JPH03294051A - Pouring nozzle for twin drum type continuous casting apparatus - Google Patents

Pouring nozzle for twin drum type continuous casting apparatus

Info

Publication number
JPH03294051A
JPH03294051A JP9512590A JP9512590A JPH03294051A JP H03294051 A JPH03294051 A JP H03294051A JP 9512590 A JP9512590 A JP 9512590A JP 9512590 A JP9512590 A JP 9512590A JP H03294051 A JPH03294051 A JP H03294051A
Authority
JP
Japan
Prior art keywords
molten metal
pouring
nozzle
buffer chamber
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9512590A
Other languages
Japanese (ja)
Other versions
JP2749179B2 (en
Inventor
Tatsuto Matsushima
松島 達人
Shigenori Tanaka
重典 田中
Teruo Shimao
島尾 輝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9512590A priority Critical patent/JP2749179B2/en
Publication of JPH03294051A publication Critical patent/JPH03294051A/en
Application granted granted Critical
Publication of JP2749179B2 publication Critical patent/JP2749179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent remelting of solidified part caused by poured molten metal flow in pouring basin by, for instance, communicating a pouring chamber in an outer nozzle and a molten metal flow buffering chamber through refractoriness partition plate having plural pieces of through holes. CONSTITUTION:In twin drum type continuous casting apparatus, molten metal caused to flow out from an inner nozzle 12 is caused to flow into the pouring chamber 16 in the outer nozzle 13 and further into the molten metal flow buffering chamber 19 through the through holes to thickness direction of the refractoriness partition plate 17. The molten flow is supplied into the pouring basin 52 from discharging holes 18 at both sides of cooling drums 50. Solidified shells grown on the drum surfaces S in both cooling drums 50 are progressed downward accompanied with rotation of the cooling drums 50 and integrated at kissing point K to complete the solidification of the whole thickness of a cast strip 53. Under condition of reliving flowing energy with three steps of buffering action through the partition plate 17 and the buffering chamber 19, and only to axial direction of the cooling drums 50, the molten metal supply into the pouring basin 52 can be executed. By this method, the remelting of the solidified shell and the remelting of solidified completing part can be prevented at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、双ドラム式連続鋳造装置の注湯ノズルに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pouring nozzle for a twin-drum continuous casting machine.

〔従来の技術〕[Conventional technology]

双ドラム式(あるいは「双ロール式j等とも呼称される
)連続鋳造装置は、ドラム面を対面させて平行に配置し
た一対の冷却ドラムと、これら冷却ドラムの両端面に押
しつけた一対のサイド堰とで形成した底無し鋳型内に、
金属溶湯を注入して湯溜りを形成する連続鋳造装置であ
り、連続鋳造鋳片から熱間圧延を経ずに冷延板を製造す
るために製品厚さに近い厚さの薄肉鋳片を鋳造する連続
鋳造法として特に適している。
A twin-drum type (also called a "double-roll type J") continuous casting machine consists of a pair of cooling drums arranged parallel to each other with their drum surfaces facing each other, and a pair of side weirs pressed against both end surfaces of these cooling drums. Inside the bottomless mold formed by
This is a continuous casting machine that injects molten metal to form a pool, and casts thin slabs with a thickness close to the product thickness in order to manufacture cold rolled sheets from continuously cast slabs without hot rolling. It is particularly suitable as a continuous casting method.

双ドラム式連続鋳造において冷却ドラム間の湯溜りに溶
湯を供給する際、湯溜りに浸漬した注湯ノズルから吐出
される強力な溶湯流が冷却ドラムのドラム面に直接あた
ると、ドラム面上で生成している凝固殻が再溶融して不
均一凝固が起こり、鋳片割れやブレークアウトの原因に
なる。また、溶湯吐出流をドラム面に正対させないよう
に下方に向けて吐出させると、両方のドラム面上で成長
した凝固殻が出会って鋳片全厚の凝固が完了する冷却ド
ラム最近接点(いわゆるキッシング・ポイント)に高温
の溶湯流が直接当たって局部的不完全凝固あるいは不均
一凝固が起こり、やはり鋳片割れやブレークアウトの原
因になる。
When supplying molten metal to the pool between the cooling drums in twin-drum continuous casting, if the powerful flow of molten metal discharged from the pouring nozzle immersed in the pool hits the drum surface of the cooling drum directly, it will cause a drop on the drum surface. The formed solidified shell remelts, causing uneven solidification, which causes slab cracking and breakouts. In addition, if the molten metal is discharged downward without directly facing the drum surface, the solidified shells that have grown on both drum surfaces meet and the entire thickness of the slab is solidified at the closest point to the cooling drum (so-called Direct contact of the hot molten metal stream (kissing points) causes local incomplete solidification or non-uniform solidification, which also causes slab cracking and breakouts.

これらの対策として、下方あるいは冷却ドラム面方向へ
溶湯を吐出する吐出口を多孔質耐火物等のフィルターで
覆うことにより、吐出溶湯流の流勢を緩和することが提
案されている(例えば特開昭63−207454、特開
昭64−11055)第4図(a)および(b)に上記
従来の広幅ノズルの例を示す、第4図(a)は注湯ノズ
ル41を一対の冷却ドラム50間の鋳造実施位置に配置
した状態を冷却ドラム50の端面方向から見た図であり
、第4図(b)は第4図(a)の線A−Aに沿った断面
を示す、注湯ノズル41は、上部に溶湯流人口44およ
び下部に溶湯流出口45を持つ内ノズル42とそれを収
容する外ノズル43とから成り、外ノズル43の先端は
同図(b)のように冷却ドラム50の軸方向に長く拡が
った偏平な溶湯流路断面になっており、この広幅部分の
溶湯流路の途中すなわち溶湯吐出口48の手前に多孔質
耐火物フィルター47が挿入されている。内ノズル42
の溶湯流出口45から流出した溶湯は外ノズル43と内
ノズル42の間の空間46内に入り、耐火物フィルター
47の貫通孔を通過して湯面Mより下方で下向きに湯溜
り52へと供給される。冷却ドラム50間の湯溜り52
は冷却ドラム50の両端面に押しつけられたサイド堰5
1によってシールされている0両方の冷却ドラム50の
ドラム面S上で成長した凝固殻が冷却ドラム50の回転
(図中の矢印R)に伴って下方へ進行し、キッシング・
ポイントにで合体して鋳片53全厚の凝固が完了する。
As a countermeasure to these problems, it has been proposed to reduce the flow force of the discharged molten metal by covering the discharge port that discharges the molten metal downward or toward the surface of the cooling drum with a filter such as a porous refractory (for example, (Sho 63-207454, Japanese Patent Application Laid-Open No. Sho 64-11055) FIGS. 4(a) and (b) show an example of the conventional wide nozzle described above. FIG. 4(a) shows the pouring nozzle 41 connected to a pair of cooling drums 50. FIG. 4(b) is a view of the cooling drum 50 placed at a casting position between the two sides, as seen from the end surface direction, and FIG. 4(b) shows a cross section taken along the line A-A of FIG. The nozzle 41 consists of an inner nozzle 42 having a molten metal flow port 44 at the upper part and a molten metal outlet 45 at the lower part, and an outer nozzle 43 that accommodates the inner nozzle 42.The tip of the outer nozzle 43 is connected to the cooling drum as shown in FIG. A porous refractory filter 47 is inserted in the middle of this wide portion of the molten metal flow path, that is, in front of the molten metal discharge port 48. Inner nozzle 42
The molten metal flowing out from the molten metal outlet 45 enters the space 46 between the outer nozzle 43 and the inner nozzle 42, passes through the through hole of the refractory filter 47, and flows downward below the molten metal level M into the molten metal pool 52. Supplied. Water reservoir 52 between cooling drums 50
are the side weirs 5 pressed against both end surfaces of the cooling drum 50.
As the cooling drums 50 rotate (arrow R in the figure), the solidified shells that have grown on the drum surfaces S of both cooling drums 50, which are sealed by the cooling drums 50 and 50, move downward, resulting in kissing.
The solidification of the entire thickness of the slab 53 is completed by coalescence at the point.

しかし、上記従来の方法では、耐火物フィルター47で
溶湯の流勢を弱めてはいるが、新たに供給された高温の
吐出溶湯流の全てが、下方あるいはドラム面に向けて流
出する状態は基本的に解消されておらず、その効果に限
界があった。
However, in the conventional method described above, although the flow force of the molten metal is weakened by the refractory filter 47, basically all of the newly supplied high-temperature discharged molten metal flows downward or toward the drum surface. The issue has not been completely resolved, and there are limits to its effectiveness.

また、広幅冷延板の製造に対応できる広幅鋳片を鋳造す
るには、冷却ドラム軸方向に長い溶湯吐出口48を持っ
た大型の広幅注湯ノズルを用いる必要があるが、長い溶
湯吐出口48を覆うためには大きくて高価な耐火物フィ
ルター47が必要になり、注湯ノズルコストが上昇する
という問題があった。
In addition, in order to cast wide slabs that can be used to manufacture wide cold-rolled sheets, it is necessary to use a large and wide pouring nozzle that has a long molten metal discharge port 48 in the axial direction of the cooling drum. 48 requires a large and expensive refractory filter 47, which poses a problem of increasing the cost of the pouring nozzle.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、大型化を必要とせずに、湯溜り内注湯流によ
る凝固部の再溶解を防止できる双ドラム式連続鋳造装置
用注湯ノズルを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pouring nozzle for a twin-drum continuous casting apparatus that can prevent the solidified portion from being remelted by the pouring flow within the tundish without requiring an increase in size.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、本発明によれば、ドラム面を対面させて
平行に配置した一対の冷却ドラムと、これら冷却ドラム
の両端面に押しつけた一対のサイド堰とで形成した底無
し鋳型内に、金属溶湯を注入して湯溜りを形成する双ド
ラム式連続鋳造装置の注湯ノズルにおいて、 上部に溶湯流入口および下部に溶湯流出口を存する内ノ
ズルと、 上記内ノズルの少なくとも上記溶湯流出口の部分を収容
し、この内ノズル溶湯流出口からの溶湯を受け入れる注
湯室を下端に有する外ノズルと、上記外ノズルの下方に
配置され、冷却ドラム軸方向に溶湯を吐出する吐出口を
有する溶湯流緩衝室とを有し、 上記外ノズルの注湯室と上記溶湯流緩衝室とが厚さ方向
の貫通孔を多数設けた耐火性仕切板を介して連通し、且
つ上記溶湯流緩衝室の吐出口が厚さ方向の貫通孔を多数
設けた耐火性仕切板で覆われていることを特徴とする双
ドラム式連続鋳造装置用注湯ノズルによって達成される
According to the present invention, metal is placed in a bottomless mold formed by a pair of cooling drums arranged in parallel with their drum surfaces facing each other, and a pair of side weirs pressed against both end surfaces of these cooling drums. A pouring nozzle for a twin-drum continuous casting device that injects molten metal to form a pool, comprising: an inner nozzle having a molten metal inlet at the top and a molten metal outlet at the bottom; and at least a portion of the molten metal outlet of the inner nozzle. and an outer nozzle having a pouring chamber at its lower end that receives the molten metal from the molten metal outlet of the inner nozzle, and a molten metal flow having a discharge port disposed below the outer nozzle and discharging the molten metal in the axial direction of the cooling drum. a buffer chamber, the pouring chamber of the outer nozzle and the molten metal flow buffer chamber communicate with each other via a fireproof partition plate provided with a number of through holes in the thickness direction, and the discharge of the molten metal flow buffer chamber This is achieved by a pouring nozzle for a twin-drum continuous casting machine whose outlet is covered with a fire-resistant partition plate having a large number of through holes in the thickness direction.

非常に広幅の鋳片を鋳造する場合には、上記本発明の注
湯ノズルにおいて、請求項1記載の注湯ノズルにおいて
、上記溶湯流緩衝室と上記吐出口で連通ずる溶湯流補助
緩衝室であって、冷却ドラム軸方向に溶湯供給量の大部
分を吐出する、厚さ方向の貫通孔を多数設けた耐火性仕
切板で覆われた主吐出口と、下方および冷却ドラム面の
少なくとも一方に向けて溶湯供給量の残部分を吐出する
補助吐出口とを有する溶湯流補助緩衝室を設けることが
できる。
When casting a very wide slab, in the pouring nozzle of the present invention, in the pouring nozzle according to claim 1, the molten metal flow auxiliary buffer chamber communicates with the molten metal flow buffer chamber and the discharge port. There is a main discharge port covered with a fire-resistant partition plate with many through holes in the thickness direction, which discharges most of the molten metal supply in the axial direction of the cooling drum, and at least one of the lower part and the cooling drum surface. A molten metal flow auxiliary buffer chamber having an auxiliary outlet for discharging the remaining portion of the molten metal supply toward the molten metal can be provided.

〔作用〕[Effect]

本発明の注湯ノズルにおいては、内ノズルの溶湯流入口
から内ノズル内に導入された溶湯が、内ノズルの溶湯流
出口から外ノズルの注湯室内に入り、注湯室から耐火性
仕切板の貫通孔を這って溶湯流緩衝室に入り、次に溶湯
流緩衝室から別の耐火性仕切板の貫通孔を通って吐出さ
れる。溶湯流は上記進行過程で、先ず注湯室から緩衝室
へ流入する際に仕切板で流勢を緩和され、次に緩衝室中
を通過することにより流勢を緩和され、最後に緩衝室か
ら吐出される際に再び仕切板で流勢を緩和される。溶湯
流はこのように3段階の流勢緩和作用を受けた後、最終
的に冷却ドラム軸方向に、すなわちサイド堰に向けて湯
溜り内に吐出される。
In the pouring nozzle of the present invention, the molten metal introduced into the inner nozzle from the molten metal inlet of the inner nozzle enters the molten metal pouring chamber of the outer nozzle from the molten metal outlet of the inner nozzle, and from the molten metal pouring chamber, the refractory partition plate It enters the melt flow buffer chamber through a through hole in the melt flow buffer chamber, and is then discharged from the melt flow buffer chamber through a through hole in another refractory partition plate. In the above process, the flow of molten metal is first relaxed by the partition plate as it flows from the pouring chamber to the buffer chamber, then the flow force is relaxed by passing through the buffer chamber, and finally the flow force is relaxed from the buffer chamber. When being discharged, the flow force is relaxed again by the partition plate. After the molten metal flow is thus subjected to three stages of flow relaxation effects, it is finally discharged into the molten metal pool in the axial direction of the cooling drum, that is, toward the side weir.

吐出された溶湯流は湯溜り内で一旦サイド堰に当たった
後、両サイドから冷却ドラム面に沿って滑らかに進行す
るので、溶湯流が流勢の強いまま冷却ドラム面や下方の
キッシング・ポイント直接当たることがない。
The discharged molten metal flow hits the side weir in the pool and then smoothly advances along the cooling drum surface from both sides, so the molten metal flow remains strong and reaches the cooling drum surface and the kissing point below. There is no direct contact.

また、湯溜りへの溶湯供給を両サイドから行うので、湯
溜りへの吐出口自体を大きくすることなく広幅鋳片を鋳
造することができる。
Furthermore, since the molten metal is supplied to the trough from both sides, wide slabs can be cast without enlarging the discharge port itself to the trough.

本発明の一態様においては、上記3段階の緩和作用を行
った後、供給溶湯量の大部分については更に補助緩衝室
を道通することによる緩和作用と補助緩衝室から吐出さ
れる際の仕切板による緩和作用とを付加し、合計5段階
の緩和作用を行って冷却ドラム軸方向に供給しながら、
残りの比較的少量の溶湯については上記3段階に補助緩
衝室通過による緩和作用を付加し、合計4段階の緩和作
用を行って下方および/または冷却ドラム面に向けて供
給することができるので、非常に広幅の鋳片を鋳造する
際にも、冷却ドラム面およびキッシング・ポイントでの
凝固に悪影響を及ぼさずに十分な量の溶湯を供給するこ
とができる。この場合にも、緩衝室の吐出口に補助緩衝
室を接続した形にすればよいので、湯溜りへの吐出口自
体を大きくする必要はない。
In one aspect of the present invention, after performing the above-mentioned three stages of relaxation, the majority of the supplied molten metal is further passed through an auxiliary buffer chamber to provide a relaxation effect and a partition when discharged from the auxiliary buffer chamber. In addition to the relaxation effect of the plate, a total of 5 stages of relaxation effect are performed and the cooling drum is supplied in the axial direction.
For the remaining relatively small amount of molten metal, a relaxation effect by passing through the auxiliary buffer chamber is added to the above three stages, and a total of four stages of relaxation action can be performed and the molten metal can be supplied downward and/or toward the cooling drum surface. Even when casting very wide slabs, a sufficient amount of molten metal can be supplied without adversely affecting solidification on the cooling drum surface and at the kissing point. In this case as well, the auxiliary buffer chamber may be connected to the discharge port of the buffer chamber, so there is no need to enlarge the discharge port itself into the pool.

以下に、添付図面を参照し、実施例により本発明を更に
詳細に説明する。
In the following, the invention will be explained in more detail by means of examples with reference to the accompanying drawings.

〔実施例1〕 第1図(a)〜(d)に、本発明に従った注湯ノズルの
一例を示す、同図(a)は注湯ノズル11を冷却ドラム
50間の鋳造実施位置に配置した状態を冷却ドラム50
の端面方向から見た図、同図(b)は同図(a)の線B
−Bに沿った断面図、同図(c)は同図(a)の矢印C
の方向がら見た図、および同図(d)は同図(a)、(
b)、および(c)のそれぞれ線D−D、D’ −D’
 、D”−D″に対応する注湯ノズル11の断面を下方
の冷却ドラム50、サイド堰51、冷却ドラム50表面
S上の場面Mの輪郭線m、およびキッシング・ポイント
にと共に示す図である。
[Example 1] FIGS. 1(a) to 1(d) show an example of a pouring nozzle according to the present invention. FIG. The cooling drum 50 shows the arranged state.
A view seen from the end surface direction, the same figure (b) is the line B of the same figure (a)
-A cross-sectional view along the line B, the same figure (c) is the arrow C in the same figure (a)
The figure seen from the direction of , and the same figure (d) are the same figure (a), (
Lines D-D and D'-D' in b) and (c), respectively.
, D''-D'' is a diagram showing the cross section of the pouring nozzle 11 corresponding to the lower cooling drum 50, the side weir 51, the contour line m of the scene M on the surface S of the cooling drum 50, and the kissing point. .

注湯ノズル11は、上部に溶湯流人口14および下部に
溶湯流出口15を持つ内ノズル12と、内ノズル12を
上端のフランジ部で保持し且つ内ノズル12のフランジ
部より下方部分を収容する外ノズル13と、外ノズル1
3の下方に配置され、冷却ドラム50の軸方向に溶湯を
吐出する吐出口18を有する溶湯流緩衝室19とを有す
る。内ノズル12と外ノズル13の間の空間は、内ノズ
ル12の溶湯流出口15からの溶湯を受け入れる注湯室
16として機能する。外ノズル13の注湯室16と溶湯
緩衝室19とは多数の厚さ方向貫通孔を設けた耐火性仕
切板エフを介して連通している。
The pouring nozzle 11 includes an inner nozzle 12 having a molten metal flow port 14 at the upper part and a molten metal outlet 15 at the lower part, the inner nozzle 12 is held by the flange at the upper end, and the part below the flange of the inner nozzle 12 is accommodated. Outer nozzle 13 and outer nozzle 1
3, and has a molten metal flow buffer chamber 19 having a discharge port 18 for discharging the molten metal in the axial direction of the cooling drum 50. The space between the inner nozzle 12 and the outer nozzle 13 functions as a pouring chamber 16 that receives the molten metal from the molten metal outlet 15 of the inner nozzle 12 . The pouring chamber 16 of the outer nozzle 13 and the molten metal buffer chamber 19 communicate with each other via a fireproof partition plate F provided with a large number of through holes in the thickness direction.

溶湯緩衝室19の吐出口18は多数の厚さ方向貫通孔を
設けた耐火性仕切板で覆われている。
The discharge port 18 of the molten metal buffer chamber 19 is covered with a fire-resistant partition plate provided with a large number of through holes in the thickness direction.

耐火性仕切板17および18は、厚さ方向に多数のスリ
ットを設けるように耐火煉瓦等を配置して組み立てたり
、厚さ方向に多数の一方向直線状の孔を設けた耐火煉瓦
、または多孔質(ポーラス)煉瓦等で作製する。ポーラ
ス煉瓦は高価なので、スリット形成または一方向直線孔
煉瓦を用いることが経済的である。第3図(a)および
(b)に厚さ方向に一方向直線状孔を多数設けた耐火煉
瓦の例を示す、同図(b)は同図(a)の折れ線I−■
に沿った断面を示す、同図の一方向直線孔煉瓦31は、
煉瓦素材を混練・成形した未焼成状態で剣山のような形
の道具を用いて厚さt方向に多数の貫通孔32を開け、
その状態で焼成することにより容易に作製できるので非
常に安価である。
The fireproof partition plates 17 and 18 are assembled by arranging firebricks or the like so as to have many slits in the thickness direction, firebricks with many unidirectional straight holes in the thickness direction, or porous. Manufactured from porous bricks, etc. Since porous bricks are expensive, it is economical to use slit-formed or one-way straight hole bricks. Figures 3(a) and 3(b) show an example of a refractory brick with a large number of unidirectional straight holes in the thickness direction.
The one-way straight hole brick 31 shown in the same figure shows a cross section along
A large number of through holes 32 are made in the thickness direction of the kneaded and shaped brick material in an unfired state using a tool shaped like a tsurugisan.
It can be easily produced by firing in that state, so it is very inexpensive.

第1図の注湯ノズル11は、溶湯流緩衝室19の吐出孔
18から冷却ドラム50の軸方向にのみ溶湯を吐出する
。注湯ノズル11への溶湯供給から鋳片53が形成され
るまでの過程は次の通りである。
The pouring nozzle 11 shown in FIG. 1 discharges the molten metal only in the axial direction of the cooling drum 50 from the discharge hole 18 of the molten metal flow buffer chamber 19. The process from supplying the molten metal to the pouring nozzle 11 to forming the slab 53 is as follows.

鋳造開始に当たり、溶湯流緩衝室19が湯溜り52の所
期場面Mの直下に位置するように注湯ノズル11を予め
配置する。このとき耐火性仕切板17が湯面Mよりも上
方に位置すると、溶湯流緩衝室19に気泡が溜まること
があるので、耐火性仕切板17は湯面Mと同じ高さか、
またはそれよりもやや低い位置に配設することが好まし
い、溶解・精錬炉等から取鍋等により双ドラム式連続鋳
造装置に搬送された溶湯は、注湯ノズル11上に載置さ
れた図示しないタンデイツシュにより、内ノズル12の
溶湯流入口14に供給される。内ノズル12の溶湯流出
口15から流出した溶湯は外ノズル13の注湯室16内
に入り、耐火性仕切板17の厚さ方向貫通孔(例えば第
3図の32)を通って溶湯流緩衝室19に入る。溶湯流
は緩衝室19内で冷却ドラム50の軸方向の2つの流れ
になって両側の吐出孔18から湯溜り52へと供給され
る。冷却ドラム50間の湯溜り52は冷却ドラム50の
両端面に押しつけられたサイド堰51によってシールさ
れている。両方の冷却ドラム50のドラム面S上で成長
した凝固殻が冷却ドラム50の回転(図中の矢印R)に
伴って下方へ進行し、キッシング・ポイントにで合体し
て鋳片53全厚の凝固が完了する。
At the start of casting, the pouring nozzle 11 is arranged in advance so that the molten metal flow buffer chamber 19 is located directly below the desired area M of the pool 52. At this time, if the refractory partition plate 17 is located above the molten metal level M, air bubbles may accumulate in the molten metal flow buffer chamber 19.
The molten metal transported from the melting/refining furnace or the like to the twin-drum continuous casting device by a ladle or the like is placed on the pouring nozzle 11 (not shown), which is preferably disposed at a slightly lower position. The molten metal is supplied to the molten metal inlet 14 of the inner nozzle 12 by the tundish. The molten metal flowing out from the molten metal outlet 15 of the inner nozzle 12 enters the pouring chamber 16 of the outer nozzle 13, passes through the through hole in the thickness direction of the refractory partition plate 17 (for example, 32 in FIG. 3), and is buffered for molten metal flow. Enter room 19. The molten metal flow becomes two flows in the axial direction of the cooling drum 50 within the buffer chamber 19 and is supplied to the molten metal reservoir 52 from the discharge holes 18 on both sides. The pool 52 between the cooling drums 50 is sealed by side weirs 51 pressed against both end surfaces of the cooling drum 50. The solidified shells that have grown on the drum surfaces S of both cooling drums 50 advance downward as the cooling drums 50 rotate (arrow R in the figure), coalesce at the kissing point, and form the entire thickness of the slab 53. Coagulation is complete.

本実施例の注湯ノズル11を用いることにより、仕切板
17.18および緩衝室19による3段階の緩衝作用に
よって流勢を非常に緩和した状態で且つ冷却ドラム50
の軸方向のみに、湯溜り52への溶湯供給を行うことが
できる。これにより、冷却ドラム50のドラム面S上に
形成される凝固殻の再溶融とキッシング・ポイントにで
の凝固完了部の再溶融とを同時に防止することができる
By using the pouring nozzle 11 of this embodiment, the flow force is extremely relaxed due to the three-stage buffering action of the partition plates 17 and 18 and the buffer chamber 19, and the cooling drum 50
Molten metal can be supplied to the pool 52 only in the axial direction. This makes it possible to simultaneously prevent the remelting of the solidified shell formed on the drum surface S of the cooling drum 50 and the remelting of the solidified portion at the kissing point.

本実施例の注湯ノズル11は、冷却ドラム50の軸方向
に溶湯供給を行うので、連通部19も吐出口18も大き
くすることなく広幅鋳片の鋳造を行える。したがって、
連通部19および吐出口18の耐火性仕切板として大き
くて高価な耐火物板を用いる必要がないため、注湯ノズ
ルのコストを最小限に抑制できる。
Since the pouring nozzle 11 of this embodiment supplies the molten metal in the axial direction of the cooling drum 50, a wide slab can be cast without enlarging the communication portion 19 or the discharge port 18. therefore,
Since there is no need to use a large and expensive refractory plate as the refractory partition plate of the communication portion 19 and the discharge port 18, the cost of the pouring nozzle can be suppressed to a minimum.

〔実施例2〕 第2図(a)〜(e)に、非常に広幅の鋳片の鋳造に適
した本発明の注湯ノズルの一例を示す。
[Example 2] Figures 2(a) to 2(e) show an example of the pouring nozzle of the present invention suitable for casting very wide slabs.

同図(a)は注湯ノズル201を冷却ドラム50間の鋳
造実施位置に配置した状態を冷却ドラム50の端面方向
から見た図、同図(b)は同図(a)の線E−Hに沿っ
た断面図、同図CC>は同図(a)の矢印Fの方向から
見た図、同図(d)は同図(a)、(b)、および(C
)のそれぞれ線G−G、G“−G″ Qllc12”に
対応する注湯ノズル201の断面を下方の冷却ドラム5
0、サイド堰51、冷却ドラム50表面S上の湯面Mの
輪郭線m、およびキッシング・ポイントにと共に示す図
、および同図Ce)は同図(c)あるいは(d)の線H
−Hあるいは線H’−H’に沿った断面図である。
Figure (a) is a view of the pouring nozzle 201 placed at the casting position between the cooling drums 50 when viewed from the end surface direction of the cooling drum 50, and figure (b) is the line E-- in Figure (a). A cross-sectional view taken along line H, the same figure CC> is a view seen from the direction of the arrow F in the same figure (a), and the same figure (d) shows the same figure (a), (b), and (C
), the cross section of the pouring nozzle 201 corresponding to the lines G-G, G"-G"Qllc12" is shown below on the cooling drum 5
0, the side weir 51, the contour line m of the hot water level M on the cooling drum 50 surface S, and the kissing point, and the figure Ce) is the same as the line H in the figure (c) or (d).
-H or a cross-sectional view along line H'-H'.

注湯ノズル201は、上部に溶湯流人口204および下
部に溶湯流出口205を持つ内ノズル202と、内ノズ
ル202を上端のフランジ部で保持し且つ内ノズル20
2のフランジ部より下方部分を収容する外ノズル203
と、外ノズル203の下方に配置され、冷却ドラム50
の軸方向に溶湯を吐出する吐出口208を有する溶湯流
緩衝室209とを有し、更に、この緩衝室209とその
吐出口208で連通ずる補助緩衝室211であって、主
吐出口210および補助吐出口212および213を有
する溶湯流補助緩衝室211が設けられている。補助緩
衝室211の主吐出口210は冷却ドラム50の軸方向
に溶湯供給量の大部分を吐出し、補助緩衝室211の補
助吐出口212および213は溶湯供給量の残部分をそ
れぞれ冷却ドラム50面に向けてまたは下方に吐出する
The pouring nozzle 201 includes an inner nozzle 202 having a molten metal flow port 204 at the upper part and a molten metal outlet 205 at the lower part, and an inner nozzle 202 that holds the inner nozzle 202 by a flange section at the upper end.
An outer nozzle 203 that accommodates a portion below the flange portion of No. 2
The cooling drum 50 is arranged below the outer nozzle 203.
A molten metal flow buffer chamber 209 having a discharge port 208 for discharging molten metal in the axial direction of A melt flow auxiliary buffer chamber 211 having auxiliary discharge ports 212 and 213 is provided. The main discharge port 210 of the auxiliary buffer chamber 211 discharges most of the molten metal supply in the axial direction of the cooling drum 50, and the auxiliary discharge ports 212 and 213 of the auxiliary buffer chamber 211 discharge the remainder of the molten metal supply to the cooling drum 50, respectively. Discharge toward a surface or downwards.

内ノズル202と外ノズル203の間の空間は、内ノズ
ル202の溶湯流出口205からの溶湯を受け入れる注
湯室206として機能する。注湯室206と溶湯緩衝室
209とは多数の厚さ方向貫通孔を設けた耐火性仕切板
207を介して連通している。緩衝室209と補助緩衝
室211とは、緩衝室209の吐出口208を覆った厚
さ方向貫通孔を多数設けた耐火性仕切板を介して連通し
ている。補助緩衝室211の主吐出口210は厚さ方向
貫通孔を多数設けた耐火性仕切板で覆われている。耐火
性仕切板207,208および補助吐出口212,21
3は、第3図(a)、(b)のような厚さ方向貫通孔3
2を多数設けた耐火性仕切板31を用いて形成すること
もできるが、第2図(b)および(C)のようなスリッ
ト状に形成することもできる。
The space between the inner nozzle 202 and the outer nozzle 203 functions as a pouring chamber 206 that receives the molten metal from the molten metal outlet 205 of the inner nozzle 202 . The pouring chamber 206 and the molten metal buffer chamber 209 communicate with each other via a fireproof partition plate 207 provided with a large number of through holes in the thickness direction. The buffer chamber 209 and the auxiliary buffer chamber 211 communicate with each other via a fire-resistant partition plate that covers the discharge port 208 of the buffer chamber 209 and has a large number of through holes in the thickness direction. The main discharge port 210 of the auxiliary buffer chamber 211 is covered with a fire-resistant partition plate provided with a large number of through holes in the thickness direction. Fireproof partition plates 207, 208 and auxiliary discharge ports 212, 21
3 is a through hole 3 in the thickness direction as shown in FIGS. 3(a) and 3(b).
It can be formed using a fire-resistant partition plate 31 provided with a large number of partition plates 2, or it can also be formed in a slit shape as shown in FIGS. 2(b) and 2(C).

耐火性仕切板207.20B、および210は、実施例
1と同様に作製することができる。
The fireproof partition plates 207, 20B and 210 can be produced in the same manner as in Example 1.

第2図の注湯ノズル201は、補助緩衝室211の吐出
孔210から冷却ドラム50の軸方向に溶湯供給量の大
部分を吐出し且つ補助緩衝室211の補助吐出口212
および213からそれぞれ冷却ドラム50面に向けてま
たは下方に溶湯供給量の残部分を吐出する。
The pouring nozzle 201 shown in FIG.
and 213, the remaining portion of the molten metal supply is discharged toward the surface of the cooling drum 50 or downward.

注湯ノズル201への溶湯供給から鋳片53が形成され
るまでの過程は、溶湯流緩衝室209までの過程につい
ては実施例1の溶湯流緩衝室19までの過程と同様であ
り、それ以降は次の通りである。
The process from supplying the molten metal to the pouring nozzle 201 to forming the slab 53 is the same as the process up to the molten metal flow buffer chamber 19 in Example 1 with respect to the process up to the molten metal flow buffer chamber 209, and thereafter. is as follows.

緩衝室209内で冷却ドラム50の軸方向の2つの流れ
になった溶湯流は、両側の吐出孔208から耐火性仕切
板の厚さ方向貫通孔を通うて隣接する補助緩衝室211
内に流入し、大部分はそのまま冷却ドラム50の軸方向
に進行して主吐出口210の耐火性仕切板の厚さ方向貫
通孔を通って冷却ドラム50の軸方向に湯溜り52へと
供給される。溶湯の残部分は、下方および側方の補助吐
出口212および213を通って下方または冷却ドラム
50面に向けて湯溜り52へと供給される。
The two molten metal flows in the axial direction of the cooling drum 50 within the buffer chamber 209 pass from the discharge holes 208 on both sides through the through holes in the thickness direction of the fireproof partition plate, and flow into the adjacent auxiliary buffer chamber 211.
Most of the water flows in the axial direction of the cooling drum 50 as it is, passes through the through hole in the thickness direction of the fireproof partition plate of the main discharge port 210, and is supplied to the sump 52 in the axial direction of the cooling drum 50. be done. The remaining portion of the molten metal is supplied to the sump 52 through the lower and side auxiliary discharge ports 212 and 213, downward or toward the surface of the cooling drum 50.

冷却ドラム50間の湯溜り52は冷却ドラム50の両端
面に押しつけられたサイド堰51によってシールされて
いる。両方の冷却ドラム50のドラム面S上で成長した
凝固殻が冷却ドラム500回転(図中の矢印D)に伴っ
て下方へ進行し、キッシング・ポイントにで合体して鋳
片53全厚の凝固が完了する。
The pool 52 between the cooling drums 50 is sealed by side weirs 51 pressed against both end surfaces of the cooling drum 50. The solidified shells grown on the drum surfaces S of both cooling drums 50 advance downward as the cooling drums rotate 500 times (arrow D in the figure), coalesce at the kissing point, and solidify the entire thickness of the slab 53. is completed.

本実施例の注湯ノズル201を用いることにより、仕切
板207.208および緩衝室209、補助緩衝室21
1による4段階の緩衝作用を行った後、溶湯供給量の大
部分については更に仕切板210の緩衝作用を付加して
合計5段階の緩衝作用を行った状態で冷却ドラム50の
軸方向に、また溶湯供給量の残部分については上記4段
階の緩衝作用を行った状態で下方および冷却ドラム50
面に向けて、湯溜り52への溶湯供給を行うことができ
る。補助吐出口212および213からの吐出流は、4
段階の緩衝作用を受けており、また吐出流量も主吐出口
210からの吐出流量よりもかなり少なくすることがで
きる。これにより、冷却ドラム50のドラム面S上に形
成される凝固殻の再溶融とキッシング・ポイントにでの
凝固完了部の再溶融とを同時に防止しながら、非常に広
幅の鋳片を鋳造することができる。
By using the pouring nozzle 201 of this embodiment, the partition plates 207 and 208, the buffer chamber 209, and the auxiliary buffer chamber 21
After performing the four-stage buffering action according to No. 1, the buffering action of the partition plate 210 is further added for most of the molten metal supply amount, and a total of five stages of buffering action are performed, and in the axial direction of the cooling drum 50, The remainder of the molten metal supply is handled by the cooling drum 50 below and the cooling drum 5
Molten metal can be supplied to the pool 52 toward the surface. The discharge flow from the auxiliary discharge ports 212 and 213 is 4
The discharge flow rate can be considerably lower than the discharge flow rate from the main discharge port 210. As a result, extremely wide slabs can be cast while simultaneously preventing the remelting of the solidified shell formed on the drum surface S of the cooling drum 50 and the remelting of the solidified portion at the kissing point. Can be done.

本実施例の注湯ノズル201は、冷却ドラム50の軸方
向に溶湯供給量の大部分を吐出するので、連通部207
.208も吐出口210も大きくすることなく非常に広
幅の鋳片を鋳造できる。また、補助吐出口212.21
3は単なる開口とすればよく、耐火性仕切板を用いる必
要はない、したがって、連通部207.208および吐
出口210の仕切板として大きくて高価な耐火物板を用
いる必要がないため、注湯ノズルのコストを最小限に抑
制できる。
Since the pouring nozzle 201 of this embodiment discharges most of the molten metal supply in the axial direction of the cooling drum 50, the communication portion 207
.. Very wide slabs can be cast without enlarging either the discharge port 208 or the discharge port 210. In addition, the auxiliary discharge port 212.21
3 may be a simple opening, and there is no need to use a refractory partition plate.Therefore, there is no need to use large and expensive refractory plates as partition plates for the communication portions 207 and 208 and the discharge port 210, so pouring Nozzle costs can be kept to a minimum.

本発明の注湯ノズルにおいては、最終的に湯溜り52へ
溶湯流を吐出する吐出口(18,210)を覆う耐火性
仕切板の貫通孔は、その総断面積を出来るだけ大きくし
て、吐出流の流速を遅くさせることが望ましい。
In the pouring nozzle of the present invention, the total cross-sectional area of the through-holes of the fireproof partition plate covering the discharge ports (18, 210) that ultimately discharge the molten metal flow into the molten metal reservoir 52 is made as large as possible. It is desirable to slow down the flow rate of the discharge stream.

また、注湯室(16,206)と緩衝室(19,209
)との間の耐火性仕切板の連通孔総断面積は、内ノズル
(12,202)の流出口(15,205)から注湯室
(16,206)内への溶湯落下による気泡を緩衝室(
19,209)内へ巻き込まないために、注湯室(16
,2o6)内に適当な高さの場面が維持されるように設
定することが望ましい。
Also, there is a pouring room (16,206) and a buffer room (19,209).
) The total cross-sectional area of the communication hole of the fireproof partition plate between the inner nozzle (12, 202) is designed to buffer air bubbles caused by the molten metal falling from the outlet (15, 205) of the inner nozzle (12, 202) into the pouring chamber (16, 206). Room (
19, 209) to prevent it from getting caught in the pouring chamber (16).
, 2o6), it is desirable to maintain the scene at an appropriate height.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の注湯ノズルによれば、大
型化を必要とせず、冷却ドラム面上およびキッシング・
ポイントでの凝固部の再溶解に起因する鋳片割れやブレ
ークアウトを防止し、安定して双ドラム式連続鋳造を行
うことができる。
As explained above, according to the pouring nozzle of the present invention, there is no need to increase the size of the pouring nozzle, and there is no need to increase the size of the pouring nozzle.
It is possible to prevent slab cracking and breakout caused by remelting of solidified parts at points, and to perform twin-drum continuous casting in a stable manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は、本発明の注湯ノズルの一例を
鋳造実施時の配置状態において示す(a)側面図、(b
)断面図、(C)正面図、および(d)平面図(一部断
面図)、 第2図(a)〜(e)は、本発明の注湯ノズルの他の一
例を鋳造実施時の配置状態において示す(a)側面図、
(b)断面図、(c)正面図、(d)平面図(一部断面
図)、および(e)断面図、 第3図(a)および(b)は、本発明の注湯ノズルに用
いる耐火性仕切板を作製するための一方向直線孔煉瓦の
例を示す(a)斜視図および(b)一部切断した斜視図
、および 第4図(a)および(b)は、従来の注湯ノズルを鋳造
実施時の配置状態において示す(a)側面図および(b
)断面図である。 11.201,41:注湯ノズル、 12.202.42:内ノズル、 13.203.43:外ノズル、 14.204,44:内ノズルの溶湯流入口、15.2
05,45:内ノズルの溶湯流出口、16.206:注
湯室、46:空間、 17.207:耐火性仕切板連通部、 47:耐火物フィルター 18:耐火性仕切板吐出口、 208:耐火性仕切板連通部、 19.209:溶湯流緩衝室、 210:耐火性仕切板吐出口、 211:溶湯流補助緩衝室、 50:冷却ドラム、51:サイド堰、 52:湯溜り、53:鋳片、 S:冷却ドラム50のドラム面、 M:湯溜り52の湯面、 mニドラム面S上の湯面Mの輪郭線、 K:キッシング・ポイント。
1(a) to 1(d) are (a) a side view and (b) a side view showing an example of the pouring nozzle of the present invention in an arrangement state during casting; FIG.
) sectional view, (C) front view, and (d) plan view (partial sectional view). (a) Side view shown in the arranged state,
(b) sectional view, (c) front view, (d) plan view (partial sectional view), and (e) sectional view. (a) A perspective view and (b) a partially cut away perspective view showing an example of a one-way straight hole brick for producing a fireproof partition plate to be used, and FIGS. 4(a) and (b) (a) Side view and (b) showing the pouring nozzle in its arrangement state during casting.
) is a sectional view. 11.201, 41: Pouring nozzle, 12.202.42: Inner nozzle, 13.203.43: Outer nozzle, 14.204, 44: Molten metal inlet of inner nozzle, 15.2
05, 45: Molten metal outlet of inner nozzle, 16.206: Pouring chamber, 46: Space, 17.207: Fireproof partition plate communication part, 47: Refractory filter 18: Fireproof partition plate discharge port, 208: Fireproof partition plate communication section, 19.209: Molten metal flow buffer chamber, 210: Fireproof partition plate discharge port, 211: Molten metal flow auxiliary buffer chamber, 50: Cooling drum, 51: Side weir, 52: Water pool, 53: slab, S: drum surface of the cooling drum 50, M: hot water surface of the molten metal pool 52, m contour line of the hot water surface M on the drum surface S, K: kissing point.

Claims (1)

【特許請求の範囲】 1、ドラム面を対面させて平行に配置した一対の冷却ド
ラムと、これら冷却ドラムの両端面に押しつけた一対の
サイド堰とで形成した底無し鋳型内に、金属溶湯を注入
して湯溜りを形成する双ドラム式連続鋳造装置の注湯ノ
ズルにおいて、上部に溶湯流入口および下部に溶湯流出
口を有する内ノズルと、 上記内ノズルの少なくとも上記溶湯流出口の部分を収容
し、この内ノズル溶湯流出口からの溶湯を受け入れる注
湯室を下端に有する外ノズルと、上記外ノズルの下方に
配置され、冷却ドラム軸方向に溶湯を吐出する吐出口を
有する溶湯流緩衝室とを有し、 上記外ノズルの注湯室と上記溶湯流緩衝室とが厚さ方向
の貫通孔を多数設けた耐火性仕切板を介して連通し、且
つ上記溶湯流緩衝室の吐出口が厚さ方向の貫通孔を多数
設けた耐火性仕切板で覆われていることを特徴とする双
ドラム式連続鋳造装置用注湯ノズル。 2、請求項1記載の注湯ノズルにおいて、上記溶湯流緩
衝室と上記吐出口で連通する溶湯流補助緩衝室であって
、冷却ドラム軸方向に溶湯供給量の大部分を吐出する、
厚さ方向の貫通孔を多数設けた耐火性仕切板で覆われた
主吐出口と、下方および冷却ドラム面の少なくとも一方
に向けて溶湯供給量の残部分を吐出する補助吐出口とを
有する溶湯流補助緩衝室を設けたことを特徴とする注湯
ノズル。
[Claims] 1. Molten metal is poured into a bottomless mold formed by a pair of cooling drums arranged in parallel with their drum surfaces facing each other and a pair of side weirs pressed against both end surfaces of these cooling drums. A pouring nozzle for a twin-drum continuous casting device that forms a pool by forming a molten metal pool includes an inner nozzle having a molten metal inlet at an upper part and a molten metal outlet at a lower part; an outer nozzle having a pouring chamber at its lower end that receives the molten metal from the molten metal outlet of the inner nozzle; and a molten metal flow buffer chamber disposed below the outer nozzle and having a discharge port for discharging the molten metal in the axial direction of the cooling drum. The pouring chamber of the outer nozzle and the molten metal flow buffer chamber communicate with each other via a fire-resistant partition plate provided with a large number of through holes in the thickness direction, and the discharge port of the molten metal flow buffer chamber has a thickness A pouring nozzle for a twin-drum continuous casting machine characterized by being covered with a fire-resistant partition plate having a large number of horizontal through holes. 2. The pouring nozzle according to claim 1, wherein the molten metal flow auxiliary buffer chamber communicates with the molten metal flow buffer chamber through the discharge port, and discharges most of the molten metal supply in the axial direction of the cooling drum.
A molten metal having a main discharge port covered with a fire-resistant partition plate having a large number of through holes in the thickness direction, and an auxiliary discharge port for discharging the remainder of the molten metal supply toward at least one of the downward direction and the cooling drum surface. A pouring nozzle characterized by having a flow auxiliary buffer chamber.
JP9512590A 1990-04-12 1990-04-12 Pouring nozzle for twin-drum continuous casting equipment Expired - Lifetime JP2749179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9512590A JP2749179B2 (en) 1990-04-12 1990-04-12 Pouring nozzle for twin-drum continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9512590A JP2749179B2 (en) 1990-04-12 1990-04-12 Pouring nozzle for twin-drum continuous casting equipment

Publications (2)

Publication Number Publication Date
JPH03294051A true JPH03294051A (en) 1991-12-25
JP2749179B2 JP2749179B2 (en) 1998-05-13

Family

ID=14129110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9512590A Expired - Lifetime JP2749179B2 (en) 1990-04-12 1990-04-12 Pouring nozzle for twin-drum continuous casting equipment

Country Status (1)

Country Link
JP (1) JP2749179B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06600A (en) * 1992-06-15 1994-01-11 Hitachi Zosen Corp Pouring nozzle in continuous casting equipment having moving mold wall
AU710986B2 (en) * 1996-01-24 1999-10-07 Bluescope Steel Limited Metal delivery system for continuous caster
CN1072059C (en) * 1996-01-24 2001-10-03 石川岛播磨重工业株式会社 Metal delivery system for continuous caster

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06600A (en) * 1992-06-15 1994-01-11 Hitachi Zosen Corp Pouring nozzle in continuous casting equipment having moving mold wall
AU710986B2 (en) * 1996-01-24 1999-10-07 Bluescope Steel Limited Metal delivery system for continuous caster
CN1072059C (en) * 1996-01-24 2001-10-03 石川岛播磨重工业株式会社 Metal delivery system for continuous caster

Also Published As

Publication number Publication date
JP2749179B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
JPH03294051A (en) Pouring nozzle for twin drum type continuous casting apparatus
JP2790781B2 (en) Injection nozzle for continuous casting of wide thin slab
JP3214994B2 (en) Continuous casting method of thin slab and immersion nozzle for continuous casting
JPS61165257A (en) Pouring device in continuous casting device
ITMI20000458A1 (en) PERFECTED UNLOADER FOR CONTINUOUS CASTING
JPS5874257A (en) Method and device for charging of molten metal in continuous casting
RU2111081C1 (en) Method of continuous casting of steels of various grades and device for its realization
JPS6483338A (en) Twin roll type continuous casting machine
JPS5814034Y2 (en) Tandish Weir
JPS645648A (en) Pouring nozzle for metal strip continuous casting apparatus
JPS60216956A (en) Continuous casting machine for thin sheet
KR100530102B1 (en) Molten steel flow distributing pad for the continuous casting tundish
JPS6114051A (en) Immersion nozzle for continuous casting
JPH0462826B2 (en)
JPH069724Y2 (en) Tundish
KR100499192B1 (en) Mould for the vertical hot-top continuous casting of metals
JPS60121051A (en) Continuous casting device for thin billet
JPS6235565Y2 (en)
RU2189292C1 (en) Intermediate ladle for steel continuous casting plant
RU33525U1 (en) Continuous casting tundish
JP2004136327A (en) Metallic mold for casting
JPH05277661A (en) Method for continuously casting clad steel sheet by twin rolls
JPH0515403Y2 (en)
RU2043842C1 (en) Method of the metal continuous casting
JPH01293943A (en) Twin roll type continuous casting machine