JP4266194B2 - Heat resistant steel, heat treatment method for heat resistant steel, and steam turbine rotor for high temperature - Google Patents

Heat resistant steel, heat treatment method for heat resistant steel, and steam turbine rotor for high temperature Download PDF

Info

Publication number
JP4266194B2
JP4266194B2 JP2004269947A JP2004269947A JP4266194B2 JP 4266194 B2 JP4266194 B2 JP 4266194B2 JP 2004269947 A JP2004269947 A JP 2004269947A JP 2004269947 A JP2004269947 A JP 2004269947A JP 4266194 B2 JP4266194 B2 JP 4266194B2
Authority
JP
Japan
Prior art keywords
precipitate
heat
less
steel
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004269947A
Other languages
Japanese (ja)
Other versions
JP2006083432A (en
Inventor
龍一 石井
陽一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004269947A priority Critical patent/JP4266194B2/en
Priority to US11/218,659 priority patent/US20060054254A1/en
Priority to EP05019872.0A priority patent/EP1637615B1/en
Priority to CNB2005101096888A priority patent/CN100376708C/en
Publication of JP2006083432A publication Critical patent/JP2006083432A/en
Application granted granted Critical
Publication of JP4266194B2 publication Critical patent/JP4266194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/36Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers

Description

本発明は、耐熱鋼、特に高温用蒸気タービンロータ材や蒸気タービンの発電設備の部材として優れた性能を示す耐熱鋼、耐熱鋼の熱処理方法および高温用蒸気タービンロータに関する。   The present invention relates to a heat-resistant steel, in particular, a heat-resistant steel exhibiting excellent performance as a member of a high-temperature steam turbine rotor material or a steam turbine power generation facility, a heat-treating method for the heat-resistant steel, and a high-temperature steam turbine rotor.

火力発電設備の高温部品材料として、1Cr−1Mo−0.25V鋼に代表される低合金耐熱鋼や、12Cr−1Mo−VNbN鋼に代表される高Cr系耐熱鋼が多用されている。しかし、近年の火力発電設備は、蒸気温度の高温化が急速に進められ、より高温特性に優れた高Cr系耐熱鋼の使用が増加してきた(例えば、特許文献1−4参照。)。   As high-temperature component materials for thermal power generation facilities, low alloy heat resistant steel typified by 1Cr-1Mo-0.25V steel and high Cr heat resistant steel typified by 12Cr-1Mo-VNbN steel are frequently used. However, in recent thermal power generation facilities, the steam temperature has been rapidly increased, and the use of high Cr heat resistant steel having higher temperature characteristics has been increasing (see, for example, Patent Documents 1-4).

一方で、近年の火力発電設備は高効率とともに経済性が要求され、この観点からは、安価、かつ特性に優れた耐熱鋼を構成材料として用いることが期待されている(例えば、特許文献5−7参照。)。
特公昭60−54385号公報 特開平2−149649号公報 特開平6−306550号公報 特開平8−3697号公報 特許第3334217号公報 特許第3439197号公報 特開2002−348642号公報
On the other hand, recent thermal power generation facilities are required to have high efficiency and economical efficiency. From this viewpoint, it is expected to use heat-resistant steel that is inexpensive and excellent in characteristics as a constituent material (for example, Patent Document 5- 7).
Japanese Patent Publication No. 60-54385 JP-A-2-149649 JP-A-6-306550 JP-A-8-3697 Japanese Patent No. 3334217 Japanese Patent No. 3439197 JP 2002-348642 A

火力発電設備の中心部を構成する部品は、大型素材から成形されており、大型素材としての製造性や所望の形状への成形性に優れることが不可欠である。また、その材料特性は、大型化によっても損なわれず、かつ、均質であることが要求される。しかしながら、例えば、特許第3334217号公報に開示される化学組成の従来の耐熱鋼は、大型部材としては焼入れ性が低く、胴径の大きな鋼塊の中心部においては所望の特性を発揮することが困難である。また、特許第3439197号公報に開示される化学組成の耐熱鋼は、大型鋼塊を鋳造した際の成分偏析が著しく、鋼塊全体にわたり均一な材料特性を発揮することが困難である。また、特殊溶解を用いて鋼塊の均質性を高めた場合には、経済性が劣るなど長所と短所を併せ持つ欠点がある。   The parts constituting the center of the thermal power generation facility are molded from a large material, and it is indispensable to be excellent in manufacturability as a large material and moldability to a desired shape. In addition, the material characteristics are required not to be impaired by the increase in size and to be uniform. However, for example, the conventional heat-resistant steel having the chemical composition disclosed in Japanese Patent No. 3334217 has low hardenability as a large member, and can exhibit desired characteristics in the center of a steel ingot having a large body diameter. Have difficulty. Further, the heat resistant steel having the chemical composition disclosed in Japanese Patent No. 3439197 has a significant component segregation when a large steel ingot is cast, and it is difficult to exhibit uniform material characteristics throughout the steel ingot. Moreover, when the homogeneity of the steel ingot is increased by using special melting, there is a disadvantage that has both advantages and disadvantages such as inferior economy.

また、従来の耐熱鋼は、強化元素として、Cr、Mo、Wなどのフェライト形成元素を比較的多量に含有するため、フェライト相の生成傾向が高くなる。一般に、ベイナイト相中に生成するフェライト相は、上記したフェライト形成元素がFeと化合して生成するものである。そのため、強化元素として添加しているこれらの元素が局所的に生成したフェライト中に濃縮することにより、母相中におけるこれらの元素の含有量が低減し、特に、高温強度が低下するといった問題がある。さらに、耐熱鋼において、フェライト相の生成量が増加すると、材料の衝撃性質や靭性を著しく低下することもある。   In addition, since conventional heat-resistant steel contains a relatively large amount of ferrite-forming elements such as Cr, Mo, and W as strengthening elements, the tendency to generate a ferrite phase increases. Generally, the ferrite phase generated in the bainite phase is formed by combining the above-mentioned ferrite forming elements with Fe. Therefore, the concentration of these elements added as strengthening elements in the locally generated ferrite reduces the content of these elements in the matrix, and in particular the problem that the high-temperature strength decreases. is there. Furthermore, in heat resistant steel, when the amount of ferrite phase generated increases, the impact properties and toughness of the material may be significantly reduced.

そこで、本発明は、上記問題を解決するためになされたものであり、高温の蒸気環境中で安定な運用ができ、かつ経済性に優れたベイナイト単相組織からなる耐熱鋼、耐熱鋼の熱処理方法および高温用蒸気タービンロータを提供することを目的とする。   Therefore, the present invention has been made to solve the above-mentioned problems, and can be stably operated in a high-temperature steam environment, and is heat-resistant steel having a bainite single-phase structure excellent in economy and heat treatment of heat-resistant steel. It is an object to provide a method and a high temperature steam turbine rotor.

上記目的を達成するために、本発明の耐熱鋼は、質量%で、C:0.25〜0.35、Si:0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、N:0.001〜0.007、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなり、焼戻し熱処理後に、質量%で、Fe:1.0以上、Cr:0.8〜0.9、Mo:0.4〜0.5、W:0.3〜0.5、V:0.2以上が析出物中に移動して、析出物総量を3.5以上確保したベイナイト単相組織からなることを特徴とする。 In order to achieve the above object, the heat-resisting steel of the present invention is, in mass %, C: 0.25 to 0.35, Si: 0.15 or less, Mn: 0.2 to 0.8, Ni: 0.00. 3 to 0.6, Cr: 1.6 to 1.9, V: 0.26 to 0.35, Mo: 0.6 to 0.9, W: 0.9 to 1.4, Ti: 0. less than 01, N: 0.001 to 0.007, a total of Mo and W / 2 is 1.3 to 1.4, the balance being Fe and unavoidable impurities, after tempering, in mass% Fe: 1.0 or more, Cr: 0.8 to 0.9, Mo: 0.4 to 0.5, W: 0.3 to 0.5, V: 0.2 or more move into the precipitate. And it consists of a bainite single phase structure which secured 3.5 or more precipitates total quantity.

また、本発明の耐熱鋼は、質量%で、C:0.25〜0.35、Si:0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなり、焼戻し熱処理後に、質量%で、Fe:1.0以上、Cr:0.8〜0.9、Mo:0.4〜0.5、W:0.3〜0.5、V:0.2以上が析出物中に移動して、析出物総量を3.5以上確保したベイナイト単相組織からなることを特徴とする。 Moreover, the heat-resisting steel of the present invention is in mass %, C: 0.25 to 0.35, Si: 0.15 or less, Mn: 0.2 to 0.8, Ni: 0.3 to 0.6, Cr: 1.6-1.9, V: 0.26-0.35, Mo: 0.6-0.9, W: 0.9-1.4, Ti: less than 0.01, Mo and W / 2 is 1.3 to 1.4, and the balance consists of Fe and inevitable impurities, and after tempering heat treatment, in mass %, Fe: 1.0 or more, Cr: 0.8-0. 9, Mo: 0.4 to 0.5, W: 0.3 to 0.5, V: 0.2 or more moved into the precipitate, and a bainite single phase in which the total amount of the precipitate was secured 3.5 or more It consists of an organization.

これらの耐熱鋼によれば、上記した各組成成分の含有率の範囲で構成されることによって、ベイナイト単相組織からなる耐熱鋼を形成することができる。これによって、生成量が増加すると材料の機械的性質を著しく低下させるフェライト相などを有しない、高温特性、靭性、脆化特性などに優れた耐熱鋼を提供することができる。なお、上記した組成成分であるTiおよび/またはNをFeおよびCで置換してもよい。   According to these heat-resisting steels, heat-resisting steels having a bainite single-phase structure can be formed by being configured in the range of the content ratios of the respective components described above. As a result, it is possible to provide a heat-resistant steel excellent in high-temperature characteristics, toughness, embrittlement characteristics, etc., which does not have a ferrite phase or the like that significantly lowers the mechanical properties of the material when the generation amount increases. In addition, you may substitute Ti and / or N which are the above-mentioned composition components with Fe and C.

本発明の耐熱鋼の熱処理方法は、質量%で、C:0.25〜0.35、Si:0.
15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、N:0.001〜0.007、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなる鋼塊を、980〜1030℃に加熱した後、該鋼塊の中心部における冷却速度が少なくとも20℃/h以上80℃/h以下となるよう冷却し、その後焼戻し処理することを特徴とする。
The heat treatment method of the heat-resistant steel of the present invention is in mass%, C: 0.25 to 0.35, Si: 0.00.
15 or less, Mn: 0.2 to 0.8, Ni: 0.3 to 0.6, Cr: 1.6 to 1.9, V: 0.26 to 0.35, Mo: 0.6 to 0 .9, W: 0.9 to 1.4, Ti: less than 0.01, N: 0.001 to 0.007, and the total of Mo and W / 2 is 1.3 to 1.4, After the steel ingot consisting of Fe and unavoidable impurities is heated to 980 to 1030 ° C., the steel ingot is cooled so that the cooling rate at the center of the steel ingot is at least 20 ° C./h to 80 ° C./h , It is characterized by tempering.

また、本発明の耐熱鋼の熱処理方法は、質量%で、C:0.25〜0.35、Si:
0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなる鋼塊を、980〜1030℃に加熱した後、該鋼塊の中心部における冷却速度が少なくとも20℃/h以上80℃以下となるよう冷却し、その後焼戻し処理することを特徴とする。
Moreover, the heat processing method of the heat-resistant steel of this invention is the mass%, C: 0.25-0.35, Si:
0.15 or less, Mn: 0.2 to 0.8, Ni: 0.3 to 0.6, Cr: 1.6 to 1.9, V: 0.26 to 0.35, Mo: 0.6 -0.9, W: 0.9-1.4, Ti: less than 0.01, the total of Mo and W / 2 is 1.3-1.4, the balance being from Fe and inevitable impurities The resulting steel ingot is heated to 980 to 1030 ° C., then cooled so that the cooling rate at the center of the steel ingot is at least 20 ° C./h to 80 ° C. , and then tempered.

これらの耐熱鋼の熱処理方法によれば、例えば、水、油などの冷媒を用いたり、衝風によって強制的に冷却することなく、鋼塊の中心部において少なくとも20℃/h以上の非常に遅い冷却速度で焼入れしても、フェライト相が形成されないベイナイト単相組織からなる耐熱鋼を形成することができる。   According to these heat-resistant steel heat treatment methods, for example, at least 20 ° C./h or more is very slow at the center of the steel ingot without using a coolant such as water or oil or forcibly cooling by a blast. Even when quenched at a cooling rate, a heat resistant steel having a bainite single phase structure in which a ferrite phase is not formed can be formed.

本発明の高温用蒸気タービンロータは、質量%で、C:0.25〜0.35、Si:0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、N:0.001〜0.007、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなり、焼戻し熱処理後に、質量%で、Fe:1.0以上、Cr:0.8〜0.9、Mo:0.4〜0.5、W:0.3〜0.5、V:0.2以上が析出物中に移動して、析出物総量を3.5以上確保したベイナイト単相組織からなる耐熱鋼で形成されたことを特徴とする。 The steam turbine rotor for high temperature of the present invention is in mass %, C: 0.25 to 0.35, Si: 0.15 or less, Mn: 0.2 to 0.8, Ni: 0.3 to 0.6 , Cr: 1.6-1.9, V: 0.26-0.35, Mo: 0.6-0.9, W: 0.9-1.4, Ti: less than 0.01, N: 0.001 to 0.007, a total of Mo and W / 2 is 1.3 to 1.4, the balance being Fe and unavoidable impurities, after tempering, by mass%, Fe: 1. 0 or more, Cr: 0.8 to 0.9, Mo: 0.4 to 0.5, W: 0.3 to 0.5, V: 0.2 or more move into the precipitate, and the precipitate It is characterized by being formed of a heat resistant steel having a bainite single phase structure with a total amount of 3.5 or more.

また、本発明の高温用蒸気タービンロータは、質量%で、C:0.25〜0.35、Si:0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなり、焼戻し熱処理後に、質量%で、Fe:1.0以上、Cr:0.8〜0.9、Mo:0.4〜0.5、W:0.3〜0.5、V:0.2以上が析出物中に移動して、析出物総量を3.5以上確保したベイナイト単相組織からなる耐熱鋼で形成されたことを特徴とする。 Moreover, the steam turbine rotor for high temperature of this invention is the mass %, C: 0.25-0.35, Si: 0.15 or less, Mn: 0.2-0.8, Ni: 0.3-0 .6, Cr: 1.6 to 1.9, V: 0.26 to 0.35, Mo: 0.6 to 0.9, W: 0.9 to 1.4, Ti: less than 0.01, The sum of Mo and W / 2 is 1.3 to 1.4, and the balance is Fe and inevitable impurities, and after tempering heat treatment, in mass %, Fe: 1.0 or more, Cr: 0.8 To 0.9, Mo: 0.4 to 0.5, W: 0.3 to 0.5, V: 0.2 or more moved into the precipitate, and the total amount of the precipitate was secured to 3.5 or more. It is characterized by being formed of heat resistant steel having a bainite single phase structure.

これらの高温用蒸気タービンロータによれば、上記した各組成成分の含有率の範囲で構成されることによって、ベイナイト単相組織からなる高温用蒸気タービンロータを形成することができる。これによって、生成量が増加すると材料の機械的性質を著しく低下させるフェライト相などを有しない、高温特性、靭性、脆化特性などに優れた高温用蒸気タービンロータを提供することができる。なお、上記した組成成分であるTiおよび/またはNをFeおよびCで置換してもよい。また、これらの高温用蒸気タービンロータにおいて、定常運転時に最高温度の蒸気に晒される高温用蒸気タービンロータの部位近傍において、10万時間相当の運転後に、析出物総量が2.8%以上確保されている。なお、定常運転時における蒸気の最高温度は、540〜580℃程度である。   According to these high-temperature steam turbine rotors, a high-temperature steam turbine rotor composed of a bainite single-phase structure can be formed by being configured in the range of the content ratios of the respective composition components described above. As a result, it is possible to provide a high-temperature steam turbine rotor excellent in high-temperature characteristics, toughness, embrittlement characteristics, etc., which does not have a ferrite phase or the like that significantly lowers the mechanical properties of the material as the generation amount increases. In addition, you may substitute Ti and / or N which are the above-mentioned composition components with Fe and C. Further, in these high-temperature steam turbine rotors, the total amount of precipitates is ensured to be 2.8% or more after operation for 100,000 hours in the vicinity of the portion of the high-temperature steam turbine rotor that is exposed to the highest temperature steam during steady operation. ing. In addition, the maximum temperature of the vapor | steam at the time of steady operation is about 540-580 degreeC.

また、高温用蒸気タービンロータとは、高圧ロータ、中圧ロータもしくは高中圧ロータであり、高圧あるいは高中圧ロータにおける高圧部の最終段出口の排気温度が300℃以上、中圧あるいは高中圧ロータにおける中圧部の最終段出口の排気温度が200℃以上で運転される蒸気タービンのロータである。なお、排気蒸気は、ボイラもしくは別個に設置される低圧タービンに導入される。   The high-temperature steam turbine rotor is a high-pressure rotor, medium-pressure rotor, or high-medium-pressure rotor. The exhaust temperature at the final stage outlet of the high-pressure portion of the high-pressure or high-medium-pressure rotor is 300 ° C. or higher. It is a rotor of a steam turbine that is operated at an exhaust temperature of the final stage outlet of the intermediate pressure section at 200 ° C. or higher. The exhaust steam is introduced into a boiler or a low-pressure turbine installed separately.

本発明の耐熱鋼、耐熱鋼の熱処理方法および高温用蒸気タービンロータによれば、ベイナイト単相組織からなり、高温の蒸気環境中で安定な運用ができ、かつ経済性に優れている。   According to the heat-resistant steel, heat-resistant steel heat treatment method and high-temperature steam turbine rotor of the present invention, it has a bainite single-phase structure, can be stably operated in a high-temperature steam environment, and is excellent in economy.

以下、本発明の一実施の形態を説明する。   Hereinafter, an embodiment of the present invention will be described.

まず、本発明で使用する合金における各成分範囲の限定理由を説明する。なお、以下の説明において組成を表す%は、特に明記しない限り質量%とする。 First, the reason for limiting each component range in the alloy used in the present invention will be described. In the following description, “%” representing the composition is “% by mass” unless otherwise specified.

(1)C(炭素)
Cは、焼入れ性の確保とともに、析出強化に寄与する各種炭化物の構成元素として不可欠な元素である。Cの含有率が0.25%未満では上述の効果が小さく、0.35%を超えると炭化物の凝集が促進されるとともに鋼塊凝固時の偏析傾向が高まる。そのためCの含有率を0.25〜0.35%とした。また、Cの含有率のより好ましい範囲は、0.27〜0.33%である。
(1) C (carbon)
C is an essential element as a constituent element of various carbides contributing to precipitation strengthening while ensuring hardenability. When the C content is less than 0.25%, the above-described effects are small, and when it exceeds 0.35%, agglomeration of carbides is promoted and the segregation tendency during solidification of the steel ingot is increased. Therefore, the C content is determined to be 0.25 to 0.35%. Moreover, the more preferable range of the content rate of C is 0.27 to 0.33%.

(2)Si(ケイ素)
Siは、脱酸剤として有用であり、また、耐水蒸気酸化性を向上させる。しかし、その含有量が高い場合は、靭性の低下及び脆化を促進するため、この観点から、Siの含有量は、可能な限り抑制することが望ましい。Siの含有率が0.15%を超えると上記特性が著しく低下するため、Siの含有率を0.15%以下(0は含まない)とした。また、Siの含有率のより好ましい範囲は、0.1%以下である。
(2) Si (silicon)
Si is useful as a deoxidizer and improves steam oxidation resistance. However, when the content is high, a decrease in toughness and embrittlement are promoted. From this viewpoint, it is desirable to suppress the Si content as much as possible. When the Si content exceeds 0.15%, the above characteristics are remarkably deteriorated. Therefore, the Si content is set to 0.15% or less (0 is not included). A more preferable range of the Si content is 0.1% or less.

(3)Mn(マンガン)
Mnは、脱硫剤として有用な元素であるが、Mnの含有率が0.2%未満では脱硫効果が認められず、0.8%を超えて添加するとクリ−プ強度を低下させる。そのため、Mnの含有率を0.2〜0.8%とした。また、Mnの含有率のより好ましい範囲は、0.4〜0.8%である。
(3) Mn (manganese)
Mn is an element useful as a desulfurizing agent, but if the Mn content is less than 0.2%, the desulfurization effect is not observed, and if it exceeds 0.8%, the creep strength is lowered. Therefore, the Mn content is determined to be 0.2 to 0.8%. A more preferable range of the Mn content is 0.4 to 0.8%.

(4)Cr(クロム)
Crは、耐酸化性、耐食性に有効であるとともに析出強化に寄与する炭窒化物の構成元素としても不可欠な元素である。また、本発明に係わる耐熱鋼において、Crは、靭性を向上させる元素としても有用である。Crの含有率が1.6%未満の場合、焼戻し熱処理後の炭窒化物へのCr移動量が少ないため炭窒化物の高温安定性を確保できず、1.9%を超えると焼戻し軟化抵抗が低下し、所望の常温強度が確保できず、かつ、クリープ強度も低下する。そのため、Crの含有率を1.6〜1.9%とした。
(4) Cr (chrome)
Cr is an indispensable element as a constituent element of carbonitride which is effective for oxidation resistance and corrosion resistance and contributes to precipitation strengthening. In the heat resistant steel according to the present invention, Cr is also useful as an element for improving toughness. When the Cr content is less than 1.6%, the amount of Cr transferred to the carbonitride after the tempering heat treatment is small, so the high temperature stability of the carbonitride cannot be ensured, and when it exceeds 1.9%, the temper softening resistance Decreases, the desired normal temperature strength cannot be ensured, and the creep strength also decreases. Therefore, the Cr content is determined to be 1.6 to 1.9%.

(5)V(バナジウム)
Vは、固溶強化および微細な炭窒化物の形成に寄与する。Vの含有率が0.26%以上で微細析出物が十分に析出し母相の回復を抑制するが、0.35%を超えると靭性の低下を招くとともに炭窒化物の粗大化を促進する。そのため、Vの含有率を0.26〜0.35%とした。
(5) V (Vanadium)
V contributes to solid solution strengthening and formation of fine carbonitrides. When the V content is 0.26% or more, fine precipitates are sufficiently precipitated to suppress the recovery of the parent phase. However, if it exceeds 0.35%, the toughness is lowered and the coarsening of the carbonitride is promoted. . Therefore, the V content is determined to be 0.26 to 0.35%.

(6)W(タングステン)
Wは、母相の固溶強化および炭窒化物の構成元素となり析出強化に寄与する。特に、Moと複合添加した場合には、析出物の高温安定性を著しく高めることができる。Wは、高温で長時間の加熱中に経時的に母相から析出物中に移動するため、固溶強化に寄与するWの量を長時間にわたり高く維持するには、Wの含有率を0.9%以上とする必要がある。しかし、Wの含有率が1.4%を超えると靭性の低下やフェライトの生成を促進するとともに、大型鋼塊の成分偏析傾向が増大する。そのため、Wの含有率を0.9〜1.4%とした。また、Wの含有率のより好ましい範囲は、0.9〜1.2%である。
(6) W (tungsten)
W becomes a constituent element of solid solution strengthening and carbonitride of the parent phase and contributes to precipitation strengthening. In particular, when combined with Mo, the high-temperature stability of the precipitate can be remarkably enhanced. Since W moves from the parent phase into the precipitate with time during long-time heating at a high temperature, in order to keep the amount of W contributing to solid solution strengthening high for a long time, the W content is set to 0. It should be 9% or more. However, if the W content exceeds 1.4%, the reduction in toughness and the formation of ferrite are promoted, and the component segregation tendency of large steel ingots increases. Therefore, the W content is determined to be 0.9 to 1.4%. A more preferable range of the W content is 0.9 to 1.2%.

(7)Mo(モリブデン)
Moは、固溶強化および炭窒化物の構成元素となり析出強化に寄与する。特に、Wと複合添加した場合には、析出物の高温安定性を著しく高めることができる。Moは、高温で長時間の加熱中に経時的に母相から析出物中に移動するため、固溶強化に寄与するMoの量を長時間にわたり高く維持するには、Moの含有率を0.6%以上とする必要がある。しかし、Moの含有率が0.9%を超えると靭性の低下とフェライトの生成を促進するとともに、大型鋼塊の成分偏析傾向が増大する。そのため、Moの含有率を0.6〜0.9%とした。また、Moの含有率のより好ましい範囲は、0.7〜0.9%である。
(7) Mo (molybdenum)
Mo becomes a constituent element of solid solution strengthening and carbonitride, and contributes to precipitation strengthening. In particular, when combined with W, the high-temperature stability of the precipitate can be remarkably enhanced. Mo moves from the parent phase into the precipitate over time during heating at high temperature for a long time. Therefore, in order to keep the amount of Mo contributing to solid solution strengthening high for a long time, the Mo content is set to 0. It should be 6% or more. However, when the Mo content exceeds 0.9%, the toughness reduction and the formation of ferrite are promoted, and the component segregation tendency of the large steel ingot increases. Therefore, the Mo content is determined to be 0.6 to 0.9%. A more preferable range of the Mo content is 0.7 to 0.9%.

(8)N(窒素)
Nは、窒化物あるいは炭窒化物を形成し析出強化に寄与する。さらに、母相中に残存するNは、固溶強化にも寄与するが、Nの含有率が0.001%未満では、これらの効果が認められない。一方、Nの含有率が0.007%を超えると窒化物あるいは炭窒化物の粗大化を促進しクリ−プ強度が低下する。そのため、Nの含有率を0.001〜0.007%とした。本発明に係る耐熱鋼において、炭窒化物の形成については、Cの含有率の範囲内でCの含有率を増加させることによって、Nの代替が可能となる。また、Nの代替としてFeを用いてもよい。
(8) N (nitrogen)
N forms nitrides or carbonitrides and contributes to precipitation strengthening. Furthermore, N remaining in the matrix contributes to solid solution strengthening, but these effects are not observed when the N content is less than 0.001%. On the other hand, when the N content exceeds 0.007%, the coarsening of the nitride or carbonitride is promoted, and the creep strength is lowered. Therefore, the N content is determined to be 0.001 to 0.007%. In the heat-resisting steel according to the present invention, N can be substituted for the formation of carbonitride by increasing the C content within the range of the C content. Further, Fe may be used as an alternative to N.

(9)Ti(チタン)
Tiは、脱酸剤として有用である。Tiの含有率が、0.01%未満であれば、脱酸効果を発揮した上で、残存するTiは固溶するが、0.01%を超えると未固溶の粗大なTi炭窒化物の生成量が増加して靭性の低下や切欠弱化が生じる。そのため、Tiの含有率を0.01%未満(0は含まない)とした。また、この範囲でTiを含有することにより、脱酸効果により鋼塊中のO(酸素)の量を低減でき、鋼塊製作時の酸化物の生成を防止することもできる。なお、Cの含有率の範囲内でCの含有率を増加させることによって、Tiの代替が可能となる。また、Tiの代替としてFeを用いてもよい。
(9) Ti (titanium)
Ti is useful as a deoxidizer. If the Ti content is less than 0.01%, the remaining Ti dissolves after exhibiting the deoxidation effect, but if it exceeds 0.01%, undissolved coarse Ti carbonitride. As a result, the toughness is reduced and the notch is weakened. Therefore, the Ti content is set to less than 0.01% (0 is not included). Moreover, by containing Ti in this range, the amount of O (oxygen) in the steel ingot can be reduced by the deoxidation effect, and the formation of oxides during the production of the steel ingot can also be prevented. Note that Ti can be substituted by increasing the C content within the range of the C content. Further, Fe may be used as an alternative to Ti.

(10)Ni(ニッケル)
Niは、焼入れ性および靭性を向上させるとともに、フェライトの生成を抑制する効果を有し、Niの含有率が0.3%以上でその効果が認められる。しかし、Niの含有率が0.6%を超えるとクリ−プ強度を低下させる。そのため、Niの含有率を0.3〜0.6%とした。
(10) Ni (nickel)
Ni improves the hardenability and toughness and has the effect of suppressing the formation of ferrite, and the effect is recognized when the Ni content is 0.3% or more. However, if the Ni content exceeds 0.6%, the creep strength is lowered. Therefore, the Ni content is determined to be 0.3 to 0.6%.

なお、上記成分ならびに主成分であるFeを添加する際に付随的に混入する不純物は、極力低減することが望ましい。   In addition, it is desirable to reduce impurities incidentally mixed when adding the above component and the main component Fe.

次に、MoとW/2との合計を1.3〜1.4に制限した理由を説明する。   Next, the reason why the total of Mo and W / 2 is limited to 1.3 to 1.4 will be described.

本発明の耐熱鋼におけるWおよびMoのそれぞれの効果は、上述した(6)および(7)のとおりであるが、これらを複合添加した場合は、これらを単独で添加した場合に比べクリープ強度が向上する一方で、大型鋼塊製作時の軽元素の成分偏析傾向が著しく増大する。所望のクリープ強度を発揮させ、かつ偏析を回避するには、WとMoの複合添加量に制限を設ける必要がある。そのためには、一般にMo当量(MoとW/2の合計の含有率(質量%))と称される指標を用いることが好適である。本発明の耐熱鋼の場合、Mo当量として1.3未満ではクリープ強度が低下し、Mo当量が1.4を超えると大型鋼塊製作時の成分偏析が著しくなる。そのため、Mo当量(MoとW/2の合計の含有率(質量%))を1.3〜1.4とした。 The respective effects of W and Mo in the heat resistant steel of the present invention are as described in (6) and (7) above. However, when these are added in combination, the creep strength is higher than when these are added alone. On the other hand, the segregation tendency of light elements during the production of large steel ingots is significantly increased. In order to exert desired creep strength and avoid segregation, it is necessary to limit the combined amount of W and Mo. For this purpose, it is preferable to use an index generally referred to as Mo equivalent (total content ( mass %) of Mo and W / 2). In the case of the heat resistant steel of the present invention, if the Mo equivalent is less than 1.3, the creep strength decreases, and if the Mo equivalent exceeds 1.4, the component segregation during the production of a large steel ingot becomes remarkable. Therefore, the Mo equivalent (the total content of Mo and W / 2 ( mass %)) was set to 1.3 to 1.4.

次に、上記範囲の添加元素量の耐熱鋼の焼戻し熱処理後に、質量%で、Fe:1.0以上、Cr:0.8〜0.9、Mo:0.4〜0.5、W:0.3〜0.5、V:0.2以上を析出物中に存在させ、析出物総量を3.5以上に確保する理由を説明する。 Then, after the tempering heat treatment of the heat-resisting steel of the additive element content in the above range, by mass%, Fe: 1.0 or more, Cr: 0.8~0.9, Mo: 0.4~0.5 , W: The reason why 0.3 to 0.5 and V: 0.2 or more are present in the precipitate and the total amount of the precipitate is secured to 3.5 or more will be described.

本発明の耐熱鋼は、母相の固溶強化と炭窒化物の析出によって強化されている。炭窒化物は、焼戻し熱処理において意図的に析出させるものであり、本発明の耐熱鋼における析出物は、M型、MC型、MC型、MC型の4種類である。Mは、金属元素を表し、M型およびMC型におけるMは、主としてFeおよびCrであり、他にMo、Wなどを含有する場合がある。また、MC型におけるMは、主としてMoおよびWであり、他にVを含有する場合がある。また、MC型におけるMは、主としてVであり、他にMo、Wを含有する場合がある。 The heat resistant steel of the present invention is strengthened by solid solution strengthening of the matrix and precipitation of carbonitrides. Carbonitride is intentionally deposited in the tempering heat treatment, and there are four types of precipitates in the heat-resistant steel of the present invention: M 7 C 3 type, M 3 C type, M 2 C type, and MC type. . M represents a metal element, and M in the M 7 C 3 type and M 3 C type is mainly Fe and Cr, and may contain Mo, W, and the like. Further, M in the M 2 C type is mainly Mo and W, and may contain V in addition. Further, M in the MC type is mainly V and may contain Mo and W in addition.

以下に、上記したFe、Cr、Mo、WおよびVの各成分範囲の限定理由を説明する。なお、以下の説明において組成を表す%は、特に明記しない限り質量%とする。
また、析出物量の測定および同定は、試料をメタノールとアセチルアセトンおよびテトラメチルアンモニウムクロライドの混合液中で電解にて母相を溶解し、濾過後の残渣を洗浄し重量を測定した上で、溶解前後の重量で徐した値を用いて行った。さらに、回収した残渣についてX線分析法などを用いて析出物の種類を判定した。
Below, the reason for limitation of each component range of Fe, Cr, Mo, W and V described above will be explained. In the following description, “%” representing the composition is “% by mass” unless otherwise specified.
In addition, the measurement and identification of the amount of precipitates were carried out by dissolving the mother phase by electrolysis in a mixed solution of methanol, acetylacetone and tetramethylammonium chloride, washing the residue after filtration, measuring the weight, and before and after dissolution. It was carried out using a value gradually reduced by the weight of Furthermore, the kind of the precipitate was determined using X-ray analysis or the like for the collected residue.

(11)Fe(鉄)
析出物中のFeは、主としてM型およびMC型の析出物の構成元素となり、析出強化に寄与する。焼戻し熱処理後の析出物中へのFeの移動量が1.0%未満では、これらの析出量が少なく、析出強化作用が十分に働かない。また、クリープ強度を発揮させるには、焼戻し熱処理後にMC型析出物として析出させた後、その経時的な変態を利用することが効果的であるが、Feの移動量が1.0%未満では、MC型析出物の析出量が少ないため、このような方法でのクリープ強度を増大させることは期待できない。これらのことから、焼戻し熱処理後の析出物におけるFeの含有率を1.0%以上とした。
(11) Fe (iron)
Fe in the precipitate is a constituent element of the M 7 C 3 type and M 3 C type precipitates and contributes to precipitation strengthening. If the transfer amount of Fe into the precipitate after the tempering heat treatment is less than 1.0%, the precipitation amount is small and the precipitation strengthening action does not work sufficiently. In order to exhibit the creep strength, it is effective to use the temporal transformation after precipitation as an M 3 C type precipitate after the tempering heat treatment. If it is less than the range, the amount of precipitation of M 3 C type precipitates is small, so that it is not expected to increase the creep strength by such a method. For these reasons, the Fe content in the precipitate after the tempering heat treatment was set to 1.0% or more.

(12)Cr(クロム)
析出物中のCrは、主としてM型およびMC型の析出物の構成元素となり、析出強化に寄与する。Crは、これらの析出物中のFeの一部を置換するため、析出物の安定性を高める作用も併せ持つ。焼戻し熱処理後の析出物中へのCrの移動量が0.8%未満では、これらの析出量が少なく、析出強化作用が十分に働かない。一方、焼戻し熱処理後の析出物中へのCrの移動量が0.9%を超えると焼戻し熱処理中に、FeC型析出物の消滅を誘発し、(11)に述べた経時的な効果が発揮できない。そのため、焼戻し熱処理後の析出物におけるCrの含有率を0.8〜0.9%とした。
(12) Cr (chrome)
Cr in the precipitate mainly serves as a constituent element of the M 7 C 3 type and M 3 C type precipitates and contributes to precipitation strengthening. Since Cr substitutes a part of Fe in these precipitates, it also has an effect of improving the stability of the precipitates. If the amount of Cr transferred into the precipitate after the tempering heat treatment is less than 0.8%, the amount of precipitation is small and the precipitation strengthening action does not work sufficiently. On the other hand, if the amount of Cr transferred into the precipitate after the tempering heat treatment exceeds 0.9%, the disappearance of the Fe 3 C type precipitate is induced during the tempering heat treatment, and the time-dependent effect described in (11) Cannot be demonstrated. Therefore, the Cr content in the precipitate after the tempering heat treatment is set to 0.8 to 0.9%.

(13)W(タングステン)
析出物中のWは、主としてMC型の析出物の構成元素となり、析出強化に寄与するとともに、M型、MC型およびMC型の析出物中にも一部が置換するため、これらの析出物の高温安定性を著しく高める。焼戻し熱処理後の析出物中へのWの移動量が0.3%未満では、これらの析出物の安定性が低く所望のクリープ強度が発揮できない。一方、焼戻し熱処理後の析出物中へのWの移動量が0.5%を超えると、母相中のWの固溶量が低下し、高温における固溶強化量が低下する。そのため、焼戻し熱処理後の析出物におけるWの含有率を0.3〜0.5%とした。
(13) W (tungsten)
W in the precipitate mainly becomes a constituent element of the M 2 C type precipitate, contributes to precipitation strengthening, and a part of the M 7 C 3 type, M 3 C type and MC type precipitates are also substituted. Therefore, the high temperature stability of these precipitates is remarkably increased. If the amount of movement of W into the precipitate after the tempering heat treatment is less than 0.3%, the stability of these precipitates is low and the desired creep strength cannot be exhibited. On the other hand, if the movement amount of W into the precipitate after the tempering heat treatment exceeds 0.5%, the solid solution amount of W in the matrix phase is lowered, and the solid solution strengthening amount at high temperature is lowered. Therefore, the W content in the precipitate after the tempering heat treatment is set to 0.3 to 0.5%.

(14)Mo(モリブデン)
析出物中のMoは、主としてMC型の析出物の構成元素となり、析出強化に寄与するとともに、M型、MC型およびMC型の析出物中にも一部が置換するため、これらの析出物の高温安定性を著しく高める。焼戻し熱処理後の析出物中へのMoの移動量が0.4%未満では、これらの析出物の安定性が低く所望のクリープ強度が発揮できない。一方、焼戻し熱処理後の析出物中へのMoの移動量が0.5%を越えると、母相中のMoの固溶量が低下し、高温における固溶強化量が低下する。そのため、焼戻し熱処理後の析出物におけるMoの含有率を0.4〜0.5%とした。
(14) Mo (molybdenum)
Mo in the precipitate mainly becomes a constituent element of the M 2 C type precipitate and contributes to precipitation strengthening, and a part of the M 7 C 3 type, M 3 C type and MC type precipitates are also substituted. Therefore, the high temperature stability of these precipitates is remarkably increased. If the amount of Mo transferred into the precipitate after the tempering heat treatment is less than 0.4%, the stability of these precipitates is so low that the desired creep strength cannot be exhibited. On the other hand, if the amount of Mo moved into the precipitate after the tempering heat treatment exceeds 0.5%, the solid solution amount of Mo in the matrix phase decreases and the solid solution strengthening amount at high temperature decreases. Therefore, the Mo content in the precipitate after the tempering heat treatment is set to 0.4 to 0.5%.

(15)V(バナジウム)
析出物中のVは、主として微細なMC型の析出物の構成元素となり、析出強化に寄与するとともに、M型、MC型およびMC型の析出物中にも一部が置換するため、これらの析出物の高温安定性を著しく高める。焼戻し熱処理後の析出物中へのVの移動量が0.2%未満では、MC型析出物の析出量が少なく、また、その他の析出物の安定性が低くなる。そのため、焼戻し熱処理後の析出物におけるVの含有率を0.2%以上とした。
(15) V (Vanadium)
V in the precipitate mainly becomes a constituent element of the fine MC type precipitate, contributes to precipitation strengthening, and partly in the M 7 C 3 type, M 3 C type and M 2 C type precipitates. Will significantly increase the high temperature stability of these precipitates. If the amount of movement of V into the precipitate after the tempering heat treatment is less than 0.2%, the amount of MC-type precipitates is small, and the stability of other precipitates is low. Therefore, the V content in the precipitate after the tempering heat treatment is set to 0.2% or more.

主として上記した(11)〜(15)の5元素と、C、Nなどから構成される析出物が、焼戻し熱処理によって微細均一に分散されるには、析出物の総量として3.5%以上必要であり、これを下回った場合は、(11)〜(15)にそれぞれ記載したように、強度特性および析出物自体の高温安定性の低下を招く。そのため、焼戻し熱処理後の析出物の総含有率を3.5%以上とした。   In order for the precipitate composed mainly of the above five elements (11) to (15) and C, N, etc. to be finely and uniformly dispersed by the tempering heat treatment, the total amount of the precipitate is required to be 3.5% or more. If it is lower than this, as described in (11) to (15), the strength characteristics and the high-temperature stability of the precipitate itself are lowered. Therefore, the total content of precipitates after tempering heat treatment is set to 3.5% or more.

次に、上記した(1)〜(10)の範囲の各成分元素から構成される耐熱鋼で形成された高温用蒸気タービンロータの焼戻し熱処理後における上記した(11)〜(15)の析出物の総量(3.5%)が、定常運転時の最高温度の蒸気に晒される部位近傍において、10万時間相当の運転後に、焼戻し熱処理後の析出物の総量から減少しても2.8%以上を確保することが好適な理由を説明する。   Next, the deposits of the above (11) to (15) after the tempering heat treatment of the high-temperature steam turbine rotor formed of the heat-resistant steel composed of each component element in the range of (1) to (10) described above Even if the total amount (3.5%) decreases from the total amount of precipitates after the tempering heat treatment after operation for 100,000 hours in the vicinity of the portion exposed to steam at the highest temperature during steady operation, The reason why it is preferable to secure the above will be described.

本発明の高温用蒸気タービンロータを構成する耐熱鋼は、通常の耐熱鋼とは異なり、固溶量と炭窒化物の析出量が運転中に経時的に変化し、そのこと自体が優れた高温特性を発揮する原因の一つになっている。また、この耐熱鋼においては、過飽和に固溶しているMoやWが主にMC型析出物やMC型析出物中に経時的に移動し、これらの高温安定性を高める一方で、Feを主構成元素とするMC型析出物がCrを主構成元素とするより安定なM型析出物に経時的に変態してクリープ強度を維持する。特に、後者は、焼戻し熱処理で多量に析出させたMC型析出物中のFeの溶解を伴うため、析出物の総量としては、焼戻し熱処理後に比べ減少する。残存しているMC型析出物は、クリープ強度の維持に効果を有しているが、析出物総量が2.8%を下回るとMC型析出物は、完全に消失し、急激に析出強化作用が低下する。そのため、10万時間相当の運転後の析出物総量を2.8%以上とした。 The heat-resistant steel constituting the high-temperature steam turbine rotor of the present invention is different from ordinary heat-resistant steel in that the amount of solid solution and the amount of carbonitride deposited changes over time during operation, which itself is excellent in high temperature. This is one of the causes of the characteristics. In this heat-resistant steel, Mo and W dissolved in supersaturation move mainly over time into M 2 C type precipitates and MC type precipitates, while increasing their high temperature stability, The M 3 C type precipitate containing Fe as a main constituent element transforms with time into a more stable M 7 C 3 type precipitate containing Cr as a main constituent element to maintain the creep strength. In particular, the latter is accompanied by dissolution of Fe in the M 3 C type precipitate precipitated in a large amount by the tempering heat treatment, so that the total amount of the precipitate is reduced as compared with that after the tempering heat treatment. The remaining M 3 C type precipitate has an effect in maintaining the creep strength, but when the total amount of the precipitate falls below 2.8%, the M 3 C type precipitate disappears completely and rapidly The precipitation strengthening action is reduced. Therefore, the total amount of precipitates after operation corresponding to 100,000 hours is set to 2.8% or more.

なお、高温用蒸気タービンロータを構成する耐熱鋼に析出する析出物は、種類ごとに析出量に差異があり、また、高温用蒸気タービンロータの運転によって、それらの析出量が経時的に変化するが、運転中に新たな種類の析出物が析出することはない。また、定常運転時における蒸気の最高温度は、540〜580℃程度である。   The precipitates deposited on the heat-resistant steel constituting the high-temperature steam turbine rotor have different precipitation amounts depending on the type, and the precipitation amount changes with time depending on the operation of the high-temperature steam turbine rotor. However, no new types of precipitates are deposited during operation. Moreover, the maximum temperature of the vapor | steam at the time of steady operation is about 540-580 degreeC.

次に、旧オーステナイト結晶粒径が平均で100μm以下が好適な理由を説明する。   Next, the reason why the average austenite crystal grain size is preferably 100 μm or less will be described.

旧オーステナイト粒径は、各種機械的性質に少なからず影響を及ぼす。100μmを超えると延性が低下し粒界割れが発生し易くなるとともに、切欠クリープ強度および靭性の低下を招く。そのため、旧オーステナイト結晶粒径を平均で100μm以下とした。   The prior austenite grain size has a considerable influence on various mechanical properties. When it exceeds 100 μm, ductility is lowered and intergranular cracking is likely to occur, and notch creep strength and toughness are lowered. Therefore, the prior austenite crystal grain size is set to 100 μm or less on average.

なお、結晶粒径は、最終的に焼入れ時の加熱温度で決定される。本発明の耐熱鋼においては、980〜1030℃の加熱温度が好適である。加熱温度が980℃未満では十分な焼入れ効果が得られず所望の機械的特性を発揮できない。一方、加熱温度が1030℃を超えると結晶粒の粗大化が著しくなり、上述した粗粒化にともなう特性低下が顕著となる。   The crystal grain size is finally determined by the heating temperature at the time of quenching. In the heat resistant steel of the present invention, a heating temperature of 980 to 1030 ° C. is suitable. When the heating temperature is less than 980 ° C., a sufficient quenching effect cannot be obtained and desired mechanical properties cannot be exhibited. On the other hand, when the heating temperature exceeds 1030 ° C., the coarsening of the crystal grains becomes remarkable, and the characteristic deterioration due to the above-mentioned coarsening becomes remarkable.

本発明の耐熱鋼および高温用蒸気タービンロータは、上記(1)〜(10)に述べた元素を所定の範囲で含有し、Mo当量が所定の範囲であり、旧オーステナイト結晶粒径が平均で100μm以下にあって、(11)〜(12)に述べた元素が所定の範囲で析出物中に含有されている。また、定常運転時の最高温度の蒸気に晒される高温用蒸気タービンロータの部位近傍において、10万時間相当の運転後においても、析出物の総量が所定値以上を確保できるので、所望の機械的性質を発揮することができる。   The heat-resistant steel and high-temperature steam turbine rotor of the present invention contain the elements described in the above (1) to (10) in a predetermined range, the Mo equivalent is in a predetermined range, and the prior austenite grain size is an average. The elements described in (11) to (12) are contained in the precipitate within a predetermined range. In addition, in the vicinity of the high temperature steam turbine rotor that is exposed to the highest temperature steam during steady operation, the total amount of precipitates can be maintained at a predetermined value or more even after operation equivalent to 100,000 hours. It can exhibit properties.

なお、本発明の耐熱鋼のように、フェライト形成元素であるCr、Mo、W、Vなどを含有する場合、各元素の添加量によっては金属組織中にフェライトが生成する場合がある。低合金鋼におけるフェライト中には、これらの元素が濃縮し、上述した各元素の効果が十分には発揮できないため、本発明の耐熱鋼においては、ベイナイト単相組織を有するよう各添加元素((1)〜(10))の添加範囲が決められている。   In addition, when it contains Cr, Mo, W, V etc. which are ferrite forming elements like the heat-resistant steel of this invention, a ferrite may produce | generate in a metal structure depending on the addition amount of each element. Since these elements are concentrated in the ferrite in the low alloy steel and the effects of the respective elements described above cannot be sufficiently exhibited, in the heat-resistant steel of the present invention, each additive element (( The addition range of 1) to (10)) is determined.

また、フェライト相の生成は、製造時の加熱温度や加熱後の冷却条件によっても生じる場合がある。特に、製造工程において加熱と冷却を繰返し実施し、かつ素材寸法が大きい蒸気タービンロータ素材では、例えば焼入れ時の冷却速度によってはフェライト相が生成する。すなわち、フェライト相は、ある温度範囲にある時間さらされた場合に生成する特徴があり、例えば焼入れ時の冷却速度が遅い場合、冷却過程でこの生成領域を通過することになる。この結果、ベイナイト組織中にフェライト相が生成した組織が得られ、特性の低下を招くことになる。   In addition, the generation of the ferrite phase may occur depending on the heating temperature at the time of manufacture and the cooling conditions after heating. In particular, in a steam turbine rotor material that is repeatedly heated and cooled in the manufacturing process and has a large material size, for example, a ferrite phase is generated depending on the cooling rate during quenching. That is, the ferrite phase has a characteristic that it is generated when it is exposed to a certain temperature range for a certain time. For example, when the cooling rate during quenching is low, it passes through this generation region in the cooling process. As a result, a structure in which a ferrite phase is generated in the bainite structure is obtained, leading to deterioration of characteristics.

また、フェライト中に炭窒化物を析出させた場合であっても、ベイナイト単相組織に比べて特性は低下し、成分濃度や組織の不均一が不可避となるため、焼入れ時にはこの生成領域を回避すべく冷却速度を調整し、ベイナイト単相組織を得ることが、耐熱鋼の製造において注力される。   Even when carbonitride is precipitated in ferrite, the properties are lower than those of a bainite single-phase structure, and the concentration of components and the structure are inhomogeneous. Adjustment of the cooling rate to obtain a bainite single-phase structure as much as possible is emphasized in the production of heat-resistant steel.

しかしながら、本発明の成分範囲にある耐熱鋼や高温用蒸気タービンロータにおいては、このような冷却速度の制限を設けなくても、高温での機械的性質が良好なベイナイト単相組織を得ることができる。   However, in heat-resistant steel and high-temperature steam turbine rotors within the component range of the present invention, a bainite single-phase structure with good mechanical properties at high temperatures can be obtained without providing such a limitation on the cooling rate. it can.

以下に、本発明の実施例について説明する。   Examples of the present invention will be described below.

(第1の実施例)
本発明の一実施の形態に係る耐熱鋼が優れた特性を有することを説明する。
第1の実施例における供試鋼は、本発明の化学組成範囲にある材料を約30kg溶解後、鋳込んだ鋳塊を熱間鍛造し、続いて焼鈍、焼ならし、焼入れを行い、さらに焼戻しを施して作製された。なお、焼入れは、980〜1030℃で焼ならし後の鋳塊において、鋳塊のほぼ中心における冷却速度が20〜80℃/hとなるように行った。
(First embodiment)
It will be described that the heat resistant steel according to one embodiment of the present invention has excellent characteristics.
The test steel in the first example was prepared by melting about 30 kg of the material in the chemical composition range of the present invention, hot forging the cast ingot, followed by annealing, normalizing, quenching, It was made by tempering. The quenching was performed so that the cooling rate at the center of the ingot was 20 to 80 ° C./h in the ingot after normalizing at 980 to 1030 ° C.

表1に、作製された供試鋼の化学組成を示す。表1に示された供試鋼のうち鋼種P1〜〜鋼種P14は、本発明に係る組成範囲にある耐熱鋼である。一方、鋼種C1〜鋼種C6は、その組成が本発明記載の化学組成範囲にない耐熱鋼であり、比較例である。なお、表1には、各鋼種の酸素の残存量が併せて示されている。また、表1に示された数値の単位は、質量%である。 Table 1 shows the chemical composition of the produced test steel. Among the test steels shown in Table 1, steel types P1 to P14 are heat resistant steels in the composition range according to the present invention. On the other hand, steel types C1 to C6 are heat resistant steels whose compositions are not within the chemical composition range described in the present invention, and are comparative examples. Table 1 also shows the remaining amount of oxygen of each steel type. The unit of numerical values shown in Table 1 is mass %.

表1に示すように、Tiを含有する供試鋼の酸素残存量は、最大でも10ppmである。この値は、Tiを含有しない供試鋼の酸素残存量に比べ低いことから、Tiの添加による脱酸が効果的に働いていることがわかる。なお、鋼種C2では、脱酸効果はあるが、未固溶のTi炭窒化物を生成する。   As shown in Table 1, the residual oxygen amount of the test steel containing Ti is 10 ppm at the maximum. Since this value is lower than the residual oxygen amount of the test steel not containing Ti, it can be seen that deoxidation by the addition of Ti works effectively. Steel type C2 has a deoxidizing effect, but produces undissolved Ti carbonitride.

また、表1に示した各鋼種は、表2に示すようにタービンロータに適した660〜690MPa程度の常温0.02%耐力に調整されている。   Moreover, as shown in Table 2, each steel type shown in Table 1 is adjusted to a normal temperature 0.02% yield strength of about 660 to 690 MPa suitable for a turbine rotor.

各鋼種について、JIS4号2mmVノッチシャルピ衝撃試験片を作製し、その試験片を用いてシャルピ衝撃試験を行った。その試験結果を表2に示す。なお、表2には、600℃−196MPaでのクリープ破断試験における破断時間の測定結果も示されている。   About each steel type, the JIS4 2mmV notch Charpy impact test piece was produced and the Charpy impact test was done using the test piece. The test results are shown in Table 2. Table 2 also shows the measurement results of the rupture time in the creep rupture test at 600 ° C. to 196 MPa.

本発明の化学組成範囲にある実施例の鋼種P1〜P14は、20℃において50〜55Jの衝撃吸収エネルギを示した。一方、比較例の鋼種C1〜C6においては、20℃において最大でも40Jの衝撃吸収エネルギであり、衝撃吸収エネルギは、実施例に比べ全体的に低かった。   The steel types P1 to P14 of the examples within the chemical composition range of the present invention exhibited an impact absorption energy of 50 to 55 J at 20 ° C. On the other hand, in the steel types C1 to C6 of the comparative examples, the impact absorption energy was at most 40 J at 20 ° C., and the impact absorption energy was generally lower than that of the examples.

また、各鋼について実施した600℃−196MPaでのクリープ破断試験における破断時間は、実施例の鋼種P1〜P14の場合には、最も短くて約1850時間であった。一方、比較例の鋼種C1〜C6におけるクリープ破断時間は、800〜1530時間であった。   Moreover, the rupture time in the creep rupture test at 600 ° C. and 196 MPa conducted for each steel was the shortest about 1850 hours in the case of the steel types P1 to P14 of the examples. On the other hand, the creep rupture time in the steel types C1 to C6 of the comparative examples was 800 to 1530 hours.

比較例の鋼種において、比較的長い破断時間を示した鋼種C1、鋼種C3および鋼種C5は、20℃における衝撃吸収エネルギが実施例の各鋼種に比べ大幅に低かった。また、鋼種C4のように、Mo当量(MoとW/2の合計の含有率(質量%))が1.3未満の場合、および鋼種C5のように、Mo当量が1.4を超える場合には、明らかにクリープ破断時間が短い。さらに、Mo当量が1.3〜1.4の範囲にあっても、その他の元素の添加量が本発明の化学組成範囲にない場合には、クリープ破断時間が短く、かつ衝撃吸収エネルギが低かった。 In the steel types of the comparative examples, steel types C1, C3, and C5, which showed relatively long break times, had significantly lower impact absorption energy at 20 ° C. than the respective steel types of the examples. Also, when steel equivalent is Mo equivalent (total content of Mo and W / 2 (% by mass )) is less than 1.3, as in steel grade C4, and when Mo equivalent is above 1.4, as in steel grade C5 Clearly has a short creep rupture time. Furthermore, even when the Mo equivalent is in the range of 1.3 to 1.4, if the amount of other elements added is not within the chemical composition range of the present invention, the creep rupture time is short and the impact absorption energy is low. It was.

以上のことから、本実施例の耐熱鋼は、同等の常温0.02%耐力に調整した場合、本発明の組成範囲にない添加元素量を有する比較例の耐熱鋼に比べ、衝撃吸収エネルギおよびクリープ破断時間の双方が優れた値を示すことがわかった。また、Tiを添加することによって鋼塊中の酸素残存量が低下することが明らかになった。   From the above, when the heat resistant steel of this example is adjusted to an equivalent normal temperature of 0.02% proof stress, compared with the heat resistant steel of the comparative example having an additive element amount not in the composition range of the present invention, the impact absorption energy and It was found that both creep rupture times showed excellent values. Moreover, it became clear that the oxygen residual amount in a steel ingot fell by adding Ti.

Figure 0004266194
Figure 0004266194

Figure 0004266194
Figure 0004266194

(第2の実施例)
本発明の化学組成範囲にある耐熱鋼が、焼戻し熱処理を施された際に、所定の析出量を確保した状態に調整されることが好適なことを説明する。
(Second embodiment)
It will be described that the heat resistant steel within the chemical composition range of the present invention is preferably adjusted to a state in which a predetermined amount of precipitation is secured when tempering heat treatment is performed.

第2の実施例では、表1で示した鋼種P1、鋼種P6、鋼種P11および鋼種P14について、990℃から供試鋼のほぼ中心における冷却速度が20〜80℃/hとなるように焼入れを行った後、630〜730℃で焼戻し熱処理を施した。   In the second embodiment, the steel types P1, P6, P11, and P14 shown in Table 1 were quenched so that the cooling rate from 990 ° C. to the center of the test steel was 20 to 80 ° C./h. After performing, tempering heat processing was performed at 630-730 degreeC.

表3に、これらの供試鋼において焼戻し熱処理後の析出物中に含まれる元素のうち、Fe、Cr、Mo、WおよびVの含有率(質量%)、析出物の総量(質量%)を示す。また、表3には、これらの供試鋼について施された、600℃−196MPaでのクリープ破断試験における破断時間の測定結果が併せて示されている。 Table 3 shows the contents ( mass %) of Fe, Cr, Mo, W and V, and the total amount ( mass %) of precipitates among the elements contained in the precipitates after tempering heat treatment in these test steels. Show. Table 3 also shows the measurement results of the rupture time in a creep rupture test at 600 ° C. to 196 MPa performed on these test steels.

表3に示された測定結果から、各鋼種で比較例として示されている、焼戻し熱処理後の析出物中に含まれるそれぞれの元素の含有率が、上述した本発明の析出物中に含まれる元素の含有率の範囲内にない場合、および析出物の総量が本発明の析出物の総量の範囲(3.5質量%以上)を下回った場合には、クリープ破断時間が大幅に短くなることがわかる。 From the measurement results shown in Table 3, the content of each element contained in the precipitate after the tempering heat treatment, which is shown as a comparative example in each steel type, is included in the precipitate of the present invention described above. When the content is not within the range of the element content, and when the total amount of precipitates is less than the total amount of precipitates of the present invention (3.5% by mass or more), the creep rupture time is significantly shortened. I understand.

一方、本発明の析出物中に含まれる元素の含有率の範囲を満たし、かつ総量が本発明の析出物の総量(3.5質量%以上)以上である耐熱鋼(実施例)は、優れたクリープ破断特性を発揮することがわかる。なお、これらの各鋼種で実施例として示されている耐熱鋼は、表2における鋼種P1、鋼種P6、鋼種P11および鋼種P14の結果からも類推可能なごとく、クリープ破断特性のみならず十分な衝撃吸収エネルギも併せて確保することが可能である。 On the other hand, the heat resistant steel (Example) that satisfies the range of the content of elements contained in the precipitate of the present invention and whose total amount is equal to or greater than the total amount (3.5% by mass or more) of the precipitate of the present invention is excellent. It can be seen that it exhibits creep rupture characteristics. It should be noted that the heat-resistant steels shown as examples in each of these steel types are not only creep rupture characteristics but also sufficient impact as can be inferred from the results of steel types P1, P6, P11, and P14 in Table 2. It is also possible to ensure the absorbed energy.

Figure 0004266194
Figure 0004266194

(第3の実施例)
本発明の化学組成範囲にある耐熱鋼が、焼戻し熱処理を施された際に、所定の析出量を確保した状態に調整され、所定温度の高温蒸気に10万時間相当晒された部位近傍において、析出物総量が2.8質量%以上確保することが好適であることを説明する。
(Third embodiment)
When the heat-resistant steel in the chemical composition range of the present invention is subjected to a tempering heat treatment, it is adjusted to a state in which a predetermined amount of precipitation is secured, and in the vicinity of a portion exposed to high-temperature steam at a predetermined temperature for 100,000 hours, It will be explained that it is preferable to ensure that the total amount of precipitates is 2.8% by mass or more.

第3の実施例では、表1で示した鋼種P2、鋼種P7、鋼種P10および鋼種P13において、焼戻し熱処理後の析出物総量が、本発明の析出物中に含まれる元素の含有率の範囲を満たし、かつ析出物の総量が本発明の析出物の総量(3.5質量%以上)以上である耐熱鋼を供試鋼とした。そして、これらの供試鋼に、温度550〜600℃で、10万時間相当の加熱を施した。 In the third example, the total amount of precipitates after the tempering heat treatment in the steel types P2, P7, P10 and P13 shown in Table 1 is within the range of the content of elements contained in the precipitates of the present invention. A heat resistant steel satisfying and having a total amount of precipitates equal to or greater than the total amount (3.5% by mass or more) of the precipitates of the present invention was used as a test steel. These test steels were heated at a temperature of 550 to 600 ° C. for 100,000 hours.

表4に、焼戻し熱処理後の析出物総量、10万時間相当加熱後の析出物総量および600℃−196MPaでのクリープ破断試験における破断時間の測定結果を示す。   Table 4 shows the total amount of precipitates after tempering heat treatment, the total amount of precipitates after heating equivalent to 100,000 hours, and the measurement results of the rupture time in a creep rupture test at 600 ° C.-196 MPa.

表4に示された測定結果から、加熱後の析出物総量が2.8質量%を超える場合(実施例の欄)は、クリープ破断時間は、1500時間以上あり、表2に示した鋼種P1〜P14におけるクリープ破断時間に対し、少なくとも80%以上の破断時間を確保している。一方、加熱後の析出物総量が2.8%を下回る場合(比較例の欄)は、クリープ破断時間は700〜825時間程度であり、表2に示した鋼種P1〜P14におけるクリープ破断時間の40%程度の破断時間であった。 From the measurement results shown in Table 4, when the total amount of precipitates after heating exceeds 2.8% by mass (Example column), the creep rupture time is 1500 hours or more, and the steel type P1 shown in Table 2 With respect to the creep rupture time at ~ P14, a rupture time of at least 80% is secured. On the other hand, when the total amount of precipitates after heating is less than 2.8% (comparative example column), the creep rupture time is about 700 to 825 hours, and the creep rupture time in steel types P1 to P14 shown in Table 2 The rupture time was about 40%.

以上のことから、本発明の化学組成範囲にある耐熱鋼が、焼戻し熱処理を施された際に、(11)〜(12)に述べた元素が所定の範囲で析出物中に含有され、例えば、温度550〜600℃の高温で、10万時間相当の加熱をし、その後の析出物の総量が2.8質量%以上となる場合には、その析出物の総量に達しない比較例に比べ、大幅に長いクリープ破断時間が得られることがわかる。 From the above, when the heat resistant steel in the chemical composition range of the present invention is subjected to tempering heat treatment, the elements described in (11) to (12) are contained in the precipitate within a predetermined range, for example, When the total amount of precipitates after heating at a high temperature of 550 to 600 ° C. for 100,000 hours is 2.8% by mass or more, compared with the comparative example that does not reach the total amount of precipitates. It can be seen that a significantly longer creep rupture time is obtained.

Figure 0004266194
Figure 0004266194

(第4の実施例)
本発明の化学組成範囲にある耐熱鋼が、成分の濃度偏析が小さい均質な鋼塊の製造に適していることを説明する。
(Fourth embodiment)
It will be described that the heat-resistant steel in the chemical composition range of the present invention is suitable for producing a homogeneous steel ingot with small concentration segregation of components.

第4の実施例では、表1で示した鋼種P6、鋼種P12、鋼種C2および鋼種C6の化学組成成分で60ton以上の鋼塊を製作したことを想定して、偏析傾向について数値シミュレーションを行った。   In the fourth example, assuming that steel ingots of 60 tons or more were produced with chemical composition components of steel types P6, P12, C2 and C6 shown in Table 1, a numerical simulation was performed on the segregation tendency. .

この数値シミュレーションでは、鋳造時の鋳型の高さを鋳型の直径で徐した値が約1.5の鋳型を用いて作製した鋳塊について、凝固後の鋳塊中央部における高さ方向の成分濃度を解析した。   In this numerical simulation, the concentration of the component in the height direction at the center of the ingot after solidification was measured for an ingot produced using a mold having a value obtained by gradually reducing the mold height by the mold diameter. Was analyzed.

表5に、上記した鋼種を構成する最も軽元素であるCと最も重元素であるWの成分濃度の解析結果を示す。なお、表5中の値は、鋼塊の各部位の成分濃度を溶湯の成分濃度で徐した値である。また、鋼塊底部からの距離が100%は、鋼塊上端部を表わす。   Table 5 shows the analysis results of the component concentrations of C, which is the lightest element, and W, which is the heaviest element, constituting the steel types described above. In addition, the value in Table 5 is a value obtained by gradually grading the component concentration of each part of the steel ingot with the component concentration of the molten metal. Further, a distance of 100% from the bottom of the steel ingot represents the upper end of the steel ingot.

表5に示した解析結果から、鋼種P6および鋼種P12における最も軽元素であるCの濃度比は、0.93〜1.15の範囲にあり、最も重元素であるWの濃度比は、ほぼ1.0であった。一方、鋼種C2および鋼種C6では、特に、Cの濃度比が鋼塊端部へ行くに伴い高くなり、著しい成分偏析が生じていることがわかる。   From the analysis results shown in Table 5, the concentration ratio of C, which is the lightest element in steel types P6 and P12, is in the range of 0.93 to 1.15, and the concentration ratio of W, which is the most heavy element, is approximately 1.0. On the other hand, in the steel types C2 and C6, it can be seen that the concentration ratio of C increases particularly as it goes to the end of the steel ingot, and significant component segregation occurs.

以上の結果から、成分の濃度偏析が小さい均質な鋼塊を製造するには本発明の化学組成範囲が好適であることがわかる。   From the above results, it can be seen that the chemical composition range of the present invention is suitable for producing a homogeneous steel ingot with small concentration segregation of components.

Figure 0004266194
Figure 0004266194

(第5の実施例)
本発明の化学組成範囲にある耐熱鋼の旧オーステナイト結晶粒径が平均で100μm以下に調整されることが好適な理由を説明する。
(Fifth embodiment)
The reason why it is preferable that the prior austenite crystal grain size of the heat resistant steel in the chemical composition range of the present invention is adjusted to 100 μm or less on average will be described.

第5の実施例では、表1で示した鋼種P3、鋼種P7、鋼種P12および鋼種P13を供試鋼とし、この供試鋼において、熱間加工によって結晶粒径を調整した後、タービンロータに適した660〜690MPa程度の常温0.02%耐力に調整した。   In the fifth example, the steel types P3, P7, P12 and P13 shown in Table 1 were used as test steels. In this test steel, after adjusting the crystal grain size by hot working, The yield was adjusted to a suitable room temperature of 0.02% proof stress of about 660 to 690 MPa.

これらの供試鋼について、JIS G 0551記載の試験方法を用いて結晶粒径を測定した。また、JIS Z 2241記載の引張試験方法に基づいて、300℃での絞りを測定し、さらに、300℃でのクリープ破断試験による切欠クリープ破断強度が平滑材に比べ強化されているか、もしくは弱化したかを測定した。   About these test steels, the crystal grain diameter was measured using the test method described in JIS G 0551. Further, the drawing at 300 ° C. was measured based on the tensile test method described in JIS Z 2241. Further, the notch creep rupture strength in the creep rupture test at 300 ° C. was strengthened or weakened compared to the smooth material. Was measured.

表6に、上記した測定における結果を示す。
表6に示した測定結果から、旧オーステナイト結晶粒径が100μm以下の場合(実施例)には、50%以上の引張絞りと切欠強化が発揮できるのに対し、旧オーステナイト結晶粒径が100μmを超える場合(比較例)には、引張絞りが急激に低下し、切欠弱化となった。
Table 6 shows the results of the above measurement.
From the measurement results shown in Table 6, when the prior austenite crystal grain size is 100 μm or less (Example), 50% or more of the tensile drawing and notch strengthening can be exhibited, whereas the prior austenite crystal grain size is 100 μm. In the case of exceeding (comparative example), the tensile drawing was suddenly lowered and the notch was weakened.

以上のことから、本発明の化学組成範囲にある耐熱鋼を所定の析出状態に調整し、さらに結晶粒径を100μm以下にすることで、良好な引張性質およびクリープ破断特性を発揮させることが可能なことがわかる。   From the above, it is possible to exhibit good tensile properties and creep rupture properties by adjusting the heat resistant steel in the chemical composition range of the present invention to a predetermined precipitation state and further making the crystal grain size 100 μm or less. I understand that.

Figure 0004266194
Figure 0004266194

Claims (11)

質量%で、C:0.25〜0.35、Si:0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、N:0.001〜0.007、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなり、焼戻し熱処理後に、質量%で、Fe:1.0以上、Cr:0.8〜0.9、Mo:0.4〜0.5、W:0.3〜0.5、V:0.2以上が析出物中に移動して、析出物総量を3.5以上確保したベイナイト単相組織からなることを特徴とする耐熱鋼。     In mass%, C: 0.25 to 0.35, Si: 0.15 or less, Mn: 0.2 to 0.8, Ni: 0.3 to 0.6, Cr: 1.6 to 1.9 , V: 0.26 to 0.35, Mo: 0.6 to 0.9, W: 0.9 to 1.4, Ti: less than 0.01, N: 0.001 to 0.007, Mo and The total of W / 2 is 1.3 to 1.4, and the balance is Fe and inevitable impurities, and after tempering heat treatment, in mass%, Fe: 1.0 or more, Cr: 0.8 to 0 .9, Mo: 0.4 to 0.5, W: 0.3 to 0.5, V: 0.2 or more moved into the precipitate, and the total amount of precipitate was secured to 3.5 or more. A heat-resistant steel comprising a phase structure. 質量%で、C:0.25〜0.35、Si:0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなり、焼戻し熱処理後に、質量%で、Fe:1.0以上、Cr:0.8〜0.9、Mo:0.4〜0.5、W:0.3〜0.5、V:0.2以上が析出物中に移動して、析出物総量を3.5以上確保したベイナイト単相組織からなることを特徴とする耐熱鋼。     In mass%, C: 0.25 to 0.35, Si: 0.15 or less, Mn: 0.2 to 0.8, Ni: 0.3 to 0.6, Cr: 1.6 to 1.9 , V: 0.26-0.35, Mo: 0.6-0.9, W: 0.9-1.4, Ti: less than 0.01, and the total of Mo and W / 2 is 1.3. -1.4, the balance being Fe and inevitable impurities, and after tempering heat treatment, in mass%, Fe: 1.0 or more, Cr: 0.8-0.9, Mo: 0.4-0 0.5, W: 0.3 to 0.5, V: 0.2 or more move into the precipitate, and the heat resistance is characterized by comprising a bainite single-phase structure in which the total amount of precipitates is secured to 3.5 or more. steel. 前記Tiおよび/またはNをFeおよびCで置換したことを特徴とする請求項1又は2項記載の耐熱鋼。   The heat-resistant steel according to claim 1 or 2, wherein the Ti and / or N is substituted with Fe and C. 前記耐熱鋼が、
旧オーステナイト結晶粒径が平均で100μm以下の焼戻しベイナイト単相組織を有し、該ベイナイト単相組織中に、MC型析出物、M型析出物、MC型析出物、MC型析出物を析出させ、所定温度の高温蒸気に10万時間晒されても前記析出物の種類に変化が生じないことを特徴とする1乃至3のいずれか1項記載の耐熱鋼。
The heat resistant steel is
It has a tempered bainite single-phase structure with an average austenite crystal grain size of 100 μm or less on average, and in the bainite single-phase structure, an M 3 C type precipitate, an M 7 C 3 type precipitate, an M 2 C type precipitate, 4. The heat-resisting steel according to any one of claims 1 to 3, wherein the MC type precipitate is deposited and the type of the precipitate does not change even when exposed to high temperature steam at a predetermined temperature for 100,000 hours.
質量%で、C:0.25〜0.35、Si:0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、N:0.001〜0.007、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなる鋼塊を、980〜1030℃に加熱した後、該鋼塊の中心部における冷却速度が少なくとも20℃/h以上80℃/h以下となるよう冷却し、その後焼戻し処理することを特徴とする耐熱鋼の熱処理方法。 In mass%, C: 0.25 to 0.35, Si: 0.15 or less, Mn: 0.2 to 0.8, Ni: 0.3 to 0.6, Cr: 1.6 to 1.9 , V: 0.26 to 0.35, Mo: 0.6 to 0.9, W: 0.9 to 1.4, Ti: less than 0.01, N: 0.001 to 0.007, Mo and After heating the steel ingot with the sum of W / 2 being 1.3 to 1.4 and the balance being Fe and inevitable impurities to 980 to 1030 ° C., the cooling rate at the center of the steel ingot is A heat-treating method for heat-resistant steel, characterized by cooling at least 20 ° C./h to 80 ° C./h and then tempering. 質量%で、C:0.25〜0.35、Si:0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなる鋼塊を、980〜1030℃に加熱した後、該鋼塊の中心部における冷却速度が少なくとも20℃/h以上80℃/h以下となるよう冷却し、その後焼戻し処理することを特徴とする耐熱鋼の熱処理方法。 In mass%, C: 0.25 to 0.35, Si: 0.15 or less, Mn: 0.2 to 0.8, Ni: 0.3 to 0.6, Cr: 1.6 to 1.9 , V: 0.26-0.35, Mo: 0.6-0.9, W: 0.9-1.4, Ti: less than 0.01, and the total of Mo and W / 2 is 1.3. After the steel ingot consisting of Fe and unavoidable impurities is heated to 980 to 1030 ° C., the cooling rate at the center of the steel ingot is at least 20 ° C./h or more and 80 ° C./h A heat-treating method for heat-resistant steel, which is cooled to the following and then tempered. 質量%で、C:0.25〜0.35、Si:0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、N:0.001〜0.007、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなり、焼戻し熱処理後に、質量%で、Fe:1.0以上、Cr:0.8〜0.9、Mo:0.4〜0.5、W:0.3〜0.5、V:0.2以上が析出物中に移動して、析出物総量を3.5以上確保したベイナイト単相組織からなる耐熱鋼で形成されたことを特徴とする高温用蒸気タービンロータ。   In mass%, C: 0.25 to 0.35, Si: 0.15 or less, Mn: 0.2 to 0.8, Ni: 0.3 to 0.6, Cr: 1.6 to 1.9 , V: 0.26 to 0.35, Mo: 0.6 to 0.9, W: 0.9 to 1.4, Ti: less than 0.01, N: 0.001 to 0.007, Mo and The total of W / 2 is 1.3 to 1.4, the balance is Fe and inevitable impurities, and after tempering heat treatment, in mass%, Fe: 1.0 or more, Cr: 0.8 to 0 .9, Mo: 0.4 to 0.5, W: 0.3 to 0.5, V: 0.2 or more moved into the precipitate, and the total amount of precipitate was secured to 3.5 or more. A high-temperature steam turbine rotor characterized by being formed of heat-resistant steel having a phase structure. 質量%で、C:0.25〜0.35、Si:0.15以下、Mn:0.2〜0.8、Ni:0.3〜0.6、Cr:1.6〜1.9、V:0.26〜0.35、Mo:0.6〜0.9、W:0.9〜1.4、Ti:0.01未満、MoとW/2との合計が1.3〜1.4であって、残部がFeおよび不可避的不純物からなり、焼戻し熱処理後に、質量%で、Fe:1.0以上、Cr:0.8〜0.9、Mo:0.4〜0.5、W:0.3〜0.5、V:0.2以上が析出物中に移動して、析出物総量を3.5以上確保したベイナイト単相組織からなる耐熱鋼で形成されたことを特徴とする高温用蒸気タービンロータ。   In mass%, C: 0.25 to 0.35, Si: 0.15 or less, Mn: 0.2 to 0.8, Ni: 0.3 to 0.6, Cr: 1.6 to 1.9 , V: 0.26-0.35, Mo: 0.6-0.9, W: 0.9-1.4, Ti: less than 0.01, and the total of Mo and W / 2 is 1.3. -1.4, the balance being Fe and inevitable impurities, and after tempering heat treatment, in mass%, Fe: 1.0 or more, Cr: 0.8-0.9, Mo: 0.4-0 .5, W: 0.3 to 0.5, V: 0.2 or more moved into the precipitate, and was formed of a heat-resistant steel having a bainite single-phase structure in which the total amount of the precipitate was secured 3.5 or more. A high-temperature steam turbine rotor characterized by that. 定常運転時に最高温度の蒸気に晒される前記高温用蒸気タービンロータの部位において、10万時間の運転後に、前記析出物総量が2.8%以上確保されていることを特徴とする請求項7又は8項記載の高温用蒸気タービンロータ。 The total amount of precipitates is ensured to be 2.8% or more after 100,000 hours of operation in the portion of the high-temperature steam turbine rotor exposed to the highest temperature steam during steady operation. The high-temperature steam turbine rotor according to claim 8. 前記Tiおよび/またはNをFeおよびCで置換したことを特徴とする請求項7乃至9のいずれか1項記載の高温用蒸気タービンロータ。 10. The high-temperature steam turbine rotor according to claim 7, wherein the Ti and / or N is replaced with Fe and C. 11. 前記高温用蒸気タービンロータが、
旧オーステナイト結晶粒径が平均で100μm以下の焼戻しベイナイト単相組織を有し、該ベイナイト単相組織中に、MC型析出物、M型析出物、MC型析出物、MC型析出物を析出させ、定常運転時に最高温度の蒸気に10万時間晒されても前記析出物の種類に変化が生じないことを特徴とする7乃至10のいずれか1項記載の高温用蒸気タービンロータ。
The high temperature steam turbine rotor comprises:
It has a tempered bainite single-phase structure with an average austenite crystal grain size of 100 μm or less on average, and in the bainite single-phase structure, an M 3 C type precipitate, an M 7 C 3 type precipitate, an M 2 C type precipitate, 11. The high temperature use according to any one of 7 to 10, wherein the MC type precipitate is deposited, and the type of the precipitate does not change even if the MC type deposit is exposed to steam at a maximum temperature for 100,000 hours during steady operation. Steam turbine rotor.
JP2004269947A 2004-09-16 2004-09-16 Heat resistant steel, heat treatment method for heat resistant steel, and steam turbine rotor for high temperature Active JP4266194B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004269947A JP4266194B2 (en) 2004-09-16 2004-09-16 Heat resistant steel, heat treatment method for heat resistant steel, and steam turbine rotor for high temperature
US11/218,659 US20060054254A1 (en) 2004-09-16 2005-09-06 Heat-resisting steel, heat treatment method for heat-resisting steel and high-temperature steam turbine rotor
EP05019872.0A EP1637615B1 (en) 2004-09-16 2005-09-13 Heat-resisting steel, heat treatment method for heat-resisting steel and high-temperature steam turbine rotor
CNB2005101096888A CN100376708C (en) 2004-09-16 2005-09-16 Heat-resisting steel, heat treatment method for heat-resisting steel and high-temperature steam turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004269947A JP4266194B2 (en) 2004-09-16 2004-09-16 Heat resistant steel, heat treatment method for heat resistant steel, and steam turbine rotor for high temperature

Publications (2)

Publication Number Publication Date
JP2006083432A JP2006083432A (en) 2006-03-30
JP4266194B2 true JP4266194B2 (en) 2009-05-20

Family

ID=35351673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269947A Active JP4266194B2 (en) 2004-09-16 2004-09-16 Heat resistant steel, heat treatment method for heat resistant steel, and steam turbine rotor for high temperature

Country Status (4)

Country Link
US (1) US20060054254A1 (en)
EP (1) EP1637615B1 (en)
JP (1) JP4266194B2 (en)
CN (1) CN100376708C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844131B2 (en) * 2002-01-09 2005-01-18 Clariant Finance (Bvi) Limited Positive-working photoimageable bottom antireflective coating
US8523519B2 (en) * 2009-09-24 2013-09-03 General Energy Company Steam turbine rotor and alloy therefor
JP5362764B2 (en) * 2011-04-18 2013-12-11 株式会社日本製鋼所 Low alloy metal for geothermal power turbine rotor
US9039365B2 (en) * 2012-01-06 2015-05-26 General Electric Company Rotor, a steam turbine and a method for producing a rotor
CN104109817A (en) * 2013-04-18 2014-10-22 曹志春 High-tungsten-titanium wear-resistant alloy steel
WO2017163987A1 (en) * 2016-03-22 2017-09-28 新日鐵住金株式会社 Electric resistance welded steel tube for line pipe
CN105861925A (en) * 2016-06-13 2016-08-17 苏州双金实业有限公司 Steel with high temperature resistance
CN107151760A (en) * 2017-06-12 2017-09-12 合肥铭佑高温技术有限公司 A kind of supporting steel pipe of high-temperature service and its production method
CN110629126B (en) * 2019-10-23 2021-07-13 哈尔滨汽轮机厂有限责任公司 Material for high-low pressure combined rotor of medium-small turbine at 566 ℃ grade

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029448A (en) * 1983-07-29 1985-02-14 Sumitomo Metal Ind Ltd Steel for high-temperature particle erosion atmosphere
US4622067A (en) * 1985-02-07 1986-11-11 The United States Of America As Represented By The United States Department Of Energy Low activation ferritic alloys
JP3334217B2 (en) 1992-03-12 2002-10-15 住友金属工業株式会社 Low Cr ferritic heat resistant steel with excellent toughness and creep strength
JPH06256893A (en) * 1993-03-04 1994-09-13 Mitsubishi Heavy Ind Ltd High toughness low alloy steel excellent in high temperature strength
EP0789785B1 (en) * 1994-11-04 2002-07-31 Nippon Steel Corporation Ferritic heat-resistant steel having excellent high temperature strength and process for producing the same
JPH10265909A (en) * 1997-03-25 1998-10-06 Toshiba Corp Heat resistant steel with high toughness, turbine rotor, and their production
JP3470650B2 (en) * 1999-08-31 2003-11-25 住友金属工業株式会社 High strength low Cr ferritic heat resistant steel with excellent tempering brittleness resistance
EP1091010B1 (en) * 1999-10-04 2003-10-22 Mitsubishi Heavy Industries, Ltd. Low-alloy heat-resistant steel, process for producing the same, and turbine rotor
JP4031603B2 (en) * 2000-02-08 2008-01-09 三菱重工業株式会社 High / low pressure integrated turbine rotor and method of manufacturing the same
JP3518515B2 (en) * 2000-03-30 2004-04-12 住友金属工業株式会社 Low / medium Cr heat resistant steel
JP3439197B2 (en) 2001-03-06 2003-08-25 三菱重工業株式会社 Low alloy heat resistant steel, heat treatment method thereof, and turbine rotor

Also Published As

Publication number Publication date
CN100376708C (en) 2008-03-26
CN1749427A (en) 2006-03-22
JP2006083432A (en) 2006-03-30
EP1637615A1 (en) 2006-03-22
US20060054254A1 (en) 2006-03-16
EP1637615B1 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5574953B2 (en) Heat-resistant steel for forging, method for producing heat-resistant steel for forging, forged parts, and method for producing forged parts
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP6562476B2 (en) Ferritic heat resistant steel and its manufacturing method
EP0828010B1 (en) High strength and high-toughness heat-resistant cast steel
EP1637615B1 (en) Heat-resisting steel, heat treatment method for heat-resisting steel and high-temperature steam turbine rotor
JP5838933B2 (en) Austenitic heat resistant steel
JP3354832B2 (en) High toughness ferritic heat-resistant steel
US5817192A (en) High-strength and high-toughness heat-resisting steel
JP6547599B2 (en) Austenitic heat resistant steel
US20030185700A1 (en) Heat-resisting steel and method of manufacturing the same
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP3955719B2 (en) Heat resistant steel, heat treatment method of heat resistant steel and heat resistant steel parts
CN113166901A (en) Chromium-molybdenum steel plate with excellent creep strength and preparation method thereof
JPH11209851A (en) Gas turbine disk material
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JP2004359969A (en) Heat resistant steel, method for producing heat resistant steel ingot, and steam turbine rotor
JP2021031771A (en) Low alloy heat-resistant steel and steel pipe
JPH0941076A (en) High strength and high toughness low alloy steel
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
JP2948324B2 (en) High-strength, high-toughness heat-resistant steel
JP3662151B2 (en) Heat-resistant cast steel and heat treatment method thereof
JP5996403B2 (en) Heat resistant steel and method for producing the same
JP5371420B2 (en) Heat resistant cast steel and steam turbine main valves
JP3998413B2 (en) Heat-resistant cast steel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090213

R151 Written notification of patent or utility model registration

Ref document number: 4266194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5