JPH07166303A - High strength martensitic stainless steel excellent in stress corrosion cracking resistance and production thereof - Google Patents

High strength martensitic stainless steel excellent in stress corrosion cracking resistance and production thereof

Info

Publication number
JPH07166303A
JPH07166303A JP15610294A JP15610294A JPH07166303A JP H07166303 A JPH07166303 A JP H07166303A JP 15610294 A JP15610294 A JP 15610294A JP 15610294 A JP15610294 A JP 15610294A JP H07166303 A JPH07166303 A JP H07166303A
Authority
JP
Japan
Prior art keywords
less
tempering
corrosion cracking
stress corrosion
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15610294A
Other languages
Japanese (ja)
Other versions
JP3228008B2 (en
Inventor
Shuji Hashizume
修司 橋爪
Yusuke Minami
雄介 南
Yoshikazu Ishizawa
嘉一 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26483932&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07166303(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15610294A priority Critical patent/JP3228008B2/en
Publication of JPH07166303A publication Critical patent/JPH07166303A/en
Application granted granted Critical
Publication of JP3228008B2 publication Critical patent/JP3228008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To impart excellent properties against stress corrosion cracking to a steel by specifying its compsn. and structure. CONSTITUTION:This steel has a compsn. contg., as essential components, by weight, <=0.06% C, 12 to 16% Cr, <=1.0% Si, <=2.0% Mn, 0.5 to 8% Ni, 0.1 to 2.5% Mo, 0.3 to 4.0%. Cu and 0.05% N and has a structure in which the area ratio of a delta-ferritic phase is regulated to <=10% and the fine precipitates of Cu are dispersed into a matrix. For obtaining this structure, it is austenitized at a temp. from the Ac3 to 980 deg.C, is thereafter cooled and is next subjected to tempering treatment under the conditions in which the tempering temp. T( deg.C) is regulated to either lower one between >=500 deg.C to 630 deg.C or the Ac1 or below and the tempering time t (hr) is regulated to 15200 to 17800 by the value of (20+logt)(273+T). Moreover, the structure may be added with one or more kinds of 0.01 to 0.1% V and 0.01 to 0.1% Nb as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐応力腐食割れ性に優れ
た高強度マルテンサイト系ステンレス鋼およびその製造
方法に係わり、さらに詳しくいえば例えば石油、天然ガ
スの掘削、輸送において湿潤炭酸ガス、湿潤硫化水素を
含む環境で高い応力腐食割れ抵抗を有する高強度ステン
レス鋼およびその製造方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength martensitic stainless steel having excellent resistance to stress corrosion cracking and a method for producing the same, more specifically, for example, wet carbon dioxide gas in the drilling and transportation of petroleum and natural gas, The present invention relates to a high-strength stainless steel having high stress corrosion cracking resistance in an environment containing wet hydrogen sulfide and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年生産される石油、天然ガスは湿潤炭
酸ガス、湿潤硫化水素を多量に含む場合が増加してお
り、従来の炭素鋼にかわって13Cr系ステンレス鋼な
どのマルテンサイト系ステンレス鋼が用いられてきてい
る。しかし、従来のマルテンサイト系ステンレス鋼は湿
潤炭酸ガスに対する耐食性(以下単に耐食性と呼ぶ)は
優れているが湿潤硫化水素に対する耐応力腐食割れ性
(以下単に耐応力腐食割れ性と呼ぶ)は十分ではなく、
強度、靭性、耐食性を維持しつつ耐応力腐食割れ性が向
上したマルテンサイト系ステンレス鋼が望まれていた。
2. Description of the Related Art Recently, petroleum and natural gas produced in recent years are increasing in amount containing a large amount of wet carbon dioxide gas and wet hydrogen sulfide. In place of conventional carbon steel, martensitic stainless steel such as 13Cr stainless steel. Has been used. However, although conventional martensitic stainless steels have excellent corrosion resistance to wet carbon dioxide (hereinafter simply referred to as corrosion resistance), they do not have sufficient stress corrosion cracking resistance to wet hydrogen sulfide (hereinafter simply referred to as stress corrosion cracking resistance). Without
A martensitic stainless steel having improved stress corrosion cracking resistance while maintaining strength, toughness and corrosion resistance has been desired.

【0003】強度、靭性、耐食性にくわえ耐応力腐食割
れ性の要求を満たすものとして特公昭61−3391、
特開昭58−199850、特開昭61−207550
が開示されている。しかしこれらは硫化水素を極微量し
か含まない環境では耐性を示すものの、硫化水素分圧が
0.01気圧を超える環境では応力腐食割れが生じるた
め硫化水素を多く含む環境では使用できないという問題
があった。
In addition to strength, toughness, and corrosion resistance, the requirements of stress corrosion cracking resistance are disclosed in JP-B-61-3391.
JP-A-58-199850, JP-A-61-207550
Is disclosed. However, although they show resistance in an environment containing a very small amount of hydrogen sulfide, there is a problem that they cannot be used in an environment containing a large amount of hydrogen sulfide because stress corrosion cracking occurs in an environment where the partial pressure of hydrogen sulfide exceeds 0.01 atm. It was

【0004】一方、硫化水素分圧が0.01気圧を超え
る環境での耐応力腐食割れ性を改善したマルテンサイト
系ステンレス鋼も提案されており、例えば、特開昭60
−174859、特開昭62−54063などが開示さ
れている。しかし、これらの鋼も硫化水素による応力腐
食割れを完全に防止できるものではない。
On the other hand, a martensitic stainless steel having improved resistance to stress corrosion cracking in an environment where the partial pressure of hydrogen sulfide exceeds 0.01 atm has also been proposed.
-174859, JP-A-62-54063 and the like are disclosed. However, these steels cannot completely prevent stress corrosion cracking due to hydrogen sulfide.

【0005】また、強度の観点からいうと、前記したマ
ルテンサイト系ステンレス鋼はいずれも高強度化を試み
ると靭性および耐応力腐食割れ性が著しく劣化し、その
ため、強度あるいは靭性と耐応力腐食割れ性の一方を犠
牲にせざるをえないという問題もあった。そのため、例
えば高強度、耐応力腐食割れ性、耐食性、靭性が同時に
要求される高深度の油井管には適用できないという難点
があった。
Further, from the viewpoint of strength, the toughness and stress corrosion cracking resistance of each of the above-mentioned martensitic stainless steels are remarkably deteriorated when an attempt is made to increase the strength, so that the strength or toughness and stress corrosion cracking resistance are deteriorated. There was also the problem of having to sacrifice one of the sexes. Therefore, for example, there is a drawback that it cannot be applied to a deep oil well pipe that requires high strength, stress corrosion cracking resistance, corrosion resistance, and toughness at the same time.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した従来
技術における問題点を解決すべく創案されたもので、従
来のマルテンサイト系ステンレス鋼の強度、耐応力腐食
割れ性、靭性を同時に改善することにより耐食性を維持
しつつ、硫化水素を多く含む環境でも応力腐食割れを生
じることなく使用できる高強度のマルテンサイト系ステ
ンレス鋼およびその製造方法を提供する。ここで、目標
とする性能は炭酸ガス、硫化水素を含む石油、天然ガス
の掘削、輸送用鋼管に要求される性能に鑑み以下の如く
とした。
The present invention was devised to solve the above-mentioned problems in the prior art, and simultaneously improves the strength, stress corrosion cracking resistance and toughness of conventional martensitic stainless steel. This provides a high-strength martensitic stainless steel that can be used without causing stress corrosion cracking even in an environment containing a large amount of hydrogen sulfide while maintaining corrosion resistance, and a method for producing the same. Here, the target performance was set as follows in view of the performance required for carbon dioxide, petroleum containing hydrogen sulfide, natural gas excavation, and steel pipes for transportation.

【0007】強度 :0.2%耐力で75k
g/mm2 以上 靭性 :0℃でのシャルピ・フルサイズ試験
片での吸収エネルギ−(シャルピ衝撃値と呼ぶ)が10
kg−m以上 耐応力腐食割れ性:1気圧の硫化水素ガスを飽和させた
5%食塩水+0.5%酢酸水溶液中で試験片に0.2%
耐力の60%の応力を負荷し、720時間以上破断せず
もちこたえること
Strength: 75% at 0.2% proof stress
g / mm 2 or more Toughness: Absorbed energy in Charpy full size test piece at 0 ° C. (called Charpy impact value) is 10
More than kg-m Stress corrosion cracking resistance: 0.2% on test pieces in 5% saline + 0.5% acetic acid solution saturated with hydrogen sulfide gas at 1 atm
Load 60% of proof stress and withstand 720 hours without breaking

【0008】[0008]

【課題を解決するための手段】マルテンサイト系ステン
レス鋼の耐食性向上にはCrの増加が有効である。しか
しそれは一方ではδ−フェライト相を生成させ強度およ
び靭性を劣化させるため、オ−ステナイト生成元素であ
るNiを増加してδ−フェライト相の生成を抑制すれば
よいがNiの増加はコスト面からの制約がある。またC
の増加もδ−フェライト相の抑制に有効ではあるが焼戻
し時に炭化物が生成しかえって耐食性を劣化させるた
め、むしろその含有量は制限されるべきである。δ−フ
ェライト相の量としては、その面積率が10%を超える
と強度、靭性に悪影響となるため10%以下に制限すべ
きである。
[Means for Solving the Problems] Increasing Cr is effective for improving the corrosion resistance of martensitic stainless steel. However, on the other hand, since it forms a δ-ferrite phase and deteriorates the strength and toughness, Ni that is an austenite forming element may be increased to suppress the formation of the δ-ferrite phase, but the increase of Ni is costly. There are restrictions. Also C
Is also effective in suppressing the .delta.-ferrite phase, but carbides are formed during tempering, which deteriorates corrosion resistance. Therefore, its content should be limited. The amount of δ-ferrite phase should be limited to 10% or less because its area ratio exceeds 10%, which adversely affects strength and toughness.

【0009】一方、一般には鋼の高強度化させると靭性
および耐応力腐食割れ性が劣化するがCuを適性量含有
させ、かつ、熱処理によりCuをこのステンレス鋼の基
地に微細な析出物として分散させることによりこれらを
劣化させることなく高強度化させることができる。しか
し、Cuの微細な析出物を析出させるには特に焼戻し条
件を厳密に制御することが必要で、焼戻し温度のみなら
ず焼戻し時間をも同時に制御することが必要である。
On the other hand, generally, when the strength of steel is increased, the toughness and stress corrosion cracking resistance are deteriorated, but Cu is contained in an appropriate amount, and Cu is dispersed as a fine precipitate in the matrix of this stainless steel by heat treatment. By doing so, it is possible to increase the strength without deteriorating them. However, in order to deposit fine Cu precipitates, it is necessary to strictly control the tempering conditions, and it is necessary to control not only the tempering temperature but also the tempering time at the same time.

【0010】本発明は上記のようなCrの増加による金
属組織の制約を考慮しつつ、従来のマルテンサイト系ス
テンレス鋼では実現しえなかった高靱性、高強度で、耐
応力腐食割れ性に優れた新しいマルテンサイト系ステン
レス鋼を得ることに成功したものである。その要旨は、
第一発明においては、主成分として重量%で、C:0.
06%以下、Cr:12−16%、Si:1.0%以
下、Mn:2.0%以下、Ni:0.5−8.0%、M
o:0.1−2.5%、Cu:0.3−4.0%、N:
0.05%以下を含み、δ−フェライト相の面積率が1
0%以下でかつCuの微細な析出物が基地に分散してい
ることを特徴とする耐応力腐食割れ性に優れた高強度マ
ルテンサイト系ステンレス鋼にあり、第二発明において
は、第一発明の鋼において付加成分として、重量%で
V:0.01−0.1%とNb:0.01−0.1%の
うち1種以上を含むマルテンサイト系ステンレス鋼にあ
り、第三および第四発明においては、それぞれ第一発明
および第二発明の成分組成の鋼をAc3以上980℃以
下の温度でオ−ステナイト化後冷却し、次いで焼戻し温
度T(単位:℃)として500℃以上630℃またはA
c1のどちらか低温のほうの温度以下、焼戻し時間t
(単位:時間)が(20+log t)(273+T)の値
で15200以上、17800以下となる条件で焼戻し
てCuの微細な析出物を基地に分散させることを特徴と
する耐応力腐食割れ性に優れた高強度マルテンサイト系
ステンレス鋼の製造方法にある。
The present invention has high toughness, high strength, and excellent stress corrosion cracking resistance, which cannot be realized by the conventional martensitic stainless steel, while taking into consideration the restriction of the metal structure due to the increase of Cr as described above. It succeeded in obtaining a new martensitic stainless steel. The summary is
In the first invention, the main component is, by weight%, C: 0.
06% or less, Cr: 12-16%, Si: 1.0% or less, Mn: 2.0% or less, Ni: 0.5-8.0%, M
o: 0.1-2.5%, Cu: 0.3-4.0%, N:
The area ratio of the δ-ferrite phase is 1 including 0.05% or less.
It is a high-strength martensitic stainless steel excellent in stress corrosion cracking resistance, characterized in that fine precipitates of Cu of 0% or less are dispersed in the matrix, and in the second invention, the first invention In the steel of No. 3, the martensitic stainless steel containing at least one of V: 0.01-0.1% and Nb: 0.01-0.1% by weight% as an additional component. In the fourth aspect of the invention, steels having the composition of the first and second aspects of the invention are each austenitized at a temperature of Ac3 to 980 ° C and then cooled, and then a tempering temperature T (unit: ° C) of 500 ° C to 630 ° C. Or A
c1, whichever is lower, the tempering time t
Excellent stress corrosion cracking resistance, characterized by dispersing fine Cu precipitates in the matrix by tempering under conditions where (unit: time) is (20 + log t) (273 + T) value of 15200 or more and 17800 or less. And a high strength martensitic stainless steel.

【0011】[0011]

【作用】以下に本発明における限定理由を説明する。 (1)C:0.06%以下 Cは焼戻し時Crと結合して炭化物となって析出し耐食
性、耐応力腐食割れ性および靭性を劣化させる。C含有
量が0.06%を超えると劣化が顕著になるため0.0
6%以下の含有量とする。
The reasons for limitation in the present invention will be described below. (1) C: 0.06% or less C combines with Cr at the time of tempering to form a carbide and precipitates to deteriorate corrosion resistance, stress corrosion cracking resistance and toughness. If the C content exceeds 0.06%, the deterioration becomes remarkable, so 0.0
The content is 6% or less.

【0012】(2)Cr:12−16% Crはマルテンサイト系ステンレス鋼を構成する基本的
な元素で、しかも耐食性を発現する重要な元素である
が、含有量が12%未満では十分な耐食性が現れず、1
6%を超えると他の合金元素を如何に調整してもδ−フ
ェライト相の生成量が増し強度、靭性が劣化するため1
2−16%とする。
(2) Cr: 12-16% Cr is a basic element that constitutes martensitic stainless steel, and is an important element that exhibits corrosion resistance, but if the content is less than 12%, sufficient corrosion resistance is obtained. Does not appear, 1
If it exceeds 6%, the amount of δ-ferrite phase produced increases and the strength and toughness deteriorate, no matter how the other alloy elements are adjusted.
2-16%.

【0013】(3)Si:1.0%以下 Siは脱酸剤として必要な元素であるが、強力なフェラ
イト生成元素でもあり1.0%を超えて含有させるとδ
−フェライト相の生成を助長するため1.0%以下とす
る。
(3) Si: 1.0% or less Si is an element necessary as a deoxidizing agent, but it is also a strong ferrite-forming element, and if it exceeds 1.0%, δ
-To accelerate the formation of the ferrite phase, the content is 1.0% or less.

【0014】(4)Mn:2.0%以下 Mnは脱酸、脱硫剤として有効であるとともにδ−フェ
ライト相の出現を抑えるオ−ステナイト生成元素である
が、過剰に含有させてもその効果は飽和するので2.0
%以下とする。
(4) Mn: 2.0% or less Mn is an austenite-forming element that is effective as a deoxidizing and desulfurizing agent and suppresses the appearance of the δ-ferrite phase. Is saturated, so 2.0
% Or less.

【0015】(5)Ni:0.5−8.0% Niは耐食性を向上させるとともに、オ−ステナイトの
生成に極めて有効な元素であるが0.5%未満ではその
効果が少なく、一方、この元素は高価なため経済的な観
点から8.0%を上限とする。
(5) Ni: 0.5-8.0% Ni improves the corrosion resistance and is an extremely effective element for forming austenite, but if it is less than 0.5%, its effect is small. Since this element is expensive, the upper limit is 8.0% from the economical point of view.

【0016】(6)Mo:0.1−2.5% Moは特に耐食性に有効な元素であるが、0.1%未満
の含有量ではその効果が現れず、また2.5%を超える
と過剰なδ−フェライト相を出現させるため上限を2.
5%とする。
(6) Mo: 0.1-2.5% Mo is an element particularly effective for corrosion resistance, but if the content is less than 0.1%, its effect does not appear, and if it exceeds 2.5%. And an excessive δ-ferrite phase appears, the upper limit is 2.
5%.

【0017】(7)Cu:0.3−4.0% Cuは本発明において重要な元素であり、基地に固溶体
として溶け込んで耐食性を向上させると同時に、焼戻し
により一部が基地に微細に分散析出することにより、耐
応力腐食割れ性を劣化させることなく強度を向上させる
両方の効果をもつ。しかし0.3%未満の含有量ではそ
の効果は十分でなく、4.0%を超えて含有させてもそ
の効果は飽和し、また熱間加工時に割れの原因になるた
め、含有量は0.3−4.0%とする。
(7) Cu: 0.3-4.0% Cu is an important element in the present invention, and it dissolves in the matrix as a solid solution to improve the corrosion resistance, and at the same time, part of it is finely dispersed in the matrix by tempering. The precipitation has both effects of improving the strength without deteriorating the stress corrosion cracking resistance. However, if the content is less than 0.3%, the effect is not sufficient, and if the content exceeds 4.0%, the effect is saturated and it causes cracking during hot working. 3 to 4.0%.

【0018】(8)N:0.05%以下 Nは耐食性向上に有効な元素で、かつオ−ステナイト生
成元素でもあるが、0.05%を超えて含有させると焼
戻し時にCrと結合して窒化物となって析出し耐食性、
耐応力腐食割れ性および靭性が劣化するため0.06%
以下の含有量とする。
(8) N: 0.05% or less N is an element effective for improving the corrosion resistance and is also an austenite forming element, but if it is contained in excess of 0.05%, it will combine with Cr during tempering. Corrosion resistance due to precipitation as nitride
0.06% due to deterioration of stress corrosion cracking resistance and toughness
The content is as follows.

【0019】(9)付加成分V、Nb(V:0.01−
0.10%、Nb:0.01−0.10%) V、Nbは強力な炭化物生成元素で、微細な炭化物を析
出させることにより結晶粒を細粒化し、耐応力腐食割れ
性を向上させる。しかしフェライト生成元素でもありδ
−フェライト相を増加させる。含有量をそれぞれ0.0
1−0.10%、0.01−0.10%とした。0.0
10%未満では耐応力腐食割れ性向上効果が現れず、
0.10%を超えるとその効果が飽和し、かつ、δ−フ
ェライト相が増加し靭性に悪影響がでるため含有量を
V、Nbともに0.01−0.10%、0.01−0.
10%とする。
(9) Additional components V, Nb (V: 0.01-
0.10%, Nb: 0.01-0.10%) V and Nb are strong carbide-forming elements, and by precipitating fine carbides, the crystal grains are made finer to improve the stress corrosion cracking resistance. . However, it is also a ferrite forming element and δ
Increase the ferrite phase. Content of 0.0
It was set to 1-0.10% and 0.01-0.10%. 0.0
If it is less than 10%, the effect of improving stress corrosion cracking resistance does not appear,
If it exceeds 0.10%, the effect is saturated, and the δ-ferrite phase increases and the toughness is adversely affected, so that the content of both V and Nb is 0.01-0.10%, 0.01-0.
10%.

【0020】(10)δ−フェライト相の面積率:10
%以下 δ−フェライト相はマルテンサイト鋼の焼入れ時にマル
テンサイトに変態せずフェライトのまま残った相で、そ
の量が多いと靭性が著しく劣化する。この鋼においては
δ−フェライト相の量が面積率で10%を超えると靭性
劣化が著しくなるので10%以下とする。
(10) Area ratio of δ-ferrite phase: 10
% Or less The δ-ferrite phase is a phase that does not transform into martensite during quenching of martensitic steel and remains as ferrite, and if the amount is large, the toughness deteriorates significantly. In this steel, if the area ratio of the δ-ferrite phase exceeds 10%, the toughness deteriorates significantly, so the content is made 10% or less.

【0021】(11)Cuの微細な析出物 Cuの析出物は微細であれば析出硬化により強度を上昇
させ、しかも強度上昇による耐応力腐食割れ性の劣化は
生じない。ここで微細な析出物とは10万倍の電子顕微
鏡で識別可能でかつ直径が概ね0.10ミクロン以下の
大きさである。しかし、Cu析出物が粗大化し直径0.
10ミクロンを越えると強度上昇効果はなくなる。ま
た、Cuが析出せず基地に溶け込んだままだと析出硬化
による強度上昇は期待できない。そのためCuの析出物
は微細な析出物とする。また、分散量は特に制限しない
が、基地1平方ミクロン当り30ケ以上の微細な析出物
が存在していることが望ましい。
(11) Fine Cu Precipitate If the Cu precipitate is fine, the strength is increased by precipitation hardening, and the stress corrosion cracking resistance does not deteriorate due to the increase in strength. Here, fine precipitates can be identified by an electron microscope of 100,000 times and have a diameter of about 0.10 micron or less. However, the Cu precipitates became coarse and the diameter was 0.
When it exceeds 10 microns, the strength increasing effect disappears. Further, if Cu does not precipitate and remains dissolved in the matrix, strength increase due to precipitation hardening cannot be expected. Therefore, Cu precipitates are fine precipitates. Although the amount of dispersion is not particularly limited, it is desirable that 30 or more fine precipitates are present per square micron of the matrix.

【0022】(12)オ−ステナイト化温度:Ac3以
上980℃以下 Ac3温度より低いとオ−ステナイト化が不十分で必要
な強度が得られず、980℃を超えると結晶粒が粗大化
して靭性劣化が著しくなり、また耐応力腐食割れ性が低
下するためAc3以上980℃以下とする。
(12) Austenitizing temperature: Ac3 or higher and 980 ° C or lower If the temperature is lower than the Ac3 temperature, the austenitization is insufficient and the necessary strength cannot be obtained, and if it exceeds 980 ° C, the crystal grains become coarse and the toughness is increased. Since the deterioration becomes remarkable and the stress corrosion cracking resistance decreases, the temperature is set to Ac3 or higher and 980 ° C or lower.

【0023】(13)焼戻し温度T(単位:℃):50
0℃以上630℃またはAc1のどちらか低温のほうの
温度以下 焼戻しはマルテンサイトを軟らかくして靭性を確保する
と同時に、Cuを基地に微細に析出させ強度を上昇させ
る効果をもつ。しかし、焼戻し温度が500℃未満だと
マルテンサイトの軟化が十分でなくまたCuの微細な析
出物も不十分で期待する性能が得られない。一方、焼戻
し温度がAc1より高いと組織の一部が再びオ−ステナ
イト化して焼戻しされず靭性が劣化する。また630℃
を超えると例えCuの微細な析出物が析出していてもそ
れが再び溶解してなくなってしまうため高強度が得られ
ない。そのため焼戻し温度は500℃以上630℃また
はAc1のどちらか低温の方の温度以下とする。
(13) Tempering temperature T (unit: ° C): 50
The temperature is 0 ° C. or higher and 630 ° C. or less, whichever is lower. Tempering softens martensite to secure toughness, and at the same time, has the effect of finely precipitating Cu in the matrix to increase the strength. However, if the tempering temperature is less than 500 ° C., the softening of martensite is not sufficient and the fine Cu precipitates are insufficient, and the expected performance cannot be obtained. On the other hand, when the tempering temperature is higher than Ac1, a part of the structure is austenitized again and the tempering is not performed and the toughness deteriorates. Also 630 ℃
If it exceeds, even if fine Cu precipitates are deposited, they will not be dissolved again and high strength cannot be obtained. Therefore, the tempering temperature is set to 500 ° C. or more and 630 ° C. or Ac1, whichever is lower.

【0024】(14)焼戻し時間t(単位:時間):
(20+log t)(273+T)が15200以上、1
7800以下となるような焼戻し時間 焼戻し温度が同じであっても焼戻し時間が短すぎればC
uの析出が不十分で十分な強度が得られない。また、焼
戻し時間が長すぎれば微細なCuの析出物が一旦析出し
てもそれが再溶解したり、凝集粗大化して強度向上に寄
与しなくなる。すなわち、適切な強度上昇を実現するた
めに必要な焼戻し時間はある範囲に限定されるが、その
範囲は採用された焼戻し温度によって異なる。
(14) Tempering time t (unit: hours):
(20 + log t) (273 + T) is 15200 or more, 1
Tempering time of 7800 or less Even if the tempering temperature is the same, if the tempering time is too short, C
Precipitation of u is insufficient and sufficient strength cannot be obtained. Further, if the tempering time is too long, even if a fine Cu precipitate is once deposited, it will be redissolved or agglomerated and coarsened, which will not contribute to the improvement of strength. That is, the tempering time required to achieve an appropriate strength increase is limited to a certain range, but the range depends on the tempering temperature adopted.

【0025】図1は焼戻し温度と焼戻し時間を組み合わ
せた変数であるテンパー・パラメーターと0.2%耐力
およびシャルピー衝撃値との関係を調べた結果を図示し
たもので、テンパー・パラメーターが15200から1
7800の間にあれば、0.2%耐力が75kg/mm
2 以上でしかもシャルピー衝撃値が10kg−m以上と
本発明の目標性能を満足することがわかる。ここで、テ
ンパー・パラメーターは以下の式で定義する。
FIG. 1 shows the results of examining the relationship between the tempering parameter, which is a variable that combines the tempering temperature and the tempering time, and the 0.2% proof stress and the Charpy impact value.
If between 7800, 0.2% proof stress is 75kg / mm
It can be seen that the target performance of the present invention is satisfied when the Charpy impact value is 2 or more and the Charpy impact value is 10 kg-m or more. Here, the temper parameter is defined by the following equation.

【0026】P=(20+log t)(273+T) t:焼戻し時間(単位:時間) T:焼戻し温度(単位:℃) 従って、焼戻し時間は、テンパー・パラメーターが15
200以上、17800以下となるように設定する。
P = (20 + log t) (273 + T) t: tempering time (unit: hours) T: tempering temperature (unit: ° C) Therefore, tempering time is 15 in temper parameter.
It is set to be 200 or more and 17800 or less.

【0027】以下に本発明鋼の製造方法を説明する。本
発明鋼は転炉あるいは電気炉にて本発明の成分範囲に成
分を調整し、普通造塊法または連続鋳造法により鋳片に
する。それを熱間加工により継目無鋼管または鋼板に製
造した後熱処理を行って製造する。熱処理方法は上に説
明したとおりである。
The method for producing the steel of the present invention will be described below. The steel of the present invention has its components adjusted in the component range of the present invention in a converter or an electric furnace, and is cast into a slab by the ordinary ingot casting method or continuous casting method. It is manufactured by hot working it into a seamless steel pipe or steel plate and then heat treating it. The heat treatment method is as described above.

【0028】本発明鋼の成分において、付加成分として
Al、W、Ti、Zr、Ta、Hf、Ca、REMを含
有させてもよい。これらの元素は本発明鋼の性能をさら
に向上させるのに役立つことがあり、各々の目的、適性
含有量は以下の如くである。
In the components of the steel of the present invention, Al, W, Ti, Zr, Ta, Hf, Ca and REM may be contained as additional components. These elements may be useful for further improving the performance of the steel of the present invention, and the purpose and suitable content of each are as follows.

【0029】Al:脱酸の目的で添加され適性含有量は
0.01−0.10%である。 W:炭酸ガス腐食に対して特に効果があるが過剰に含有
させると靭性を劣化させるため最大4%とする。
Al: added for the purpose of deoxidation, the suitable content is 0.01-0.10%. W: It is particularly effective against carbon dioxide corrosion, but if it is contained excessively, the toughness deteriorates, so the maximum content is 4%.

【0030】Ti、Zr、Ta、Hf:耐食性を向上さ
せるのに有効でありその適性含有量は最大0.2%であ
る。しかし0.2%を超えると粗大な析出物が生じて耐
応力腐食割れ性を劣化させる。
Ti, Zr, Ta, Hf: Effective for improving the corrosion resistance, and the suitable content is 0.2% at maximum. However, if it exceeds 0.2%, coarse precipitates are formed to deteriorate the stress corrosion cracking resistance.

【0031】Ca、REM:有害な鋼中不純物であるS
と結合し有害の程度を大幅に低減させ耐応力腐食割れ性
を改善する効果をもつ。しかし、過剰な含有は耐応力腐
食割れ性に対し逆効果となるため、適性含有量はCa:
0.01%以下、REM:0.02%以下である。
Ca, REM: S which is a harmful impurity in steel
Combined with, it has the effect of significantly reducing the degree of harmfulness and improving stress corrosion cracking resistance. However, since an excessive content has an adverse effect on the stress corrosion cracking resistance, an appropriate content is Ca:
0.01% or less, REM: 0.02% or less.

【0032】また、不可避不純物のうちには、P,Sが
含まれ、それらはいずれも鋼の熱間加工性および耐応力
腐食割れ性を劣化させる元素であり少ないほど好まし
い。しかし、Pにおいては0.04%以下、Sにおいて
は0.01%以下であれば本発明の目的とする耐応力腐
食割れ性を確保でき、また熱間圧延鋼板あるいはシ−ム
レス鋼管の製造に支障は現れない。
The unavoidable impurities include P and S, both of which are elements that deteriorate the hot workability and stress corrosion cracking resistance of steel, and the smaller the content, the better. However, if P is 0.04% or less and S is 0.01% or less, the stress corrosion cracking resistance, which is the object of the present invention, can be secured, and in the production of hot-rolled steel plates or seamless steel pipes. No obstacle appears.

【0033】[0033]

【実施例】以下本発明の具体的実施例について説明す
る。本発明者らは発明鋼1から16および比較鋼aから
jを試験鋼として溶製し、熱間圧延にて厚み12mmの
鋼板とした後以下具体的に述べるような熱処理を行い各
種試験片を採取した。 (実施例1)表1に本発明鋼の主要成分、表2に付加成
分およびその他の成分、Ac1、Ac3変態温度を示
す。この鋼を980℃でオ−ステナイト化後空冷し、6
00℃で1時間焼戻してδ−フェライト相、機械的性
質、耐応力腐食割れ性を調べた結果を表3に示す。実施
例1の焼戻しにおけるテンパー・パラメーターは174
60である。まず、δ−フェライト相は鋼番5、8、1
4で10%以下のわずかなδ−フェライト相が観察され
た以外はまったく検出されていない。Cu析出状況は直
径0.001−0.10ミクロン程度のCuの微細な析
出物が基地に均一に分散していることが10万倍の電子
顕微鏡観察により確認された。分散の程度としては基地
1平方ミクロン当りの微細なCuの析出物が30ケ〜1
00ケ程度であった。0.2%耐力、0℃でのシャルピ
衝撃値はすべて目標の75kg/mm2 、10kg−m
以上であった。また、耐応力腐食割れ性は米国腐食技術
者協会規格TM01−77に従って評価試験した。すな
わち、1気圧の硫化水素ガスを飽和させた5%食塩水+
0.5%酢酸水溶液中で試験片に0.2%耐力の60%
(例えば表3の鋼番1においては76x0.6=45.
6kg/mm2 )の応力を負荷し、破断までの時間を測
定した。結果を表3の「SSC試験破断時間」の欄に示
すように鋼番1ないし16のうち720時間以内に破断
したものは皆無であった。
EXAMPLES Specific examples of the present invention will be described below. The inventors of the present invention produced the invention steels 1 to 16 and the comparative steels a to j as test steels, hot-rolled them into steel plates having a thickness of 12 mm, and then heat-treated them as described below to obtain various test pieces. It was collected. (Example 1) Table 1 shows main components of the steel of the present invention, and Table 2 shows additional components and other components, Ac1 and Ac3 transformation temperatures. This steel was austenitized at 980 ° C. and air-cooled,
Table 3 shows the results of examining the δ-ferrite phase, mechanical properties, and stress corrosion cracking resistance after tempering at 00 ° C for 1 hour. The temper parameter in the tempering of Example 1 was 174.
60. First, the δ-ferrite phase is steel No. 5, 8, 1
No δ-ferrite phase of 10% or less was observed in No. 4 at all. Regarding the Cu deposition state, it was confirmed by electron microscope observation at a magnification of 100,000 that fine Cu deposits having a diameter of about 0.001 to 0.10 micron were uniformly dispersed in the matrix. Regarding the degree of dispersion, 30 to 1 fine Cu precipitates per square micron of base
It was about 00. 0.2% proof stress, Charpy impact value at 0 ° C is all target 75kg / mm 2 , 10kg-m
That was all. The stress corrosion cracking resistance was evaluated according to the American Association of Corrosion Engineers Standard TM01-77. That is, 5% saline solution saturated with hydrogen sulfide gas at 1 atm +
60% of 0.2% proof stress on the test piece in 0.5% acetic acid aqueous solution
(For example, in Steel No. 1 in Table 3, 76 × 0.6 = 45.
A stress of 6 kg / mm 2 ) was applied and the time until breakage was measured. As shown in the column of "SSC test rupture time" in Table 3, none of the steel numbers 1 to 16 broke within 720 hours.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】炭酸ガス腐食に対する耐食性は、200℃
のオ−トクレ−ブ中で炭酸ガス分圧30気圧、硫化水素
分圧0.05気圧の条件で10%食塩水中に336時間
浸漬し腐食減量を測定した。1から16のいずれの鋼も
腐食減量は0.5g/m2 /hr以下と従来のマルテン
サイト系ステンレス鋼に要求される1.0g/m2 /h
rを大きく下回り、本発明鋼は耐食性にも優れることが
確認された。
Corrosion resistance to carbon dioxide gas corrosion is 200 ° C.
In the autoclave, the carbon dioxide partial pressure was 30 atm and the hydrogen sulfide partial pressure was 0.05 atm, and the sample was immersed in 10% saline for 336 hours to measure the corrosion weight loss. The corrosion loss of any of the steels 1 to 16 is 0.5 g / m 2 / hr or less, which is 1.0 g / m 2 / h required for the conventional martensitic stainless steel.
It was confirmed that the steel of the present invention had a significantly lower corrosion resistance than r.

【0038】(実施例2)次に、表1ないし2の鋼番3
の鋼についてオ−ステナイト化温度(表4には焼入れ温
度と表示してある)を変化させた結果を表4の一部に示
す。いずれの場合も、オ−ステナイト化後空冷し、60
0℃で1時間焼戻した。実施例2の焼戻しにおけるテン
パー・パラメーターは17460である。オ−ステナイ
ト化温度が本発明の範囲内の時は良好な性能を示すが、
700℃と低温の時はオ−ステナイト化が不十分なため
目標強度に達していない。一方、1000℃と高温の時
は靭性が低く、耐応力腐食割れ性も悪い。
(Example 2) Next, steel No. 3 in Tables 1 and 2 was used.
The results of changing the austenitizing temperature (indicated as quenching temperature in Table 4) for the steel No. 3 are shown in part of Table 4. In either case, after air-cooling after austenitization, 60
Tempered at 0 ° C for 1 hour. The tempering parameter for tempering of Example 2 is 17460. When the austenitizing temperature is within the range of the present invention, good performance is exhibited,
At a low temperature of 700 ° C, the target strength has not been reached because of insufficient austenitization. On the other hand, at a high temperature of 1000 ° C., the toughness is low and the stress corrosion cracking resistance is poor.

【0039】[0039]

【表4】 [Table 4]

【0040】(実施例3)オ−ステナイト化温度は95
0℃で一定とし焼戻し温度を変化させた結果を表4の一
部に示す。この場合も、鋼番3の鋼をオ−ステナイト化
後空冷し、焼戻し時間は1時間とした。焼戻し温度が本
発明の範囲内の時は良好な性能を示すが、それより低い
450℃ではマルテンサイトが硬くて脆いままであるた
め靭性が悪く耐応力腐食割れ性も悪い。さらにCuの析
出が起っていない。一方、Ac1温度より高い650℃
ではCuの微細な析出物が再溶解したため存在しておら
ず、その結果強度が低くなったことが確認された。
Example 3 The austenitizing temperature is 95.
The results of changing the tempering temperature while keeping the temperature constant at 0 ° C. are shown in part of Table 4. Also in this case, steel No. 3 was air-cooled after being austenitized, and the tempering time was 1 hour. When the tempering temperature is within the range of the present invention, good performance is exhibited, but at 450 ° C, which is lower than that, martensite remains hard and brittle, resulting in poor toughness and poor stress corrosion cracking resistance. Furthermore, Cu precipitation has not occurred. On the other hand, 650 ℃ higher than Ac1 temperature
Then, it was confirmed that fine precipitates of Cu did not exist because they were redissolved, and as a result, the strength became low.

【0041】(実施例4)本発明鋼について焼戻し条件
としてテンパー・パラメーターの影響を検討する。この
場合も鋼番5の鋼を950℃でオーステナイト化後冷却
し450〜680℃の範囲で焼戻した。その結果を表5
に示す。
Example 4 The effect of temper parameters as a tempering condition on the steel of the present invention is examined. Also in this case, steel No. 5 was austenitized at 950 ° C., then cooled and tempered in the range of 450 to 680 ° C. The results are shown in Table 5.
Shown in.

【0042】表5において、焼戻し温度が500℃であ
っても、焼戻し時間が0.10時間(テンパー・パラメ
ーター14690)と短時間の場合は、シャルピー衝撃
値が目標値よりも低い。一方、焼戻し時間が0.5時間
以上の場合はテンパー・パラメーターが15200以上
となり十分な強度靱性および良好な耐応力腐食割れ性を
示すことが判る。
In Table 5, even if the tempering temperature is 500 ° C., the Charpy impact value is lower than the target value when the tempering time is as short as 0.10 hours (temper parameter 14690). On the other hand, it can be seen that when the tempering time is 0.5 hours or more, the temper parameter becomes 15200 or more and sufficient strength toughness and good stress corrosion cracking resistance are exhibited.

【0043】焼戻し温度が550℃の場合、テンパー・
パラメーターが15200から17800の範囲で焼き
戻されているため目標性能を満足していることが判る。
一方、焼戻し温度が600℃の場合、焼戻し時間が1.
0時間のものはテンパー・パラメーターが15200か
ら17800の範囲であるため、所期の性能が得られて
いるが、焼戻し時間が5時間のものはテンパー・パラメ
ーターが17800を越えており、Cuの析出物が再溶
解あるいは粗大化したため強度が不十分でまた耐応力腐
食割れ性も不十分となっていることが判る。
When the tempering temperature is 550 ° C., tempering
It can be seen that the target performance is satisfied because the parameters are tempered in the range of 15200 to 17800.
On the other hand, when the tempering temperature is 600 ° C., the tempering time is 1.
Since the tempering parameter of 0 hour has a tempering parameter in the range of 15200 to 17800, the desired performance is obtained, but the tempering parameter of 5 hours has a tempering parameter of more than 17800, and Cu precipitation occurs. It can be seen that the strength was insufficient and the stress corrosion cracking resistance was also insufficient because the material was redissolved or coarsened.

【0044】[0044]

【表5】 [Table 5]

【0045】(比較例)比較例のうち、本発明の成分範
囲から外れる鋼を共試材としたものについてその鋼の成
分組成および試験結果を表6および表7に示す。オース
テナイト化温度及び焼戻し処理は実施例1の場合と同じ
である。表6の鋼は何等かの成分が本発明の範囲を外れ
ているため、試験結果も強度、靭性のいずれかが目標を
外れ、その結果として耐応力腐食割れ性が目標を達成し
えていない。そのうち、鋼番a、bはCu含有量が0.
3%未満のためCuの析出物が生成できずその結果強度
が75kg/mm2 未満となった。鋼番cはCu含有量
が4.0%を超えているため熱間圧延時鋼板に割れを生
じ商品価値を著しく損ない、またSSC性能も劣った。
また、鋼番dはNiが低いため、鋼番gはCrとMoが
高いため、鋼番iはMoが高いため10%を超えるδ−
フェライト相が出現し靭性を著しく劣化させている。鋼
番eはNiが9%を超え著しく高価となるため本発明の
目的からは適当でなく、またSSC性能も劣っていた。
鋼番fはCrが低いため、鋼番hはMoが低いため、炭
酸ガス腐食に対する耐食性およびSSC性能が劣ってい
る。鋼番jはCが高いためSSC性能が劣っていた。
(Comparative Example) Among Comparative Examples, Table 6 and Table 7 show the component composition of the steel and the test results for the steels which were out of the composition range of the present invention as the co-test materials. The austenitizing temperature and the tempering treatment are the same as in Example 1. Since some of the components of the steels in Table 6 are out of the range of the present invention, either the strength or toughness of the test result is outside the target, and as a result, the stress corrosion cracking resistance does not reach the target. Among them, steel numbers a and b have Cu contents of 0.
Since it was less than 3%, Cu precipitates could not be formed, resulting in a strength of less than 75 kg / mm 2 . Steel No. c had a Cu content of more than 4.0%, which caused cracks in the steel sheet during hot rolling, significantly impairing commercial value, and also had poor SSC performance.
Further, steel No. d has a low Ni content, steel No. g has a high Cr content and Mo content, and steel No. i has a high Mo content.
A ferrite phase appears and significantly deteriorates toughness. Steel No. e was not suitable for the purpose of the present invention because Ni was more expensive than 9% and was extremely expensive, and the SSC performance was poor.
Steel No. f has a low Cr content and Steel No. h has a low Mo content, and therefore has poor corrosion resistance to carbon dioxide corrosion and SSC performance. Steel No. j had a high C and therefore had poor SSC performance.

【0046】[0046]

【表6】 [Table 6]

【0047】[0047]

【表7】 [Table 7]

【0048】[0048]

【発明の効果】本発明によれば、炭酸ガス腐食に対する
耐食性はもとより硫化水素を多量に含む環境での耐応力
腐食割れ性の良好な高強度マルテンサイト系ステンレス
鋼を提供することが可能となった。
According to the present invention, it is possible to provide a high-strength martensitic stainless steel which is excellent in stress corrosion cracking resistance in an environment containing a large amount of hydrogen sulfide as well as in corrosion resistance against carbon dioxide gas corrosion. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】0.2%耐力及びシャルピー衝撃値とテンパー
・パラメータの関係を示す図。
FIG. 1 is a diagram showing the relationship between 0.2% proof stress and Charpy impact value and temper parameters.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】主成分として重量%で、C:0.06%以
下、Cr:12−16%、Si:1.0%以下、Mn:
2.0%以下、Ni:0.5−8.0%、Mo:0.1
−2.5%、Cu:0.3−4.0%、N:0.05%
以下を含み、δ−フェライト相の面積率が10%以下
で、かつCuの微細な析出物が基地に分散していること
を特徴とする耐応力腐食割れ性に優れた高強度マルテン
サイト系ステンレス鋼。
1. C .: 0.06% or less, Cr: 12-16%, Si: 1.0% or less, Mn:% by weight as a main component.
2.0% or less, Ni: 0.5-8.0%, Mo: 0.1
-2.5%, Cu: 0.3-4.0%, N: 0.05%
A high-strength martensitic stainless steel excellent in stress corrosion cracking resistance, characterized in that the area ratio of the δ-ferrite phase is 10% or less and fine Cu precipitates are dispersed in the matrix. steel.
【請求項2】主成分として重量%で、C:0.06%以
下、Cr:12−16%、Si:1.0%以下、Mn:
2.0%以下、Ni:0.5−8.0%、Mo:0.1
−2.5%、Cu:0.3−4.0%、N:0.05%
以下を含み、さらにV:0.01−0.1%とNb:
0.01−0.1%のうち1種以上を含み、δ−フェラ
イト相の面積率が10%以下で、かつCuの微細な析出
物が基地に分散していることを特徴とする耐応力腐食割
れ性に優れた高強度マルテンサイト系ステンレス鋼。
2. C .: 0.06% or less, Cr: 12-16%, Si: 1.0% or less, Mn:% by weight as a main component.
2.0% or less, Ni: 0.5-8.0%, Mo: 0.1
-2.5%, Cu: 0.3-4.0%, N: 0.05%
Including: V: 0.01-0.1% and Nb:
The stress resistance is characterized by including at least one of 0.01-0.1%, the area ratio of the δ-ferrite phase is 10% or less, and fine precipitates of Cu are dispersed in the matrix. High-strength martensitic stainless steel with excellent corrosion cracking resistance.
【請求項3】主成分として重量%で、C:0.06%以
下、Cr:12−16%、Si:1.0%以下、Mn:
2.0%以下、Ni:0.5−8.0%、Mo:0.1
−2.5%、Cu:0.3−4.0%、N:0.05%
以下を含む組成のマルテンサイト系ステンレス鋼を、A
c3以上980℃以下の温度でオ−ステナイト化後冷却
し、次いで焼戻し温度T(単位:℃)として500℃以
上630℃またはAc1のどちらか低温のほうの温度以
下、焼戻し時間t(単位:時間)が(20+log t)
(273+T)の値で15200以上、17800以下
となる条件で焼戻してCuの微細な析出物を基地に分散
させることを特徴とする耐応力腐食割れ性に優れた高強
度マルテンサイト系ステンレス鋼の製造方法。
3. C .: 0.06% or less, Cr: 12-16%, Si: 1.0% or less, Mn:% by weight as a main component.
2.0% or less, Ni: 0.5-8.0%, Mo: 0.1
-2.5%, Cu: 0.3-4.0%, N: 0.05%
A martensitic stainless steel having a composition including
After austenitizing at a temperature of c3 or more and 980 ° C. or less, it is cooled, and then a tempering temperature T (unit: ° C.) is 500 ° C. or more and 630 ° C. or less of Ac1, whichever is lower, and a tempering time t (unit: hour). ) Is (20 + log t)
Manufacture of high-strength martensitic stainless steel excellent in stress corrosion cracking resistance, which is characterized by tempering under the condition that the value of (273 + T) is 15200 or more and 17800 or less to disperse fine Cu precipitates in the matrix. Method.
【請求項4】主成分として重量%で、C:0.06%以
下、Cr:12−16%、Si:1.0%以下、Mn:
2.0%以下、Ni:0.5−8.0%、Mo:0.1
−2.5%、Cu:0.3−4.0%、N:0.05%
以下を含み、さらに付加成分として重量%でV:0.0
1−0.1%とNb:0.01−0.1%のうち1種以
上を含むマルテンサイト系ステンレス鋼を、Ac3以上
980℃以下の温度でオ−ステナイト化後冷却し、次い
で焼戻し温度T(単位:℃)として500℃以上630
℃またはAc1のどちらか低温のほうの温度以下、焼戻
し時間t(単位:時間)が(20+log t)(273+
T)の値で15200以上、17800以下となる条件
で焼戻してCuの微細な析出物を基地に分散させること
を特徴とする耐応力腐食割れ性に優れた高強度マルテン
サイト系ステンレス鋼の製造方法。
4. C .: 0.06% or less, Cr: 12-16%, Si: 1.0% or less, Mn:% by weight as a main component.
2.0% or less, Ni: 0.5-8.0%, Mo: 0.1
-2.5%, Cu: 0.3-4.0%, N: 0.05%
V: 0.0% by weight as an additional component
Martensitic stainless steel containing 1-0.1% and one or more of Nb: 0.01-0.1% is austenitized at a temperature of Ac3 or more and 980 ° C or less, then cooled, and then tempered. As T (unit: ° C), 500 ° C or higher 630
℃ or Ac1 whichever is lower, the tempering time t (unit: hour) is (20 + log t) (273+
A method for producing a high-strength martensitic stainless steel excellent in stress corrosion cracking resistance, characterized by tempering under the condition of T) of 15200 or more and 17800 or less to disperse Cu fine precipitates in a matrix. .
JP15610294A 1993-10-22 1994-07-07 High-strength martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same Expired - Lifetime JP3228008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15610294A JP3228008B2 (en) 1993-10-22 1994-07-07 High-strength martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26490993 1993-10-22
JP5-264909 1993-10-22
JP15610294A JP3228008B2 (en) 1993-10-22 1994-07-07 High-strength martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07166303A true JPH07166303A (en) 1995-06-27
JP3228008B2 JP3228008B2 (en) 2001-11-12

Family

ID=26483932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15610294A Expired - Lifetime JP3228008B2 (en) 1993-10-22 1994-07-07 High-strength martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3228008B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793744B1 (en) 2000-11-15 2004-09-21 Research Institute Of Industrial Science & Technology Martenstic stainless steel having high mechanical strength and corrosion
WO2010050519A1 (en) 2008-10-30 2010-05-06 住友金属工業株式会社 High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
JP2019518871A (en) * 2016-05-19 2019-07-04 フォエスタルピネ ベーラー エデルシュタール ゲーエムベーハー ウント コンパニー カーゲー Steel product manufacturing method and steel product
WO2020067247A1 (en) * 2018-09-27 2020-04-02 日本製鉄株式会社 Martensitic stainless steel material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705180B2 (en) 2011-05-30 2014-04-22 Ricoh Company, Ltd. Zoom lens, imaging device and information device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793744B1 (en) 2000-11-15 2004-09-21 Research Institute Of Industrial Science & Technology Martenstic stainless steel having high mechanical strength and corrosion
WO2010050519A1 (en) 2008-10-30 2010-05-06 住友金属工業株式会社 High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
EP2341161A1 (en) * 2008-10-30 2011-07-06 Sumitomo Metal Industries Limited High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
US8608872B2 (en) 2008-10-30 2013-12-17 Nippon Steel & Sumitomo Metal Corporation High-strength stainless steel pipe excellent in sulfide stress cracking resistance and high-temperature carbonic-acid gas corrosion resistance
EP2341161A4 (en) * 2008-10-30 2014-07-02 Nippon Steel & Sumitomo Metal Corp High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
JP2019518871A (en) * 2016-05-19 2019-07-04 フォエスタルピネ ベーラー エデルシュタール ゲーエムベーハー ウント コンパニー カーゲー Steel product manufacturing method and steel product
WO2020067247A1 (en) * 2018-09-27 2020-04-02 日本製鉄株式会社 Martensitic stainless steel material
JPWO2020067247A1 (en) * 2018-09-27 2021-08-30 日本製鉄株式会社 Martensitic stainless steel

Also Published As

Publication number Publication date
JP3228008B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
US5496421A (en) High-strength martensitic stainless steel and method for making the same
CN110100034B (en) High-hardness wear-resistant steel and method for manufacturing same
JP7018510B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP6729823B2 (en) Method of manufacturing wear-resistant steel
JP2022502569A (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
RU2763722C1 (en) SULPHUR-RESISTANT PIPE FOR A PETROLEUM BOREHOLE ATTRIBUTED TO THE KILOPOUND/INCH2 (862 MPa) STEEL STRENGTH CLASS, AND METHOD FOR MANUFACTURE THEREOF
WO2016158361A1 (en) Wire material for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt
JP7368461B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
CN113166901B (en) Chromium-molybdenum steel plate with excellent creep strength and preparation method thereof
JP2018168425A (en) Seamless steel pipe for low alloy oil well
JP3228008B2 (en) High-strength martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same
JP2870830B2 (en) Method for producing high tensile strength and high toughness steel sheet excellent in HIC resistance
JPH1192881A (en) Ferritic heat resistant steel having lath martensitic structure and its production
JP2000178692A (en) 655Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH STRESS CORROSION CRACKING RESISTANCE, AND ITS MANUFACTURE
CN111511952A (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JP3684895B2 (en) Manufacturing method of high toughness martensitic stainless steel with excellent stress corrosion cracking resistance
JP3485034B2 (en) 862N / mm2 Class Low C High Cr Alloy Oil Well Pipe Having High Corrosion Resistance and Method of Manufacturing the Same
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JP3662151B2 (en) Heat-resistant cast steel and heat treatment method thereof
KR102498144B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
CN114761599B (en) Steel material excellent in sulfide stress corrosion cracking resistance and method for producing same
KR102498150B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102498142B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080907

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110907

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130907

EXPY Cancellation because of completion of term