KR20010055298A - A Low Alloy Steel of High Toughness for A Compressor and Turbine Wheel of A Combined cycle Power Plant - Google Patents

A Low Alloy Steel of High Toughness for A Compressor and Turbine Wheel of A Combined cycle Power Plant Download PDF

Info

Publication number
KR20010055298A
KR20010055298A KR1019990056479A KR19990056479A KR20010055298A KR 20010055298 A KR20010055298 A KR 20010055298A KR 1019990056479 A KR1019990056479 A KR 1019990056479A KR 19990056479 A KR19990056479 A KR 19990056479A KR 20010055298 A KR20010055298 A KR 20010055298A
Authority
KR
South Korea
Prior art keywords
alloy steel
low alloy
niobium
less
power plant
Prior art date
Application number
KR1019990056479A
Other languages
Korean (ko)
Other versions
KR100346305B1 (en
Inventor
강성태
송영석
이명렬
Original Assignee
윤영석
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤영석, 두산중공업 주식회사 filed Critical 윤영석
Priority to KR1019990056479A priority Critical patent/KR100346305B1/en
Publication of KR20010055298A publication Critical patent/KR20010055298A/en
Application granted granted Critical
Publication of KR100346305B1 publication Critical patent/KR100346305B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: A high toughness low alloy steel for a compressor wheel and a turbine wheel of a combined cycle power plant is provided which can be used even at a temperature of -20 deg.C or less by optimizing contents of carbon and niobium and optimizing elements such as chromium, nickel, molybdenum and vanadium for developing a toughness improved material. CONSTITUTION: The high toughness low alloy steel for a compressor wheel and a turbine wheel of a combined cycle power plant comprises 0.2 to 0.4 wt.% of carbon, 0.05 to 1.5 wt.% of manganese, 0.01 to 0.5 wt.% of silicon, 0.1 to 2.0 wt.% of nickel, 0.5 to 3.0 wt.% of chromium, 0.05 to 2.0 wt.% of molybdenum, 0.1 to 0.5 wt.% of vanadium and a balance of Fe and other inevitable impurities containing 0.01 wt.% or less of sulphur, 0.01 wt.% or less of phosphorus, 0.02 wt.% or less of aluminum and 0.01 to 0.03 wt.% of niobium, wherein a multiply of carbon and niobium is 0.12 wt.% or less within the range of chemical constituents of the low alloy steel.

Description

복합화력발전소의 압축기 휠 및 터빈 휠용 고인성 저합금강{A Low Alloy Steel of High Toughness for A Compressor and Turbine Wheel of A Combined cycle Power Plant}A Low Alloy Steel of High Toughness for A Compressor and Turbine Wheel of A Combined Cycle Power Plant}

본 발명은 복합화력발전소에 사용되는 압축기휠 및 터빈휠용 고인성 저합금강의 충격인성을 향상시켜 연성-취성 천이온도가 -30℃ 이하인 재료에 관한 것으로서, 상세히는 크롬을 0.5∼3wt% 함유한 강에 니켈(Ni), 몰리브덴(Mo), 바나듐(V) 및 니오븀(Nb) 등의 원소를 첨가하여 충격성질을 더욱 향상시킨 저합금강에 관한 것이다.The present invention relates to a material having a ductile-brittle transition temperature of -30 ° C. or less by improving the impact toughness of a high toughness low alloy steel for a compressor wheel and a turbine wheel used in a combined cycle power plant, and in particular, a steel containing 0.5 to 3 wt% of chromium. The present invention relates to a low alloy steel in which an element such as nickel (Ni), molybdenum (Mo), vanadium (V), and niobium (Nb) is added to further improve impact properties.

종래의 압축기 휠 및 터빈 휠용 소재는 페라이트계 저합금강이기 때문에 연성-취성 천이온도인 FATT(Fracture Appearance Transition Temperature)에 따라 초기 작동온도가 결정되었다. 복합화력발전소는 전력수요에 따라 수시로 기동정지를반복하기 때문에 주위온도가 연성-취성 천이온도 이하가 되면, 급격한 취성파괴가 일어날 가능성이 있으므로 연성-취성 천이온도가 최대한 낮아야 한다.Since conventional materials for compressor wheels and turbine wheels are ferritic low alloy steels, the initial operating temperature is determined according to the ductile-brittle transition temperature, FATT (Fracture Appearance Transition Temperature). Combined cycle power plants repeat start and stop frequently according to electric power demand. Therefore, if the ambient temperature is below the ductile-brittle transition temperature, there is a possibility of sudden brittle fracture, so the ductile-brittle transition temperature should be as low as possible.

일반적인 압축기 휠 및 터빈 휠용 소재의 요구 성질로는 인장강도와 인성이 우수하여야 하나, 크롬을 1% 함유한 종래의 강은 연성-취성 천이온도가 -20℃ 정도로 -20℃ 이하가 되면 인성이 떨어져 -20℃ 이하에서는 사용하지 못한다.In general, the required properties of materials for compressor wheels and turbine wheels should be excellent in tensile strength and toughness, but conventional steels containing 1% of chromium have low toughness when the ductile-brittle transition temperature is -20 ℃ or less. It cannot be used below -20 ℃.

이러한 이유는 종래의 강에 함유된 합금원소들만으로는 저온 충격특성이 낮아 인성을 유지하지 못하는 문제점이 있으므로, 복합화력발전소의 압축기 휠 및 터빈 휠용 소재의 초기 사용온도를 -20℃ 이하에서도 안정적으로 운전되기 위해서는 인성이 향상된 크롬을 0.5∼3wt% 함유한 저합금강의 재료개발이 요구되어 진다.This is because the alloy elements contained in the conventional steel have low temperature impact characteristics and thus cannot maintain toughness. Therefore, the initial operating temperature of the compressor wheel and turbine wheel materials of the combined cycle power plant is stably operated even at -20 ° C or lower. In order to achieve this, it is required to develop a material of low alloy steel containing 0.5 to 3 wt% of improved chromium.

상기한 바와 같이 종래의 압축기 휠 및 터빈 휠용 저합금강은 연성-취성 천이온도가 -20℃ 정도로 초기 사용온도가 한정되어 이보다 낮은 온도에서는 사용하지 못한다.As described above, the low-alloy steel for the conventional compressor wheel and the turbine wheel is limited in its initial use temperature such that the ductile-brittle transition temperature is -20 ° C, and thus cannot be used at lower temperatures.

이러한 연성-취성 천이온도에 가장 영향을 미치는 인자는 결정립의 크기와 탄화물이다. 결정립의 크기가 크면 결정립의 크기가 작은 소재보다 저온에서 쉽게 파단되기 때문에, 결정립의 크기는 충격인성을 좌우하는 핵심인자이고, 또한 탄화물은 결정립계를 고정하는 역할을 하기 때문에 합금원소에 따라 결정립의 크기가 조절된다.The most influential factors for this soft-brittle transition temperature are grain size and carbide. If the grain size is large, the grain size is more easily broken at a lower temperature than the material having a smaller grain size. The grain size is a key factor in determining the toughness of the grain, and since the carbide plays a role in fixing the grain boundary, the grain size depends on the alloying element. Is adjusted.

본 발명은 상기한 바와 같은 종래 복합화력발전소의 압축기 휠 및 터빈 휠용 소재의 문제점을 개선하기 위해 안출된 것으로서, 크롬을 0.5∼3wt% 함유한 저합금강의 인장강도와 인성을 향상시키기 위해 탄소와 니켈함량을 조절하고, 인성을 향상시키기 위해 니오븀을 첨가하여 연성-취성 천이온도를 종래의 -20℃에서 -30℃ 이하로 향상시킨다.The present invention has been made to improve the problems of the conventional materials for compressor wheels and turbine wheels of the combined cycle power plant as described above, carbon and nickel to improve the tensile strength and toughness of the low alloy steel containing 0.5 to 3wt% chromium Niobium is added to control the content and improve the toughness to improve the ductile-brittle transition temperature from -20 ° C to -30 ° C.

본 발명에 따른 강종의 합금성분상의 특징은 다음과 같다.The characteristics of the alloy components of the steel grade according to the present invention are as follows.

인성을 향상시키기 위하여 니켈 함량을 증가시키고 결정립 크기를 줄이기 위해 니오븀을 적정 함량으로 첨가하여 합금조성을 결정한다. 니오븀이 적을 경우는 결정립의 크기에 영향을 미치지 못하고, 많을 경우는 오히려 인성에 해로운 새로운 화합물을 형성하여 악영향을 미치기 때문에 최적의 함량을 설정해야 한다.To improve toughness, alloy composition is determined by adding niobium in an appropriate amount to increase nickel content and reduce grain size. Smaller niobium does not affect the grain size, and in many cases, the optimum content should be set because it adversely affects the formation of new compounds that are harmful to toughness.

본 발명에 따른 강종은 탄소와 니오븀 함량을 최적화 시키고, 크롬, 니켈, 몰리브덴과 바나듐과 같은 원소를 최적화 시킴으로써 인성이 향상된 재료를 개발하여 -20℃ 이하에서도 사용할 수 있는 복합화력발전소의 압축기 휠 및 터빈 휠용 고인성 저합금강을 제공하는데 그 목적이 있다.The steel grade according to the present invention optimizes the content of carbon and niobium, and develops materials with improved toughness by optimizing elements such as chromium, nickel, molybdenum and vanadium, so that the compressor wheel and turbine of the combined cycle power plant can be used even below -20 ° C. Its purpose is to provide high toughness low alloy steel for wheels.

도 1은 Nb 함량과 C 함량에 따른 공정탄화물 형성 관계 그래프,1 is a process carbide formation relationship graph according to Nb content and C content,

도 2는 Nb 함량에 따른 결정립의 크기 비교 그래프,2 is a graph comparing the size of the grains according to the Nb content,

도 3은 Nb 함량에 따른 연성-취성 천이온도 비교 그래프.3 is a comparative graph of ductility-brittle transition temperature according to the Nb content.

본 발명에 따른 강의 화학조성은 탄소 0.2 내지 0.4wt%, 망간 0.05 내지 1.5wt%, 실리콘 0.01 내지 0.5wt%, 니켈 0.1 내지 2.0wt%, 크롬 0.5 내지 3.0wt%, 몰리브덴 0.05 내지 2.0wt%, 바나듐 0.1 내지 0.5wt%, 니오븀 0.01 내지 0.03wt%, 잔류는 철과 합금철 또는 제조과정 중에 불가피하게 혼입되는 불순물로서 유황 0.01wt% 이하, 인 0.01wt% 이하, 알루미늄 0.02wt% 이하로 구성된다.The chemical composition of the steel according to the present invention is 0.2 to 0.4wt% carbon, 0.05 to 1.5wt% manganese, 0.01 to 0.5wt% silicon, 0.1 to 2.0wt% nickel, 0.5 to 3.0wt% chromium, 0.05 to 2.0wt% molybdenum, Vanadium 0.1 to 0.5wt%, niobium 0.01 to 0.03wt%, residuals are inevitable incorporation of iron and ferroalloy or during the manufacturing process, and are composed of 0.01 wt% or less of sulfur, 0.01 wt% or less of phosphorus, and 0.02 wt% or less of aluminum. .

이하, 본 발명에 따른 0.5∼3wt% 크롬 저합금강 및 그 제조방법에 대해 상세하게 설명한다.Hereinafter, the 0.5-3 wt% chromium low alloy steel and its manufacturing method which concern on this invention are demonstrated in detail.

종래의 합금강은 -20℃ 이상에서는 강도와 인성이 우수하지만 -20℃ 이하에서는 인성이 낮으므로, 저온에서도 인성이 유지되게끔 결정립의 크기를 작게 할 필요가 있다. 본 발명은 강도 및 인성이 우수한 0.5∼3wt% 크롬 저합금강에 미세화 원소를 첨가하여 결정립을 미세화시킨 합금강이다.Conventional alloy steels are excellent in strength and toughness at -20 ° C or higher, but are low at -20 ° C or lower. Therefore, it is necessary to reduce the size of crystal grains so as to maintain toughness even at low temperatures. The present invention is an alloy steel in which fine grains are added to 0.5 to 3 wt% chromium low alloy steel excellent in strength and toughness to refine grains.

다음은 본 발명에 관한 0.5∼3wt% 크롬 저합금강의 성분첨가 이유 및 조성을 한정한 이유에 대해서 기술한다.Next, the reason for the component addition and the reason for limiting the composition of the 0.5 to 3 wt% chromium low alloy steel according to the present invention will be described.

탄소(C)Carbon (C)

탄소는 오스테나이트 형성원소로써, 강 중에 과포화되어 있는 탄소는 급냉이나 템퍼링 도중 탄화물로 석출하여, 석출강화, 결정립 성장억제 등의 원인이 되고, 탄소량이 많으면 템퍼링 단계에서 많은 탄화물이 형성되어, 이러한 탄화물은 사용도중 쉽게 조대화되어 결정립계 고정 효과를 잃게 된다.Carbon is an austenite forming element, and carbon supersaturated in steel precipitates as carbide during quenching or tempering, causing precipitation strengthening, grain growth inhibition, and, if a large amount of carbon, many carbides are formed in the tempering step. Is easily coarsened during use and loses the grain boundary fixing effect.

또한, Nb, V, Mo, W, Cr 등의 고용강화에 기여하고 있는 원소들도 초기에 탄화물 형성으로 소모되어 고용강화 효과를 잃게 된다. 연성-취성 천이온도를 향상하기 위해서는 템퍼링 과정이나 단시간 측에서의 일시적인 탄화물 석출을 억제하고, 결정립의 크기를 감소시키는데 효과가 큰 미세탄화물을 석출시키기 위해서는 탄소함량이 낮아야 한다.In addition, elements contributing to solid solution strengthening such as Nb, V, Mo, W, Cr, etc. are also consumed by the formation of carbides early, and lose the solid solution strengthening effect. In order to improve the ductile-brittle transition temperature, the carbon content must be low in order to suppress the tempering process or temporary carbide precipitation on the short-term side, and to precipitate fine carbides that are effective in reducing the grain size.

그러나, 탄소가 너무 낮으면 상온 기계적 강도에 미달할 수도 있고 인성도 나빠지며, 너무 높으면 조대한 탄화물이 형성되어 결정립 미세화 효과가 감소되고, 또한 니오븀과 탄소함량의 곱이 0.12 이상이 되면 조대한 탄화물이 형성되기 때문에 도 1에 도시한 바와 같이, 적정함량이 존재하여야 하므로 탄소함량은 0.2 내지0.4wt%로 한다.However, if the carbon is too low, the mechanical strength may be less than room temperature and the toughness is poor. If the carbon is too high, coarse carbides are formed to reduce grain refining effect, and when the product of niobium and carbon content is 0.12 or more, coarse carbides are formed. Since it is formed, as shown in Figure 1, since the appropriate content should be present, the carbon content is 0.2 to 0.4wt%.

몰리브덴(Mo)Molybdenum (Mo)

몰리브덴은 페라이트 형성원소로써, 고용강화와 석출강화를 통해 고온강도 향상에 효과적이며, 스테인레스강에서는 부식저항성을 높인다. 몰리브덴은 안정한 탄화물이 형성되어서 강도 향상에 기여하고, 이것은 몰리브덴의 고용효과 및 미세 석출효과가 장시간까지 유지되는 것과 관계되어 고온 장시간의 크립 강도가 향상된다. 첨가량이 많을 경우 석출물이 조대화되기 쉽기 때문에 인성의 저하가 일어날 수 있으므로 몰리브덴의 함량은 0.05 내지 2.0wt%로 한다.Molybdenum is a ferrite-forming element, which is effective in improving high temperature strength through solid solution strengthening and precipitation strengthening, and improves corrosion resistance in stainless steel. Molybdenum contributes to the improvement of strength by forming stable carbides, which improves creep strength at high temperatures for a long time in connection with maintaining the solid solution and microprecipitation effects of molybdenum for a long time. If the amount is large, the precipitate tends to be coarsened, so the toughness may decrease, so the content of molybdenum is made 0.05 to 2.0 wt%.

바나듐(V)Vanadium (V)

바나듐은 페라이트 형성원소로써, 고용강화와 석출강화를 통해 고온강도 향상에 효과적이며, 템퍼링 도중 많은 탄화물이 석출하게 된다. 바나듐의 함량이 많으면 상기 바나듐이 기지 중의 탄소를 모두 소모시켜 사용도중 M23C6탄화물이 균일하게 분포하는 것이 어려워 결과적으로 조대화가 쉬워진다. 바나듐은 소재를 장시간 사용하여도 기지조직의 회복을 지연시키고, 결정립의 조대화를 억제시키는 작용을 하므로 바나듐 함량은 0.1 내지 0.5wt%로 한다.Vanadium is a ferrite-forming element, which is effective in improving high temperature strength through solid solution strengthening and precipitation strengthening, and many carbides are precipitated during tempering. If the content of vanadium is large, the vanadium consumes all of the carbon in the matrix, making it difficult to uniformly distribute M 23 C 6 carbide during use, resulting in easy coarsening. Vanadium delays the recovery of matrix structure even after using the material for a long time and suppresses coarsening of grains, so the vanadium content is 0.1 to 0.5 wt%.

니오븀(Nb)Niobium (Nb)

니오븀은 페라이트 형성원소로써 기지에 고용도가 거의 없기 때문에 첨가된 량의 대부분이 탄화물로 존재한다. 미세한 니오븀 카바이드는 결정립의 크기를 미세화시켜 연성-취성 천이온도를 낮춘다. 니오븀을 미량 첨가한 경우 VN 분산석출강화와의 상승효과로 저온인성과 크립강도가 향상되나, 다량을 첨가하면 조대한 Nb(C) 공정탄화물이 석출되어 인성을 감소시킨다. 특히, 대형강괴에서는 편석부에서 연성에 아주 유해한 공정 니오븀 카바이드가 생성될 수 있으므로 니오븀을 증가시키는데 주의가 필요하다. 따라서, 적정 니오븀의 함량이 필요로 하기 때문에 니오븀의 함량은 0.01 내지 0.03wt%로 한다.Niobium is a ferrite-forming element, and since most of the solid solution is not known, most of the added amount is present as carbides. Fine niobium carbides reduce the size of the crystalline-brittle transition by miniaturizing the grain size. When niobium is added in a small amount, the low temperature toughness and creep strength are improved by synergy with VN dispersion precipitation strengthening, but when a large amount is added, coarse Nb (C) eutectic carbide is precipitated to reduce toughness. In particular, care must be taken to increase niobium in large ingots, since process niobium carbides that are very detrimental to ductility in segregation can be produced. Therefore, since an appropriate amount of niobium is required, the content of niobium is set to 0.01 to 0.03 wt%.

크롬(Cr)Chrome (Cr)

크롬은 철에 치환고용되며 페라이트 형성원소로써 고용강화와 석출강화를 통해 고온강도 향상에 기여한다. M23C6탄화물 형성의 주된 원소로써 강도와 인성을 향상시킨다. 크롬 첨가에 의해 내부식성과 내산화성이 증가되고 고온강도 향상에도 기여하는 필수적인 원소이지만, 저합금강의 경우 경제성을 고려하면 크롬함량은 3%가 최대이다. 크롬함량이 적으면 고온강도 유지에 필요한 탄화물이 적기 때문에 최소 0.5% 이상이 되어야 하므로, 강도와 인성을 유지하기 위해 크롬 함량은 0.5 내지 3wt%로 한다.Chromium is substituted by iron and contributes to the improvement of high temperature strength through solid solution strengthening and precipitation strengthening. M 23 C 6 As the main element of carbide formation, it improves strength and toughness. The addition of chromium increases the corrosion resistance and oxidation resistance and contributes to the improvement of high temperature strength. However, in the case of low alloy steel, the chromium content is 3% in consideration of economic efficiency. If the amount of chromium is small, the amount of carbide required to maintain the high temperature strength should be at least 0.5%, so the chromium content is 0.5 to 3wt% to maintain strength and toughness.

니켈(Ni)Nickel (Ni)

니켈은 철에 치환고용되며 오스테나이트 형성원소이다. 적정량의 니켈을 첨가하면 인성은 향상되지만 니켈이 많이 첨가되면 오스테나이트 시작온도가 저하되어서 고온크립 시험에서 기지조직의 회복이 가속되어 크립 파단강도를 저하시킨다. 크립강도의 관점에서 최대 2%를 초과하게 되면 급격한 크립강도의 저하가 발생될 수 있으므로, 크립강도가 저하하지 않는 범위에서 최대로 첨가하여 인성을 향상시키기 위해 니켈 함량은 0.1 내지 2.0wt%로 한다.Nickel is a substitutional solid solution for iron and is an austenite forming element. The addition of an appropriate amount of nickel improves the toughness, but the addition of a large amount of nickel lowers the austenite starting temperature, which accelerates the recovery of the matrix structure in the high temperature creep test, thereby reducing the creep rupture strength. If the maximum creep strength is exceeded from the viewpoint of creep strength, the sharp creep strength may decrease, so the nickel content is 0.1 to 2.0 wt% in order to increase the toughness by adding the creep strength in the maximum range. .

알루미늄(Al)Aluminum (Al)

알루미늄은 철에 치환고용되며 페라이트 형성원소이다. 알루미늄은 제강 중의 탈산을 위해 투입되며 질소나 산소와 결합하여 결정립 성장을 억제한다. 또한, 크립파단 강도와 연성에 미치는 영향은 거의 없지만 적정량 이상이 존재하면 고용질소를 모두 AlN(알루미늄나이트라이드)으로 소모하게 되어 크립강도가 급격하게 감소한다. 따라서, 탈산제로 사용된 Al이 최대로 잔류할 수 있는 함량은 AlN으로서 N의 화학양론적 결합에 필요한 값 이하가 되어야 하므로 최대 0.02%로 제한하는 것으로 한다.Aluminum is substituted with iron and is a ferrite forming element. Aluminum is added for deoxidation in steelmaking and combines with nitrogen and oxygen to inhibit grain growth. In addition, there is little effect on creep rupture strength and ductility, but if an appropriate amount is present, all of the solid solution nitrogen is consumed by AlN (aluminum nitride), and thus the creep strength decreases drastically. Therefore, the maximum amount of Al remaining as the deoxidizer should be less than the value required for the stoichiometric coupling of N as AlN, so it is limited to a maximum of 0.02%.

인(P) 및 유황(S)Phosphorus (P) and Sulfur (S)

인과 유황은 고온에 사용되는 재료에서 강도와 충격에너지를 저하시키는 템퍼취성에 큰 영향을 주기 때문에 최대함량이 제한된다. 강 중에 불순물 원소로써 가능한 낮게 유지해야 하므로, 현재의 제강방법상 인과 황은 최대 0.01% 정도로 제한하는 것으로 한다.Phosphorus and sulfur are limited in their maximum content because they have a significant effect on the temper embrittlement, which degrades strength and impact energy in materials used at high temperatures. Since it should be kept as low as possible as an impurity element in steel, phosphorus and sulfur are limited to about 0.01% at maximum in the current steelmaking method.

이하, 본 발명의 방법에 따라 제조한 고인성 저합금강과 종래의 방법으로 제조한 합금강에 대한 각종 특성의 시험결과를 비교예를 통하여 설명한다.Hereinafter, the test results of various characteristics of the high toughness low alloy steel manufactured according to the method of the present invention and the alloy steel produced by the conventional method will be described through comparative examples.

하기 표에서 본 발명강은 1 내지 3으로 하고, 종래 강은 4 내지 8로 하여 각 합금조성을 나타낸다.In the following table, the present invention steel is 1 to 3, and the conventional steel is 4 to 8 to represent each alloy composition.

표 1에 나타난 화학조성을 갖는 합금을 전기로에서 용해하고, 950∼1200℃ 범위에서 폭 100mm, 두께 50mm, 길이 300mm 사각 bar 형상으로 강괴를 단조한 후 850℃에서 70시간 어닐링 처리를 하였다.The alloy having the chemical composition shown in Table 1 was dissolved in an electric furnace, and the steel ingot was forged into a square bar shape having a width of 100 mm, a thickness of 50 mm, and a length of 300 mm in the range of 950 to 1200 ° C., followed by annealing treatment at 850 ° C. for 70 hours.

담금질 열처리는 900∼1000℃로 가열해서 물에 침적하여 급냉한 후 재료의 연성과 인성을 부여하기 위해 뜨임 열처리를 500∼700℃로 가열한 후 서냉하였다. 열처리 후 기계적 성질을 조사하기 위해 인장시험, 충격시험, 경도시험편을 채취하였다.Quenching heat treatment was performed by heating to 900-1000 ° C., immersing in water and quenching, and then cooling the tempering heat treatment to 500-700 ° C. in order to impart ductility and toughness of the material. Tensile test, impact test and hardness test specimens were taken to investigate the mechanical properties after heat treatment.

아래 표 2는 종래 강과 본 발명강으로 조성된 합금강의 각 시험결과를 표시하였다.Table 2 below shows the test results of the alloy steel composed of conventional steel and the present invention steel.

이중 결정립의 크기를 도 2에 도시하였다. 도 2는 종축에 결정립의 크기와 횡축에 니오븀의 함량을 나타내어 양자간의 관계를 표시한 그래프이다. 도 2에 도시한 바와 같이, 니오븀의 함량에 따라 결정립의 크기는 감소하며 본 발명강의 경우 결정립의 직경이 평균 40∼70마이크로메타이고, 종래 합금강의 경우는 직경이 평균 100마이크로메타이다.The size of the double grains is shown in FIG. 2 is a graph showing the relationship between the two by showing the size of the grains on the vertical axis and the content of niobium on the horizontal axis. As shown in FIG. 2, the size of the grains decreases according to the content of niobium, and the diameter of the grains of the present invention is 40 to 70 micrometers in average, and in the case of conventional alloy steels, the diameter is 100 micrometers in average.

본 발명강1 내지 3은 니오븀의 함량이 0.01, 0.02, 0.03wt%이며, 종래 강4와 5의 니오븀 함량은 0.04, 0.05wt%로써, 니오븀 함량에 따라 결정립의 크기가 100마이크로메타에서 40마이크로메타로 감소되고, 0.03wt% 이상에서는 더 이상 감소하지 않고 포화된다.Steels 1 to 3 of the present invention is the niobium content of 0.01, 0.02, 0.03wt%, the niobium content of conventional steels 4 and 5 is 0.04, 0.05wt%, the size of the crystal grains from 100 micrometers to 40 micrometers according to the niobium content It is reduced to meta, and at 0.03 wt% or more, it is no longer reduced but saturated.

연성-취성 천이온도의 실시예를 도 3에 도시하였는데, 종축에 연성-취성 천이온도와 횡축에 니오븀의 함량을 나타내어 양자간의 관계를 표시한 그래프이다. 도 3에 도시한 바와 같이, 본 발명강의 연성-취성 천이온도는 종래의 저합금강보다 최대 3배 이상 낮은 값을 가진다. 종래 방법으로 제작한 강은 니오븀 무첨가 강과 니오븀을 0.04∼0.05wt% 첨가한 강으로써, 인장강도가 120∼125ksi, 항복강도가102∼106ksi이며, 연신율과 단면수축율이 각각 15∼18%와 47∼50%이고, 연성-취성 천이온도는 0∼-21℃이다. 본 발명강1 내지 3은 인장강도와 항복강도 및 연신율과 단면수축율이 종래 강과 비슷하며, 연성-취성 천이온도는 -30∼-68℃이다.An embodiment of the ductile-brittle transition temperature is shown in FIG. 3, which shows the ductility between the ductile-brittle transition temperature and the content of niobium on the horizontal axis. As shown in FIG. 3, the soft-brittle transition temperature of the inventive steel has a value that is at least three times lower than that of conventional low alloy steels. The steel produced by the conventional method is made of niobium-free steel and niobium added 0.04 to 0.05 wt%. The tensile strength is 120 to 125 ksi, the yield strength is 102 to 106 ksi, and the elongation and the section shrinkage are 15 to 18% and 47 to 47, respectively. 50%, and ductile-brittle transition temperature is 0-21 ° C. Steels 1 to 3 of the present invention have tensile strength, yield strength, elongation and cross-sectional shrinkage similar to those of conventional steel, and the ductile-brittle transition temperature is -30 to -68 ° C.

표 2와 도 1 및 도 2에서 알 수 있는 바와 같이, 본 발명강의 인성은 종래 강에 비하여 매우 우수하였다.As can be seen from Table 2 and FIGS. 1 and 2, the toughness of the inventive steel was very excellent compared to the conventional steel.

따라서, 본 발명에 따른 방법으로 제조한 저합금강은 종래에 사용되어 왔던 저합금강에 니오븀을 최적으로 첨가해서 종래의 가장 큰 문제점이었던 결정립을 미세화시키고, 안정한 탄화물을 형성시켜 결정립의 성장억제와 연성-취성 천이온도를 감소시켜 인성이 우수한 0.5∼3wt% 함유 크롬강의 제조가 가능하게 되었다.Therefore, the low alloy steel produced by the method according to the present invention, the optimum addition of niobium to the low alloy steel that has been used in the prior art to refine the crystal grains, which was the biggest problem in the prior art, to form a stable carbide to suppress the growth and ductility of the grains- By reducing the brittle transition temperature, it is possible to produce 0.5 to 3 wt% chromium steel with excellent toughness.

이상과 같은 목적과 구성으로 이루어진 본 발명에 의하면, 인장강도와 저온인성 특성이 우수한 0.5∼3wt% 함유 크롬 합금강이 얻어지므로 초기 작동온도가 -20℃ 이하에서 복합화력발전소의 압축기 휠 및 터빈 휠용 재료로 사용이 가능하게 된다.According to the present invention having the above objects and configurations, 0.5-3wt% chromium alloy steel having excellent tensile strength and low temperature toughness characteristics is obtained, so that the compressor wheel and turbine wheel materials of the combined cycle power plant have an initial operating temperature of -20 ° C or lower. It becomes possible to use.

Claims (2)

탄소 0.2 내지 0.4wt%, 망간 0.05 내지 1.5wt%, 실리콘 0.01 내지 0.5wt%, 니켈 0.1 내지 2.0wt%, 크롬 0.5 내지 3.0wt%, 몰리브덴 0.05 내지 2.0wt%, 바나듐 0.1 내지 0.5wt%, 철 잔여부 및 불가피한 불순물로서 유황 0.01wt% 이하, 인 0.01wt% 이하, 알루미늄 0.02wt% 이하로 함유함과 동시에, 니오븀 0.01 내지 0.03wt%로 함유하는 것을 특징으로 하는 복합화력발전소의 압축기 휠 및 터빈 휠용 고인성 저합금강.0.2 to 0.4 wt% carbon, 0.05 to 1.5 wt% manganese, 0.01 to 0.5 wt% silicon, 0.1 to 2.0 wt% nickel, 0.5 to 3.0 wt% chromium, 0.05 to 2.0 wt% molybdenum, 0.1 to 0.5 wt% vanadium, iron Compressor wheel and turbine of a combined cycle power plant, characterized in that it contains 0.01 wt% or less of sulfur, 0.01 wt% or less of phosphorus, 0.02 wt% or less of aluminum, and 0.01 to 0.03 wt% of niobium, as a residual portion and unavoidable impurities. High toughness low alloy steel for wheels. 제 1항에 있어서,The method of claim 1, 상기 저합금강의 화학성분 범위 내에서 탄소와 니오븀 함량의 곱이 0.12wt% 이하인 것을 특징으로 하는 복합화력발전소의 압축기 휠 및 터빈 휠용 고인성 저합금강.High toughness low alloy steel for compressor wheel and turbine wheel of a combined cycle power plant, characterized in that the product of carbon and niobium content within the chemical composition of the low alloy steel is 0.12wt% or less.
KR1019990056479A 1999-12-10 1999-12-10 A Method of Manufacturing a Low Alloy Steel with High Toughness for a Compressor and Turbine Wheel in a Combined cycle Power Plant KR100346305B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990056479A KR100346305B1 (en) 1999-12-10 1999-12-10 A Method of Manufacturing a Low Alloy Steel with High Toughness for a Compressor and Turbine Wheel in a Combined cycle Power Plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990056479A KR100346305B1 (en) 1999-12-10 1999-12-10 A Method of Manufacturing a Low Alloy Steel with High Toughness for a Compressor and Turbine Wheel in a Combined cycle Power Plant

Publications (2)

Publication Number Publication Date
KR20010055298A true KR20010055298A (en) 2001-07-04
KR100346305B1 KR100346305B1 (en) 2002-07-26

Family

ID=19624810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990056479A KR100346305B1 (en) 1999-12-10 1999-12-10 A Method of Manufacturing a Low Alloy Steel with High Toughness for a Compressor and Turbine Wheel in a Combined cycle Power Plant

Country Status (1)

Country Link
KR (1) KR100346305B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107416A (en) * 1978-02-10 1979-08-23 Hitachi Ltd Heat-resistant low alloy steel casting and its heating treatment
JPS60224766A (en) * 1984-04-23 1985-11-09 Toshiba Corp Steam turbine rotor
JPH0641678A (en) * 1992-07-27 1994-02-15 Toshiba Corp Turbine rotor

Also Published As

Publication number Publication date
KR100346305B1 (en) 2002-07-26

Similar Documents

Publication Publication Date Title
EP0806490B1 (en) Heat resisting steel and steam turbine rotor shaft
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
CN108950432B (en) Manufacturing method of high-strength and high-toughness low-alloy wear-resistant steel
CN113293336A (en) Preparation method of rare earth non-quenched and tempered free-cutting hot-rolled round steel with yield strength of 500MPa
US6743305B2 (en) High-strength high-toughness precipitation-hardened steel
JPH1088291A (en) Heat resistant cast steel with high strength and high toughness
CN113737091A (en) Steel for low-magnetism high-strength corrosion-resistant fastener and fastener
US7354487B2 (en) Cooled and annealed bainite steel part, and a method of manufacturing it
JP4266194B2 (en) Heat resistant steel, heat treatment method for heat resistant steel, and steam turbine rotor for high temperature
JPH11209851A (en) Gas turbine disk material
CN109881123B (en) 1000 Mpa-grade high-strength metastable austenite-martensite stainless steel
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
KR100346305B1 (en) A Method of Manufacturing a Low Alloy Steel with High Toughness for a Compressor and Turbine Wheel in a Combined cycle Power Plant
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JPH1036944A (en) Martensitic heat resistant steel
KR100441051B1 (en) Martensitic Stainless Steel having high-strength and excellent erosion resistance
JP3662151B2 (en) Heat-resistant cast steel and heat treatment method thereof
RU2806682C1 (en) High strength corrosion resistant nitrogen containing martensitic-austenitic-ferritic steel
JPH07166303A (en) High strength martensitic stainless steel excellent in stress corrosion cracking resistance and production thereof
KR100410699B1 (en) High and Low Pressure Integrated Rotor Alloy Steel for Steam Turbine
CN113201697B (en) High-temperature concentrated sulfuric acid corrosion resistant austenitic stainless steel with excellent hot-working performance and hot-piercing method thereof
KR100460313B1 (en) High toughness and high temperature strenght low alloy steel for integrated turbine rotor
KR100316340B1 (en) HIGH Cr-Ferritic HEAT RESISTING STEEL WITH NITROGEN ELEMENT
KR100346307B1 (en) A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel
CN115595507A (en) High-strength twisted steel and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150604

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160608

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 16