KR100346307B1 - A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel - Google Patents

A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel Download PDF

Info

Publication number
KR100346307B1
KR100346307B1 KR1019990057924A KR19990057924A KR100346307B1 KR 100346307 B1 KR100346307 B1 KR 100346307B1 KR 1019990057924 A KR1019990057924 A KR 1019990057924A KR 19990057924 A KR19990057924 A KR 19990057924A KR 100346307 B1 KR100346307 B1 KR 100346307B1
Authority
KR
South Korea
Prior art keywords
aluminum
nitrogen
alloy steel
toughness
low alloy
Prior art date
Application number
KR1019990057924A
Other languages
Korean (ko)
Other versions
KR20010056461A (en
Inventor
김정태
양병일
권희경
최남수
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Priority to KR1019990057924A priority Critical patent/KR100346307B1/en
Publication of KR20010056461A publication Critical patent/KR20010056461A/en
Application granted granted Critical
Publication of KR100346307B1 publication Critical patent/KR100346307B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Abstract

본 발명은 전기로를 사용한 산화정련, ASEA-SKF 2차 레이들 정련로에서 비금속 개재물을 부상시켜 분리 및 제거하고, Al과 Si을 첨가하여 환원정련 후 탈가스 처리한 다음, 진공 유적 탈가스 처리에 의한 조괴, 단조, 불림, 뜨임, 황삭 담금질 및 뜨임 열처리에 의하여 제조되는 저합금강에 관한 것으로서, 상세히는 화학적 조성이 중량%로 탄소(C) 0.19∼0.20%, 망간(Mn) 1.35∼1.45%, 규소(Si) 0.15∼0.25%, 인(P) 최대 0.010%, 황(S) 최대 0.010%, 니켈(Ni) 0.80∼0.90%, 크롬(Cr) 0.17∼0.20%, 몰리브덴(Mo) 0.45∼0.55%, 구리(Cu) 최대 0.10%, 알루미늄(Al) 0.020∼0.030%, 질소(N)의 함유량은 70∼90ppm이며, 질소와 알루미늄의 비가 0.23∼0.45이고, 잔부는 철(Fe)과 제강정련에 의하여 제거될 수 없는 불가피한 불순원소로 구성되는 충격인성이 우수한 고인성 원자로용 저합금강에 관한 것이다.The present invention is to remove and remove the non-metallic inclusions in the oxidation refining, ASEA-SKF secondary ladle refining furnace using an electric furnace, degassing after reduction refining by adding Al and Si, and then vacuum degassing Low alloy steel produced by ingot, forging, soaking, tempering, rough quenching and tempering heat treatment, and the chemical composition is 0.1% to 0.20% of carbon (C), 1.35 to 1.45% of manganese (Mn), Silicon (Si) 0.15 to 0.25%, phosphorus (P) up to 0.010%, sulfur (S) up to 0.010%, nickel (Ni) 0.80 to 0.90%, chromium (Cr) 0.17 to 0.20%, molybdenum (Mo) 0.45 to 0.55 %, Up to 0.10% of copper (Cu), 0.020 to 0.030% of aluminum (Al), and 70 to 90 ppm of nitrogen (N), the ratio of nitrogen to aluminum is 0.23 to 0.45, and the balance is iron (Fe) and steelmaking The present invention relates to a low-alloy steel for high toughness reactors having excellent impact toughness composed of inevitable impurity elements which cannot be removed by the present invention.

Description

알루미늄과 질소 첨가 고인성 원자로용 저합금강{A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel}A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel}

본 발명은 알루미늄과 질소가 첨가된 고인성 원자로용 저합금강에 관한 것으로서, 상세히는 실리콘으로 탈산하고 알루미늄(Al)과 질소(N)를 첨가하여 고온 인장강도가 높고, 높은 인성과 무연성 천이온도를 개선하여 원자로의 압력용기(Neclear Reactor Pressure Vessel)로 사용하기 위해 제조되는, 최저 280℃ 이상의 온도범위에서 사용가능한 철강소재의 일종인 저합금강에 관한 것이다.The present invention relates to a low-alloy steel for high toughness reactors in which aluminum and nitrogen are added, and in particular, deoxidized with silicon, and aluminum (Al) and nitrogen (N) are added, so that high temperature tensile strength is high, high toughness and lead-free transition temperature. The present invention relates to a low alloy steel, which is a kind of steel material that can be used in a temperature range of at least 280 ° C. or more, which is manufactured for use as a reactor for reactor pressure (Neclear Reactor Pressure Vessel).

원자로용 압력용기는 ASME SA508 class.3에서 규정한 화학성분을 기준으로 제조되고 있는데, 이 소재는 요구되는 높은 저온 파괴인성과 청정도, 화학조성과 기계적 성질의 균질성을 높이기 위해 제강 중에 다양한 탈산 방법이 적용된 바 있다.Reactor pressure vessels are manufactured on the basis of the chemical composition specified in ASME SA508 class.3. This material is produced by various deoxidation methods in steelmaking to increase the required high temperature fracture toughness and cleanliness, homogeneity of chemical composition and mechanical properties. This has been applied.

대표적으로 진공탄소탈산법(Vacuum Carbon Deoxidation:VCD)으로 제조된 강은 낙중(Drop Weight) 시험에 의한 기준무연성 천이온도(Reference Nil-Ductility Transition Temprrature, ASTM E 208:RTNDT) 값이 높고 불안정하였으며, VCD 공정에 Al으로 탈산을 하였던 강의 경우 RTNDT를 -23℃로 안정적으로 제작할 수 있었으나, 인장강도가 낮았다.Typically, steel manufactured by Vacuum Carbon Deoxidation (VCD) has a high value of Reference Nil-Ductility Transition Temprrature (ASTM E 208: RT NDT ) by drop weight test and is unstable. In the case of steel deoxidized with Al in the VCD process, RT NDT could be stably produced at -23 ° C, but the tensile strength was low.

최근 Si으로 탈산 처리하여 제조한 소재는 인장강도는 안정적이나 RTNDT값의 변화에 큰 문제가 있다. 특히 안정성과 경제성을 향상시키고 중성자 조사 취화 저항성을 향상시켜 설계수명을 종래의 40년에서 60년으로 연장시키는 차세대 원자력 발전소 건설에는 RTNDT값이 -29℃ 이하의 강을 안정적으로 제작하여야 한다.Recently, the material prepared by deoxidation with Si is stable in tensile strength, but there is a big problem in changing RT NDT value. In particular, in the construction of next-generation nuclear power plants that extend the design life from 40 years to 60 years by improving stability and economic efficiency and improving neutron irradiation embrittlement resistance, steel with an RT NDT value of -29 ° C or lower should be stably manufactured.

본 발명은 상기한 바와 같은 종래 강들의 문제점을 해결하기 위해 안출된 것으로서, 알루미늄과 질소의 첨가에 의해 저온 파괴인성이 획기적으로 개선되어 -29℃이하의 안정적인 RTNDT값을 갖고, 높은 인장강도를 갖는 저합금강을 제공함에 그 목적이 있다.The present invention has been made to solve the problems of the conventional steels as described above, and the low temperature fracture toughness is significantly improved by the addition of aluminum and nitrogen has a stable RT NDT value of less than -29 ℃, high tensile strength The purpose is to provide a low alloy steel having.

도 1은 제강공정에 의해 제작된 종래 원자력 압력용기들의 물성치 변화를 나타낸 그래프,1 is a graph showing the change in physical properties of the conventional nuclear pressure vessel produced by the steelmaking process,

도 2는 알루미늄 함량에 따라 기준 무연성 천이온도의 변화를 나타낸 그래프,2 is a graph showing the change of the reference non-flammable transition temperature according to the aluminum content,

도 3은 실리콘 탈산과 알루미늄, 질소 첨가에 의해 인성이 향상된 원자로용 강의 제조공정도,3 is a manufacturing process diagram of the reactor steel with improved toughness by adding silicon deoxidation and aluminum, nitrogen,

도 4는 질소/알루미늄 비에 따라 무연성 천이온도의 변화를 나타낸 그래프.4 is a graph showing the change of the non-flammable transition temperature according to the nitrogen / aluminum ratio.

통상 사용되고 있는 원자력 발전소용 압력용기는 핵분열할 때 발생하는 중성자에 의한 조사취화, 운전 중에 발생하는 열피로와 고온에 노출되어 재료열화(材料劣化)가 발생한다.Pressure vessels for nuclear power plants that are commonly used are exposed to radiation embrittlement by neutrons generated during nuclear fission, thermal fatigue generated during operation, and high temperature, resulting in material degradation.

따라서, 원자로 압력용기 재료는 고온 및 고압에 견딜 수 있는 항장력(抗張力)과 급작스런 파괴에 대한 안정성을 확보하기 위해서는 사용 전 초기인성을 충분히 확보하는 것이 필수적이라 할 수 있다.Therefore, it is essential to ensure sufficient initial toughness before use of the reactor pressure vessel material in order to secure the tensile strength that can withstand high temperature and high pressure and the stability against sudden breakdown.

철강소재에 있어서 충분한 인성을 확보하기 위해서는 합금성분을 조절하는 것과 열처리 조건을 변경하는 방법 등이 있으나, 후자의 경우는 제조설비의 제약과 성능개선의 범위가 작기 때문에 획기적이고 실질적인 개선이 되기 힘들다.In order to secure sufficient toughness in steel materials, there are methods of adjusting alloy components and changing heat treatment conditions. However, in the latter case, it is difficult to make a substantial and substantial improvement because of limitations of manufacturing facilities and a small range of performance improvement.

다음의 표 1에는 다양한 제강조건으로 제작된 소재의 충격인성과 인장성질을 나타내었으며, 진공탄소탈산법(Vacuum Carbon Deoxidation:VCD)으로 제조되어 알루미늄이 첨가되지 않는 것보다 VCD법에 알루미늄을 첨가한(VCD+Al) 것과 실리콘 탈산(Si-killing)으로 소재의 충격인성이 향상된 것을 알 수 있고, 도 1은 이러한 경향을 기준무연성 천이온도와 함께 나타내었다.Table 1 shows the impact toughness and tensile properties of the materials manufactured under various steelmaking conditions, and the aluminum was added to the VCD method rather than the aluminum, which was manufactured by vacuum carbon deoxidation (VCD). It can be seen that the impact toughness of the material is improved by (VCD + Al) and silicon de-oxidation (Si-killing), and FIG. 1 shows this trend together with the reference lead-free transition temperature.

도 2에 도시한 바와 같이, 알루미늄의 함량과 기준무연성 천이온도와의 관계로부터 알루미늄 함량이 0.01% 이상일 때, RTNDT가 현저히 향상되는 것을 알 수 있다.As shown in FIG. 2, it can be seen that the RT NDT is remarkably improved when the aluminum content is 0.01% or more from the relationship between the aluminum content and the reference lead-free transition temperature.

이러한 알루미늄 함량에 따른 인성의 향상은 상기 알루미늄의 첨가에 의해 강 중의 질소와 결합하여 미세한 AlN(알루미늄나이트라이드)을 형성하여, 오스테나이징할 때 결정립의 성장을 억제함으로써 오스테나이트 결정립 크기를 미세화 시킨다.The improvement of toughness according to the aluminum content is combined with nitrogen in the steel by the addition of aluminum to form a fine AlN (aluminum nitride), thereby miniaturizing the austenite grain size by inhibiting the growth of grains during austenizing .

특히, 인성이 향상되는 이유는 베이나이트로 상변태하는 동안 알루미늄을 첨가하는 경우 lath boundary가 잘 발달하고, needle 형상의 Mo2C 탄화물이 lath 내에 많이 석출하며, round 형상의 탄화물이 0.05㎛ 이하의 크기로 미세화되기 때문인 것으로 생각되었다.In particular, the reason why the toughness is improved is that lath boundary is well developed when aluminum is added during phase transformation to bainite, needle-shaped Mo 2 C carbides precipitate in lath, and round carbides are 0.05 µm or less in size. It was thought to be because it was refined.

그러나, 일반적인 제강에서는 질소의 함량이 0.0040∼0.005%로 낮아 결정립 크기를 제어하는데 필요한 N/Al 비인 0.23∼0.45를 유지하지 못한다. 이런 이유로 안정된 인장성질과 충격인성을 얻을 수 없는 문제가 있다.However, in general steelmaking, the nitrogen content is 0.0040 to 0.005%, so that it cannot maintain 0.23 to 0.45, which is the N / Al ratio required to control grain size. For this reason, there is a problem in that stable tensile properties and impact toughness cannot be obtained.

따라서, Al과 N의 함량을 적절히 조절함으로써 안정적인 인장강도값을 가지며 인성이 우수한 개량된 원자로용 소재의 제작이 가능하다.Therefore, by appropriately adjusting the content of Al and N it is possible to manufacture an improved reactor material having a stable tensile strength value and excellent toughness.

이상의 이유로 하여 본 발명에 따른 저합금강은 다음과 같은 합금성분을 가지는 소재를 목표로 하며, 본 발명에 따른 저합금강의 화학성분을 다음의 표 2에 나타내었다.For the above reason, the low alloy steel according to the present invention aims at a material having the following alloy components, and the chemical composition of the low alloy steel according to the present invention is shown in Table 2 below.

탄소(C)Carbon (C)

탄소는 강의 기본 특성인 강도와 인성을 결정하는 가장 기본적인 원소로써 인장강도를 증가시키고, 내력을 향상시켜 주며, 담금질성을 개선해 두꺼운 강재의 중심부까지 균질한 기계적 성질을 확보하는데 필요하다.Carbon is the most basic element that determines the strength and toughness, which is the basic property of steel, and it is necessary to increase the tensile strength, improve the bearing strength, and improve the hardenability to secure homogeneous mechanical properties to the center of thick steel.

0.1% 미만의 경우 고온강도를 요구하는 값으로 확보할 수 없고, 0.20%를 초과하면 용접성이 저하되므로 압력용기 제작이 어렵게 된다. 따라서, 요구되는 강도를 유지하고, 용접성을 확보하기 위해서는 0.19∼0.20wt%로 한정하는 것이 바람직하다.If it is less than 0.1%, it cannot be secured to a value requiring high temperature strength, and if it exceeds 0.20%, weldability is lowered, making it difficult to manufacture a pressure vessel. Therefore, in order to maintain the required strength and ensure weldability, it is desirable to limit the amount to 0.19 to 0.20 wt%.

망간(Mn)Manganese (Mn)

망간은 강도유지와 열처리 과정에서 담금질성을 향상시키는 합금원소로 중요한 역할을 하나, 망간의 함유량이 증가할수록 연성-취성 천이온도(Fracture Appearance Transition Temperature)가 증가한다.Manganese plays an important role as an alloying element to improve the hardenability during the maintenance of strength and heat treatment, but as the content of manganese increases, the ductility-brittle transition temperature increases.

또한, 황(S)과 결합함으로써 비금속 개재물을 형성하여 인성을 저하시키며, 강 중에 잔존하는 망간은 규소와 같이 뜨임취화를 촉진시키므로 감소시킬수록 좋은 원소이다. 망간은 1% 이상 함유시 중성자 조사 취화에 영향을 미치지만 조사전 인성치 향상 효과를 위해 상한치를 최대 1.5wt%까지 규정하여 망간에 의한 악영향을 최소화 될 수 있도록 그 함량을 1.35∼1.45wt%로 규제한다.In addition, by combining with sulfur (S) to form a non-metallic inclusions to reduce the toughness, the manganese remaining in the steel promotes temper embrittlement, such as silicon, so it is a better element to decrease. Manganese affects neutron irradiation embrittlement when it contains more than 1%, but the upper limit is set up to 1.5wt% to improve the toughness before irradiation, and the content is 1.35 ~ 1.45wt% to minimize the adverse effect of manganese. Regulate.

규소(Si)Silicon (Si)

규소는 제강정련하는 동안 용강 중의 산소를 제거하는 탈산제 역할을 하고, 함량이 낮을 경우 탈산 부족이 될 경우가 있으며, 0.3wt% 이상이 되면 탄화물의 조대화를 조장하여 고온강도를 떨어뜨리거나 장시간 크리프 성질 저하 또는 대형강괴의 마크로 편석을 조장시키므로, 본 발명에 따른 저합금강에서는 규소의 악영향을 최소화하기 위하여 규소탈산 공정을 채용하면서도 그 함량을 0.15∼0.25wt%로 규제한다.Silicon acts as a deoxidizer to remove oxygen from molten steel during steelmaking, and if the content is low, deoxidation may be insufficient.When it is more than 0.3wt%, it promotes coarsening of carbides to reduce high temperature strength or creep for a long time. In order to minimize the degradation of the properties or macro segregation of large ingots, the low alloyed steel according to the present invention regulates the content to 0.15 to 0.25 wt% while employing a silicon deoxidation process to minimize the adverse effects of silicon.

니켈(Ni)Nickel (Ni)

니켈은 강에서 인성의 손상없이 강도를 향상시키는 유일한 원소로써 경화 깊이를 개선하여 담금질성을 좋게 하지만, 고온강도를 저해하는 작용을 한다. 특히, 니켈이 2.0wt% 이상이면 강의 중성자 조사취화로 감수성에 나쁜 영향을 끼칠 수 있으므로 0.80∼0.90wt%로 제어하는 것이 바람직하다.Nickel is the only element that improves strength without compromising toughness in steel, and improves hardening depth to improve hardenability, but it inhibits high temperature strength. In particular, when nickel is 2.0 wt% or more, the neutron irradiation embrittlement of the steel may adversely affect the sensitivity, so it is preferable to control the amount to 0.80 to 0.90 wt%.

몰리브덴(Mo)Molybdenum (Mo)

탄소와 탄화물을 형성하는 원소로써 기지 중에 미세하게 석출하여 저온 및 고온에서의 강도 증가 효과를 내며, 또한 뜨임취화를 억제한다. 첨가량이 0.45wt% 미만에서는 이 효과가 충분하지 않고, 0.6wt%가 초과하는 경우 용접 열영향부 균열 감수성을 증가시키므로, 고온강도 및 인성의 저하를 방지하기 위해 0.45∼0.55wt% 범위로 규정한다.As an element forming carbon and carbide, it precipitates finely in a matrix to give an effect of increasing strength at low and high temperatures, and also inhibits tempering embrittlement. If the added amount is less than 0.45 wt%, this effect is not sufficient, and if 0.6 wt% is exceeded, the cracking susceptibility of the weld heat affected zone is increased. Therefore, it is specified in the range of 0.45 to 0.55 wt% to prevent the decrease in high temperature strength and toughness. .

크롬(Cr)Chrome (Cr)

고온강도, 인성의 개선을 위하여 첨가하지만 본 발명의 저합금강은 Cr을 줄이고 망간을 첨가하여 동일한 효과를 냄으로써, 용접 구속응력 완화와 언더클래드(Underclad) 균열 저항성을 향상시키므로, 최대 0.17∼0.20wt%까지로 규제한다.It is added to improve high temperature strength and toughness, but the low alloy steel of the present invention reduces the Cr and adds manganese to give the same effect, thereby improving welding restraint stress and improving the underclad crack resistance, so that the maximum 0.17 to 0.20wt% Regulate as far as

바나듐(V)Vanadium (V)

오스테나이트 결정 입도를 미세화 시킬 것으로 예상되나 너무 많으면 경화능을 저하시킬 우려가 있다. 지나친 석출경화 효과는 용접할 때 고온균열 생성을 조장시킬 수 있으므로 최대 0.01wt%로 규제한다.It is expected to refine the austenite grain size, but if it is too large, there is a risk of lowering the hardenability. Excessive precipitation hardening effects are encouraged to produce high temperature cracks during welding, so they are regulated to a maximum of 0.01wt%.

인(P)Phosphorus (P)

인은 제강 중 불가피하게 혼입되는 원소로써 열처리 과정 또는 고온에서의 사용 중 뜨임취성을 일으키는 역할을 하고, 조사취화를 촉진시키므로 가능한 낮은 함량으로 제어하는 것이 바람직하나 제조 공정상 경제적인 비용을 고려하여 최고치를 0.010wt%로 제한한다.Phosphorus is an element that is inevitably incorporated in steelmaking, which plays a role in causing temper embrittlement during heat treatment or use at high temperatures and promotes irradiation embrittlement, so it is preferable to control it to the lowest possible amount in consideration of economic costs in the manufacturing process. Is limited to 0.010 wt%.

유황(S)Sulfur (S)

유황은 대형광괴에서는 미량 함유하여도 MnS 등의 비금속 개재물을 강 중에 형성시켜 강의 품질을 저하시키기 때문에 적게 함유될수록 충격인성은 증가된다. 이 효과는 황이 없음으로 해서 미세 청정도가 개선되기 때문이다. 제조 공정상 경제적인 이유로 해서 황의 함량을 0.010wt% 이하로 제한한다.Sulfur contains a small amount in a large mass, so non-metallic inclusions such as MnS are formed in the steel, thereby degrading the quality of the steel. This effect is because fine cleanliness is improved by the absence of sulfur. For economic reasons in the manufacturing process, the sulfur content is limited to 0.010 wt% or less.

구리(Cu)Copper (Cu)

구리는 인과 상승작용으로 조사취화를 촉진시키는 원소로써 0.4% 이상의 니켈은 구리의 악영향을 증가시키며, 구리가 적을 때는 인의 효과가 두드러지나 구리가 많을 경우에는 인의 효과가 적다. 최대 0.1wt% 이하로 제한한다.Copper is an element that promotes irradiation embrittlement by synergy with phosphorus. Nickel of 0.4% or more increases the adverse effect of copper. When copper is low, the effect of phosphorus is noticeable, but when copper is high, phosphorus is less. The limit is 0.1 wt% or less.

알루미늄(Al)Aluminum (Al)

Al은 산소와 친화력이 강하므로 용강 중의 산소와 결합하여 산화 알루미늄의 형태로 산소를 제거할 목적으로 첨가되나, 잔량의 일부는 질소와 반응하여 미세한 질화물을 형성하여 결정립 미세화에 기여함과 동시에, 고용질소를 저감시켜 인성을 향상시킨다. 질소와의 고온 크립연성을 저해하는 비금속 개재물의 생성원으로 작용하므로 0.020∼0.030wt%로 규정한다.Al has a high affinity with oxygen, so it is added to remove oxygen in the form of aluminum oxide by combining with oxygen in molten steel, but a part of the remaining amount reacts with nitrogen to form fine nitride, which contributes to grain refinement and solid solution. Reduce nitrogen to improve toughness. It is defined as 0.020 to 0.030 wt% because it acts as a source of nonmetallic inclusions that inhibits high temperature creep ductility with nitrogen.

질소(N)Nitrogen (N)

질소는 알루미늄과 적절한 비율로 함유되어 있을 때 AlN(알루미늄나이트라이드)을 형성하여 열처리 과정에서 결정립의 미세화에 의한 충격인성과 기계적 성질을 향상시킨다. 따라서, 함유량을 70∼90ppm으로 첨가하여 기계적 성질과 저온 충격인성을 안정적으로 확보하는데 필요한 알루미늄과 질소의 비율이 0.23∼0.45가 되도록 한다.Nitrogen forms AlN (aluminum nitride) when contained in an appropriate ratio with aluminum to improve impact toughness and mechanical properties due to miniaturization of grains during heat treatment. Therefore, the content is added in an amount of 70 to 90 ppm so that the ratio of aluminum and nitrogen necessary for stably securing mechanical properties and low temperature impact toughness is 0.23 to 0.45.

이하, 본 발명에 따른 제조공정을 단계별로 상세히 설명한다.Hereinafter, the manufacturing process according to the present invention will be described in detail step by step.

1) 제강 및 조괴1) Steelmaking and Ingot

도 3의 공정도는 원자로용 압력용기강의 제조를 위해 사용되는 주요 제조공정을 도시한 것으로서, 도시한 바와 같이,3 shows the main manufacturing process used for the production of pressure vessel steel for the reactor, as shown,

제강공정은 염기성 전기로(Electric Arc Melting Furnace)-2차 정련로(ASEA-SKF LRF)-진공 강괴 주입(VSD)의 공정을 거치며, 염기성 전기로에서 용해작업은 강염기성 분위기의 슬랙을 제조하여 0.005%까지 인(P)의 함량을 제어하고, 규소(Si) 함량을 0.02% 이하로 산화처리한 후 2차 정련로에 수강한다.The steelmaking process goes through the process of Electric Arc Melting Furnace-Secondary Refining Furnace (ASEA-SKF LRF) -Vacuum Ingot Injection (VSD). The content of phosphorus (P) is controlled to%, and the silicon (Si) content is oxidized to 0.02% or less and then taken to the secondary refining furnace.

산화정련의 중요한 목적은 규소(Si) 및 인(P)을 목표함량 이하로 제어하고, 환원기에 탄소(C)의 함량을 적정량으로 용이하게 첨가되도록 망간을 첨가하여 1차 탈산처리를 한다. 산화정련을 한 후 용강은 고온에서 환원정련하는 동안 산화정련기의 슬랙에 포함되어 있는 P2O5가 환원되어 P의 함량이 증가하는 것을 방지하기 위하여 산화기의 슬랙을 완전하게 제거한다.An important purpose of oxidative refining is to control silicon (Si) and phosphorus (P) below the target content, and to carry out the primary deoxidation treatment by adding manganese so that the amount of carbon (C) is easily added to the reducer. After oxidizing and refining, molten steel completely removes the slack of the oxidizer to prevent the increase of P content by reducing P 2 O 5 contained in the slack of the oxidizer during refining at high temperature.

환원정련기에는 강염기성 분위기 슬랙을 제조하고, 진공분위기에서 탈가스 처리하여 황(S)의 요구치인 0.002% 이하가 되도록 한다. 이와 같이 ASEA-SKF 2차 정련로에서 비금속 개재물의 부상분리 및 제거, 균일한 화학성분 및 온도를 조절한 환원정련, 진공탈가스 처리에 의하여 유해한 가스(수소, 산소 등) 함량을 최대한억제함으로써 불순원소 함량을 최대한 억제한다.In the refining refiner, a strong basic atmosphere slag is prepared and degassed in a vacuum atmosphere so as to be 0.002% or less of sulfur (S). In this way, the ASEA-SKF secondary refining furnace removes and removes non-metallic inclusions, reduces the uniform chemical composition and temperature, reduces refining, and vacuum degassing to minimize harmful gas content (hydrogen, oxygen, etc.). Suppress elemental content as much as possible.

탈가스 처리 후의 용강에 질소 함유 합금철을 첨가하여 질소 함량을 0.012% 이상으로 조절하고 진공유적법(VSD)으로 강괴를 제조함으로써, 최종 질소 함량이 0.007∼0.009%이고 청정도가 높으며, 성분 편석 및 기계적 성질에 유해한 결함을 최대한으로 감소시킬 수 있다.Nitrogen-containing ferroalloy was added to the molten steel after the degassing treatment to adjust the nitrogen content to 0.012% or more and to prepare the ingot by vacuum drop method (VSD), resulting in a final nitrogen content of 0.007 to 0.009%, high cleanliness, component segregation and Defects harmful to mechanical properties can be reduced to the maximum.

2) 단조2) forging

제품의 균질성과 내부 결함이 없는 압력용기를 제조하기 위해 강괴를 1250℃로 가열하여 1.20S 단조비로 조압연(Cogging)한 후 1/2.3U로 업셋팅(Upsetting) 작업을 실시하고, 중심부에 펀칭(Punching) 작업을 한 후 단조비 3.59E로 홀 확대 작업과 형상과 치수를 맞추는 피니쉬 단조(Finish Forging)로 최종 마무리 한다.In order to manufacture the pressure vessel without homogeneity and internal defect of the product, the steel ingot is heated to 1250 ℃, cogging at 1.20S forging ratio, and then upsetting to 1 / 2.3U, and punching in the center After punching, finish with hole forging 3.59E and finish forging to match shape and dimension.

3) 열처리3) heat treatment

본 발명에 따른 저합금강은 고온강도, 충격인성 및 뜨임취성에 대한 저항성이 우수한 성질을 얻기 위해 단조 후에는 황삭가공 전의 가공성을 향상하기 위한 전 열처리로 불림(Normalizing)을 880∼910℃에서 6.5∼10시간 유지한 후 공냉하고, 620∼650℃에서 6.5∼10시간 유지한 후 공냉하는 뜨임(Tempering) 열처리를 수행한다.Low alloy steel according to the present invention, after obtaining a property of excellent resistance to high temperature strength, impact toughness and temper brittleness, after forging, the normal heat treatment (Normalizing) in order to improve the workability before roughing, 6.5 ~ 880 ~ 910 ℃ After cooling for 10 hours, air cooling was performed, followed by tempering heat treatment to maintain air cooling at 620 to 650 ° C. for 6.5 to 10 hours.

품질열처리는 오스테나이트화 온도(Austenitizing Temperature)인 870∼900℃에서 5.25∼9시간 유지한 후 수냉하고, 655∼660℃에서 9∼11시간 뜨임 열처리를 실시한다. 용접부에 대한 결함 발생을 억제하기 위하여 행해지는 후열처리(Post Weld Heat Treatment)는 600∼625℃에서 30.5∼42시간 유지한 후 공냉한다.Quality heat treatment is maintained for 5.25 to 9 hours at 870-900 ° C., which is the austenitizing temperature, and then water-cooled, followed by tempering heat treatment at 655-660 ° C. for 9-11 hours. Post Weld Heat Treatment, which is performed to suppress the occurrence of defects on the welded part, is air-cooled after maintaining 30.5 to 42 hours at 600 to 625 ° C.

이하, 실험예를 통하여 본 발명에 따른 저합금강의 특성을 설명한다.Hereinafter, the characteristics of the low alloy steel according to the present invention through the experimental example.

종래의 불균일한 인성을 나타내는 원자로 압력용기 소재용 강으로 사용되었던 ASME 508 Class.3 소재와 본 발명을 위해 진공유도용해로(VIM)에서 제작한 강괴를 이용하여 1250℃에서 단조한 다음, 실제품에 적용되는 열처리 조건과 동일한 온도조건으로 열처리한 후 소재의 특성을 상호 비교하였다.Forging at 1250 ° C using ASME 508 Class.3 material, which was used as a steel for reactor pressure vessel materials showing conventional non-uniform toughness, and a steel ingot manufactured in vacuum induction furnace (VIM) for the present invention, and then applied to a real product After heat treatment under the same temperature conditions as the heat treatment conditions, the properties of the materials were compared.

다음의 표 3은 본 발명에 따른 저합금강의 특성 비교 평가를 위해 제작된 시험편들의 화학성분을 나타내고 있으며 비교용으로 종래의 강 1,2를 제작하여 함께 시험 평가하였다.The following Table 3 shows the chemical composition of the test pieces prepared for comparative evaluation of the properties of the low alloy steel according to the present invention, and the conventional steels 1 and 2 were manufactured and evaluated for comparison.

다음의 표 4에는 상기 표 3의 강들에 대한 기계적인 평가 시험을 한 결과들로써, 종래의 강에 비하여 우수한 파괴인성을 가짐을 알 수 있다.In Table 4 below, as a result of the mechanical evaluation test for the steels of Table 3, it can be seen that it has excellent fracture toughness compared to the conventional steel.

도 4에는 질소/알루미늄 비에 따른 무연성 천이온도(TNDT)의 변화를 나타내었다. 도시한 바와 같이, 질소/알루미늄의 비가 0.3∼0.4 범위에서 가장 우수한 인성을 나타내는 것을 알 수 있다. 여기서, 기준무연성 천이온도의 측정은 낙중 시험(Drop Weight Test) 대신 ASTM STP919에서 추천하는 방법인 충격시험에서 얻어진 연성취성 천이온도(FATT) 결과를 이용하여 환산식에 의해 환산한 무연성 천이온도(TNDT) 값이다.Figure 4 shows the change in the non- combustible transition temperature (T NDT ) according to the nitrogen / aluminum ratio. As shown, it can be seen that the ratio of nitrogen / aluminum shows the best toughness in the range of 0.3 to 0.4. Here, the measurement of the reference lead-free transition temperature is a lead-free transition temperature converted by the conversion formula using the ductile embrittlement transition temperature (FATT) results obtained in the impact test, which is a method recommended by ASTM STP919 instead of the drop weight test. (T NDT ) value.

이상과 같은 목적과 구성으로 이루어진 본 발명에 의해, 저온 파괴인성이 획기적으로 개선되어 -29℃ 이하의 안정적인 RTNDT값을 갖고, 높은 인장강도를 갖는 저합금강을 제조할 수 있음으로써, 인성이 우수한 개량된 원자로용 소재의 제작이 가능하게 된다.According to the present invention having the above objects and configurations, the low temperature fracture toughness is remarkably improved to have a stable RT NDT value of -29 ° C. or lower, and to produce a low alloy steel having high tensile strength, thereby providing excellent toughness. It is possible to manufacture an improved reactor material.

Claims (2)

화학적 조성이 wt%로 탄소(C) 0.19∼0.20%, 망간(Mn) 1.35∼1.45%, 니켈(Ni) 0.80∼0.90%, 규소(Si) 0.15∼0.25%, 인(P) 최대 0.010%, 황(S) 최대 0.010%, 크롬(Cr) 0.17∼0.20%, 몰리브덴(Mo) 0.45∼0.55%, 구리(Cu) 최대 0.10%, 알루미늄(Al) 0.020∼0.030%, 질소(N)의 함유량은 70∼90ppm이며, 질소와 알루미늄의 비(N/Al)가 0.23∼0.45가 되도록 하고, 잔부는 철(Fe)과 제강정련에 의하여 제거할 수 없는 불가피한 불순원소로 구성된 것을 특징으로 하는 알루미늄과 질소 첨가 고인성 원자로용 저합금강.The chemical composition is 0.1% to 0.20% of carbon (C), 1.35 to 1.45% of manganese (Mn), 0.80 to 0.90% of nickel (Ni), 0.15 to 0.25% of silicon (Si), 0.010% of phosphorus (P), Sulfur (S) up to 0.010%, chromium (Cr) 0.17 to 0.20%, molybdenum (Mo) 0.45 to 0.55%, copper (Cu) up to 0.10%, aluminum (Al) 0.020 to 0.030%, content of nitrogen (N) 70 to 90 ppm, and the ratio of nitrogen to aluminum (N / Al) is 0.23 to 0.45, and the balance is composed of aluminum and nitrogen, which are composed of inevitable impurity elements that cannot be removed by iron (Fe) and steelmaking refining. Low alloy steel for high toughness reactors. 삭제delete
KR1019990057924A 1999-12-15 1999-12-15 A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel KR100346307B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990057924A KR100346307B1 (en) 1999-12-15 1999-12-15 A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990057924A KR100346307B1 (en) 1999-12-15 1999-12-15 A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel

Publications (2)

Publication Number Publication Date
KR20010056461A KR20010056461A (en) 2001-07-04
KR100346307B1 true KR100346307B1 (en) 2002-07-26

Family

ID=19626055

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990057924A KR100346307B1 (en) 1999-12-15 1999-12-15 A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel

Country Status (1)

Country Link
KR (1) KR100346307B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392132C (en) * 2005-03-30 2008-06-04 宝山钢铁股份有限公司 Steel for low temperature and high tenacity structure use and its production method
JP2012188747A (en) 2011-02-24 2012-10-04 Kobe Steel Ltd Forged steel material for nuclear power generation devices, and welded structure for nuclear power generation devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139816A (en) * 1985-12-16 1987-06-23 Kawasaki Steel Corp Manufacture of high tension and toughness steel plate
JPH05295432A (en) * 1992-04-21 1993-11-09 Nkk Corp Production of steel plate having high strength and high toughness by online thermomechanical treatment
JPH09111413A (en) * 1995-10-19 1997-04-28 Nippon Steel Corp Heat resistant steel for nuclear fusion reactor, excellent in toughness, and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139816A (en) * 1985-12-16 1987-06-23 Kawasaki Steel Corp Manufacture of high tension and toughness steel plate
JPH05295432A (en) * 1992-04-21 1993-11-09 Nkk Corp Production of steel plate having high strength and high toughness by online thermomechanical treatment
JPH09111413A (en) * 1995-10-19 1997-04-28 Nippon Steel Corp Heat resistant steel for nuclear fusion reactor, excellent in toughness, and its production

Also Published As

Publication number Publication date
KR20010056461A (en) 2001-07-04

Similar Documents

Publication Publication Date Title
AU2015281542B2 (en) Carburized alloy steel, method for preparing same, and use thereof
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
KR101464712B1 (en) Steel component having excellent temper softening resistance
CN108950432B (en) Manufacturing method of high-strength and high-toughness low-alloy wear-resistant steel
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
EP2159296B1 (en) Hardened and tempered steel and method for producing parts of said steel
EP0806490A1 (en) Heat resisting steel and steam turbine rotor shaft
KR101704821B1 (en) Bucket tooth for construction equipment with enhanced abrasion resistance and impact resistance
EP0770696B1 (en) High strength and high toughness heat resisting steel and its manufacturing method
JP2010007120A (en) Method for manufacturing high-strength carburized component
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
EP3333277B1 (en) High-strength low-alloy steel with high resistance to high-temperature oxidation
CN113774270A (en) High-strength high-toughness precipitation hardening stainless steel bar and preparation method thereof
JP3852248B2 (en) Manufacturing method of martensitic stainless steel with excellent stress corrosion cracking resistance
KR100346307B1 (en) A Low Alloy Steel added Al and N for High Tough Nuclear Reactor Pressure Vessel
JP3684895B2 (en) Manufacturing method of high toughness martensitic stainless steel with excellent stress corrosion cracking resistance
JP2006083432A (en) Heat-resisting steel, heat treatment method for heat-resisting steel, and high-temperature steam turbine rotor
KR20030002183A (en) High Strength Wear Resistance Steel with Excellent Hardenability and Method of Producing the Same
KR19980073737A (en) High toughness cr-mo steel
CN111101080A (en) High-temperature-resistant die steel and manufacturing method thereof
JP2004124188A (en) HIGH Cr HEAT-RESISTANT STEEL AND METHOD FOR MANUFACTURING THE SAME
JPH1036944A (en) Martensitic heat resistant steel
RU2806682C1 (en) High strength corrosion resistant nitrogen containing martensitic-austenitic-ferritic steel
JPH0151526B2 (en)
KR100262440B1 (en) Cr-mo alloy steel and the manufacturing method of low-temperature bolt-nut

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150604

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160608

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 16