대, 최소값의 사이값을 가지게 된다.That is, some molten steel is discharged in the process of mixing the molten steel of the new steel grade with the molten steel of the previous steel grade, and the rest is continuously mixed with the previous steel grade while recycling the inside of the tundish 20 continuously. The lowest value of the steel grade mixed concentration value is present at some point inside the tundish 20 instead of the outlet 100 of the tundish 20, and the outlet 100 has a value between the maximum and minimum values of the steel type mixed value. do.

그런데, 턴디쉬(20) 내부의 강종 혼합치의 최대값은 1로 결정되어 있으나 최소값은 시간에 따라 변화하는 값이므로 알 수가 없게 된다.By the way, the maximum value of the steel grade mixed value in the tundish 20 is determined to be 1, but the minimum value is not known because it changes with time.

본 발명은 이러한 것에 주안점을 두고 턴디쉬의 배출구로 배출되는 강종의 혼합 농도치를 하기한 수학식 1과 같이 정의하여 턴디쉬 전체 평균 농도치와 새로운 강종의 혼합 농도치의 내삽(interpolation) 혹은 외삽(extrapolation)으로 구할 수 있도록 한 것이다.The present invention focuses on such an interpolation or extrapolation of the total average concentration value of the tundish and the mixed concentration value of the new steel grade by defining the mixed concentration value of the steel species discharged to the outlet of the tundish as shown in Equation 1 below. It will be available as.

Cout= f ×Cave+ (1-f)×Cnew C out = f × C ave + (1-f) × C new

(Cout은 배출구의 강종 혼합 농도치, Cave는 턴디쉬 전체 평균 농도치, Cnew는 새로운 강종의 혼합 농도치로서 1이다.)(C out is the mixed steel concentration at the outlet, C ave is the overall average tundish concentration, and C new is the mixed steel concentration of the new steel.

상기 f는 내외삽계수로서, 실험결과 턴디쉬 형상에 따라 약 1±0.6의 편차범위에서 결정되는 값이며, 특정 턴디쉬에 대해서도 주조속도의 변화 등과 같은 조업조건의 변화에도 거의 영향을 받지 않고 일정한 값을 유지함을 알 수 있었다.F is an internal and external insertion coefficient, which is a value determined in a deviation range of about 1 ± 0.6 according to the tundish shape as a result of the experiment, and it is almost unaffected by a change in operating conditions such as a change in casting speed even for a specific tundish. It can be seen that the value is maintained.

따라서, 연주공정에서 사용되는 다양한 종류의 형상을 갖는 각 턴디쉬에 대하여 개별적인 내외삽계수를 미리 산출하여 테이블화함으로써 그중 어느 하나가 실제 사용될 때 테이블에서 그 턴디쉬의 내외삽계수만을 취하여 수치계산에 이용할 수 있을 것이다.Therefore, the individual internal and external insertion coefficients are calculated and tabulated in advance for each tundish having various types of shapes used in the playing process, and when only one of them is actually used, only the internal and external insertion coefficients of the tundish are taken from the table and used for numerical calculation. Will be available.

아울러, 특정 시간(t+ㅿt)일 때 턴디쉬 내 평균 강종 혼합치(Cave)는 주입되는 새로운 강종량[Qin(㎥/s)], 배출되는 양[Qout(㎥/s)] 및 턴디쉬 내 용강의 총 무게[Mtd(㎏)]을 이용하여 하기한 수학식 2로부터 쉽게 계산할 수 있게 된다.In addition, at a specific time (t + ㅿ t), the average steel mixture (C ave ) in the tundish is the amount of new steel injected [Q in (㎥ / s)], the quantity discharged [Q out (㎥ / s)]. And using the total weight of the molten steel in the tundish (M td (kg)) it can be easily calculated from the following equation (2).

미설명 된 ρ는 용강의 밀도로서 대략 7800㎏/㎥의 값을 갖는다.Unexplained p is the density of molten steel and has a value of approximately 7800 kg / m 3.

아울러, 용강의 총 무게는 하기한 수학식 3에 의해 구할 수 있다.In addition, the total weight of molten steel can be calculated | required by following formula (3).

도 2는 본 발명에 따른 강종 혼합 농도 예측치를 산출하는 과정을 도시한 플로우챠트이다.2 is a flowchart illustrating a process of calculating a steel mixture mixing concentration prediction value according to the present invention.

도 2를 참조하면, 이강종 연연주시 강종 혼합정도의 예측은 먼저 시간, 새로운 강종의 혼합농도치, 턴디쉬 전체 평균농도치, 배출구의 강종 혼합농도치 및 용강의 총무게에 대한 초기값을 세팅하는 제1단계를 수행한다(S1).Referring to FIG. 2, the prediction of the steel grade mixing degree during two kinds of performances of the first stage of first setting the initial value for the time, the mixed concentration value of the new steel grade, the total average value of the tundish, the steel grade mixed concentration value of the outlet and the total weight of the molten steel Perform (S1).

상기 제1단계(S1)에서 각 변수에 대한 초기값이 세팅되면 전술한 수학식 3에 의해 시간의 변화에 따라 턴디쉬 내부로 유입된 용강의 총무게를 산출하는 제2단계를 수행한다(S2).When the initial value for each variable is set in the first step (S1), a second step of calculating the total weight of molten steel introduced into the tundish according to the change of time is performed according to Equation 3 (S2). ).

상기 제2단계(S2)에서 산출된 용강의 총무게를 전술한 수학식 2에 대입하여 시간의 변화에 따라 턴디쉬 내부로 유입된 새로운 강종과 이전의 강종이 혼합된 턴디쉬 전체의 평균농도치를 산출하는 제3단계를 수행한다(S3).Substituting the total weight of the molten steel calculated in the second step (S2) into the above Equation 2, the average concentration value of the whole tundish mixed with the new steel species and the old steel species introduced into the tundish with the change of time A third step of calculating is performed (S3).

상기 제3단계(S3)에서 산출된 턴디쉬 전체 평균농도치를 전술한 수학식 1에 대입하여 배출구를 통해 배출되는 강종의 혼합농도치를 산출하는 제4단계(S4)를 수행한다.A fourth step S4 is performed to calculate the mixed concentration value of the steel species discharged through the outlet by substituting the total tundish average concentration value calculated in the third step S3 into Equation 1 described above.

상기 제4단계(S4)후 산출된 혼합농도치가 0.99(새로운 강종으로 전체 교체되었을 때가 1이라고 보았을 때) 이상이라면 산출작업을 종료하고, 이하라면 상기 설정시간에 특정시간을 더한값을 상기 제1단계(S1)에서 설정한 값에 추가하여 상기 제2,3,4단계(S2)(S3)(S4)를 순환반복하여 수행토록 하는 제5단계(S5)를 수행한다.If the mixed concentration value calculated after the fourth step (S4) is 0.99 (when the total replacement of new steel grades is 1) or more, the calculation operation is terminated. In addition to the value set in step S1, a fifth step S5 is performed to repeat the second, third and fourth steps S2, S3, and S4.

도 3은 본 발명에 따른 강종 혼합 예측 결과의 비교 그래프로서, (가)는 하나의 래들에서 4개의 몰드로 용강을 배출시키는 경우의 비교 그래프이고, (나)는 하나의 래들에서 1개의 몰드로 용강을 배출시키는 경우의 비교 그래프이다.3 is a comparison graph of the steel mixture mixing prediction result according to the present invention, (A) is a comparison graph when the molten steel is discharged from one ladle to four molds, (B) is from one ladle to one mold It is a comparative graph when discharging molten steel.

도시된 바와 같이, 4개의 몰드로 용강을 배출시킬 때에는 내외삽계수(f)를 1.0으로 한 것인데, 실험결과 실제값 그래프와 아주 잘 일치함을 알 수 있었다.As shown, when the molten steel was discharged into four molds, the internal and external insertion coefficient (f) was set to 1.0, and it was found that the results were in good agreement with the actual value graph.

또한, 1개의 몰드로 용강을 배출시키는 경우에는 내외삽계수(f)를 1.18로 적용한 경우로서 마찬가지로 매우 잘 일치함을 알 수 있었다.In addition, in the case of discharging molten steel in one mold, it was found that the internal and external insertion coefficients f were 1.18, and the results were very good.

이와 같이, 내외삽계수를 적절히 조절하고 전술한 수식에 의해 예측치를 쉽게 산출함으로써 턴디쉬의 형상, 주변 파라미터들에 의한 강종의 혼합정도를 용이하게 예측할 수 있게 된다.In this way, by properly adjusting the internal and external insertion coefficients and easily calculating the prediction value by the above-described formula, it is possible to easily predict the shape of the tundish and the degree of mixing of the steel species by the peripheral parameters.

이상에서 상세히 설명한 바와 같이, 본 발명에 따른 이강종 연연주시 강종 혼합 예측방법은 턴디쉬의 형상 변화 등에 쉽게 대응할 수 있으며 아울러 다양한 조업 조건 변화시에도 신속하고 정확한 예측 결과를 보여 주므로 실제 조업 현장에 바로 투입가능하며 이에 따라 이강종 연연주시에도 품질향상을 기하게 된다.As described in detail above, the method for predicting the mixing of steel grades at the time of performing the different types of steel according to the present invention can easily cope with changes in the shape of the tundish, and also shows a quick and accurate prediction result even when various operating conditions are changed, so it is directly put into the actual operation site. As a result, quality improvement will also be achieved during the performance of Lee Kang Jong.

뿐만 아니라, 정확한 이강종의 혼합구간을 예측할 수 있으므로 재처리되어야 할 부분과 정상 제품간을 명확히 분배할 수 있게 되어 제품 품질의 안정화는 물론 소량 다품종 주문 수주가 가능해진다.In addition, it is possible to accurately predict the mixing section of steel grades, so that the part to be reprocessed and the normal product can be clearly distributed, thereby stabilizing the product quality and ordering small quantity orders.

Claims (2)

시간, 새로운 강종의 혼합농도치, 턴디쉬 전체 평균농도치, 배출구의 강종 혼합농도치 및 용강의 총무게에 대한 초기값을 세팅하는 제1단계(S1)와;A first step (S1) of setting initial values for the time, the mixed concentration value of the new steel species, the total average value of the tundish, the steel species mixed concentration value of the discharge port, and the total weight of the molten steel; 상기 제1단계(S1)에서 각 변수에 대한 초기값이 세팅되면 하기한 수학식 3에 의해 시간의 변화에 따라 턴디쉬 내부로 유입된 용강의 총무게를 산출하는 제2단계(S2)와;A second step (S2) of calculating a total weight of molten steel introduced into the tundish according to the change of time by the following equation (3) when the initial value for each variable is set in the first step (S1); 상기 제2단계(S2)에서 산출된 용강의 총무게를 하기한 수학식 2에 대입하여 시간의 변화에 따라 턴디쉬 내부로 유입된 새로운 강종과 이전의 강종이 혼합된 턴디쉬 전체의 평균농도치를 산출하는 제3단계(S3)와;Substituting the total weight of the molten steel calculated in the second step (S2) into Equation 2 below, the average concentration value of the whole tundish in which the new steel species introduced into the tundish with the change of time and the old steel species are mixed. Calculating a third step (S3); 상기 제3단계(S3)에서 산출된 턴디쉬 전체 평균농도치를 하기한 수학식 1에 대입하여 배출구를 통해 배출되는 강종의 혼합농도치를 산출하는 제4단계(S4)와;A fourth step S4 of calculating a mixed concentration value of the steel species discharged through the outlet by substituting the total tundish average concentration value calculated in the third step S3 into Equation 1 below; 상기 제4단계(S4)후 산출된 혼합농도치가 0.99 이상이라면 산출작업을 종료하고, 이하라면 상기 설정시간에 특정시간을 더한값을 상기 제1단계(S1)에서 설정한 값에 추가하여 상기 제2,3,4단계(S2)(S3)(S4)를 순환반복하여 수행토록 하는 제5단계(S5)를 포함하여 구성되는 것을 특징으로 하는 이강종 연연주시 강종 혼합정도 예측방법.If the mixed concentration value calculated after the fourth step (S4) is 0.99 or more, the calculation operation is terminated. If less, the calculated value is added by adding a specific time to the set time to the value set in the first step (S1). A method for predicting the blending degree of steel grades in two or three stages (S2) (S3) (S4) comprising a fifth step (S5) to be repeatedly performed. [수학식 1][Equation 1] Cout= f ×Cave+ (1-f)×Cnew C out = f × C ave + (1-f) × C new (Cout은 배출구의 강종 혼합 농도치, Cave는 턴디쉬 전체 평균 농도치, Cnew는 새로운 강종의 혼합 농도치로서 1이다)(C out is the mix concentration of the steel grade at the outlet, C ave is the total average concentration of the tundish, C new is the mixture concentration of the new grade.) [수학식 2][Equation 2] (Mtd(t)는 턴디쉬 내 용강 총무게, Qin은 주입되는 새로운 강종량, Qout은 배출되는 양, ρ는 용강의 밀도로서 대략 7800㎏/㎥의 값을 갖는다)(M td (t) is the total weight of molten steel in the tundish, Q in is the amount of new steel injected, Q out is the discharged quantity, and ρ is the density of molten steel, which is approximately 7800 kg / ㎥) [수학식 3][Equation 3] 제1항에 있어서, 상기 턴디쉬의 형상에 따라 달리지는 내외삽계수(f)는 1±0.6 범위 내의 값인 것을 특징으로 하는 이강종 연연주시 강종 혼합정도 예측방법.The method of claim 1, wherein the internal and external insertion coefficients (f) depending on the shape of the tundish are within a range of 1 ± 0.6.
KR10-1999-0059817A 1999-12-21 1999-12-21 Prediction method of the steel component during mixed grade continuous casting KR100419886B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0059817A KR100419886B1 (en) 1999-12-21 1999-12-21 Prediction method of the steel component during mixed grade continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0059817A KR100419886B1 (en) 1999-12-21 1999-12-21 Prediction method of the steel component during mixed grade continuous casting

Publications (2)

Publication Number Publication Date
KR20010057307A true KR20010057307A (en) 2001-07-04
KR100419886B1 KR100419886B1 (en) 2004-03-02

Family

ID=19627642

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0059817A KR100419886B1 (en) 1999-12-21 1999-12-21 Prediction method of the steel component during mixed grade continuous casting

Country Status (1)

Country Link
KR (1) KR100419886B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040314A1 (en) * 2005-10-04 2007-04-12 Posco An on-line quality prediction system for stainless steel slab and the preedicting method using it
KR101224982B1 (en) * 2010-09-29 2013-01-25 현대제철 주식회사 Method for estimating steel component during mixed grade continuous casting
KR101246193B1 (en) * 2011-01-28 2013-03-21 현대제철 주식회사 Method for estimating steel component during mixed grade continuous casting
KR101485913B1 (en) * 2013-12-23 2015-01-26 주식회사 포스코 Method for continuous casting of mixed grade
CN106799481A (en) * 2016-12-29 2017-06-06 内蒙古包钢钢联股份有限公司 The division methods of steel billet are mixed during grade transition
CN106862513A (en) * 2015-12-11 2017-06-20 上海梅山钢铁股份有限公司 A kind of method that the mixed steel quality of different steel grade judges before and after same ladle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040314A1 (en) * 2005-10-04 2007-04-12 Posco An on-line quality prediction system for stainless steel slab and the preedicting method using it
KR101224982B1 (en) * 2010-09-29 2013-01-25 현대제철 주식회사 Method for estimating steel component during mixed grade continuous casting
KR101246193B1 (en) * 2011-01-28 2013-03-21 현대제철 주식회사 Method for estimating steel component during mixed grade continuous casting
KR101485913B1 (en) * 2013-12-23 2015-01-26 주식회사 포스코 Method for continuous casting of mixed grade
CN105848808A (en) * 2013-12-23 2016-08-10 株式会社Posco Method for continuously casting different grades of steel
EP3088102A4 (en) * 2013-12-23 2016-11-02 Posco Method for continuously casting different grades of steel
EP3088102B1 (en) 2013-12-23 2017-11-08 Posco Method for continuously casting different grades of steel
CN106862513A (en) * 2015-12-11 2017-06-20 上海梅山钢铁股份有限公司 A kind of method that the mixed steel quality of different steel grade judges before and after same ladle
CN106799481A (en) * 2016-12-29 2017-06-06 内蒙古包钢钢联股份有限公司 The division methods of steel billet are mixed during grade transition

Also Published As

Publication number Publication date
KR100419886B1 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
CA2191242C (en) Quality prediction and quality control of continuously-cast steel
EP3088102B2 (en) Method for continuously casting different grades of steel
KR100419886B1 (en) Prediction method of the steel component during mixed grade continuous casting
JP2019501027A (en) Melt injection device, casting equipment and casting method using the same
JP5104153B2 (en) Treatment method of joint slab in different steel type continuous casting
JPH04172155A (en) Induction heating tundish for continuous casting
KR960004423B1 (en) Process of cooling continuously cast metallic products
CN113084113B (en) Different steel type mixed casting method suitable for slab caster
KR101224982B1 (en) Method for estimating steel component during mixed grade continuous casting
Ludlow et al. Continuous casting mould powder and casting process interaction: why powders do not always work as expected
JPH09239501A (en) Method for refining molten steel in tundish
JP7148724B2 (en) Casting equipment and casting method
KR101246193B1 (en) Method for estimating steel component during mixed grade continuous casting
KR102210201B1 (en) Method for continuous casting
RU2204460C2 (en) Method for continuous casting of steel
KR101927769B1 (en) Method for casting
US1535245A (en) Method of making ingots, and the ingot
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JPH0871712A (en) Method for deciding mixing range of different kinds of steel in continuous casting
JPH079088A (en) Production of cast billet by continuous casting equipment for producing small lot
SU1388435A1 (en) Method and apparatus for modifying high-duty cast iron with vermicular graphite
JPH03151144A (en) Method for refining molten steel in tundish for continuous casting
JPH0740002A (en) Method for continuously casting small lot of materials
JP2747707B2 (en) Tundish for small lot production
JPH03294051A (en) Pouring nozzle for twin drum type continuous casting apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130212

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140207

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160211

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170209

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee