KR20010039174A - A method of forming contact in semiconductor devices - Google Patents

A method of forming contact in semiconductor devices Download PDF

Info

Publication number
KR20010039174A
KR20010039174A KR1019990047463A KR19990047463A KR20010039174A KR 20010039174 A KR20010039174 A KR 20010039174A KR 1019990047463 A KR1019990047463 A KR 1019990047463A KR 19990047463 A KR19990047463 A KR 19990047463A KR 20010039174 A KR20010039174 A KR 20010039174A
Authority
KR
South Korea
Prior art keywords
contact
metal
silicide
contact hole
forming
Prior art date
Application number
KR1019990047463A
Other languages
Korean (ko)
Inventor
김정표
이은철
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019990047463A priority Critical patent/KR20010039174A/en
Publication of KR20010039174A publication Critical patent/KR20010039174A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for manufacturing a contact of a semiconductor device is provided to prevent resistance from increasing in an interface of the contact through a re-silicidation process even if a silicide layer for an ohmic contact formed under a contact hole is damaged in patterning an interlayer dielectric and forming the contact hole. CONSTITUTION: A portion where a contact is to be formed is silicified. An interlayer dielectric(21) is stacked. A contact hole is formed on the portion where the contact is to be formed. Metal used in the silicidation is stacked to re-form a silicide of the metal on the bottom surface of the contact hole. A barrier metal layer(31) is stacked. A chemical vapor deposition(CVD) tungsten layer is filled in the contact.

Description

반도체장치의 콘택 형성방법 {A METHOD OF FORMING CONTACT IN SEMICONDUCTOR DEVICES}Method for forming contact of semiconductor device {A METHOD OF FORMING CONTACT IN SEMICONDUCTOR DEVICES}

본 발명은 반도체장치의 콘택 형성방법에 관한 것으로서, 보다 상세하게는 반도체장치의 제조과정에서 계면에 오믹 콘택(ohmic contact)층으로 금속 실리사이드(silicide)층을 가지는 콘택의 형성방법에 관한 것이다.The present invention relates to a method for forming a contact of a semiconductor device, and more particularly, to a method for forming a contact having a metal silicide layer as an ohmic contact layer at an interface in a semiconductor device manufacturing process.

반도체장치는 반도체 기판에 도체, 부도체, 반도체의 여러 가지 막을 형성하고 가공하여 전자, 전기 소자를 이루고, 이들을 배선으로 결합하여 제작되는 매우 정교하고 복잡한 장치이다. 좁은 반도체 기판에 다수의 소자들이 집적되어 이루어지며 반도체장치에서의 소자 집적도는 계속 기하급수적으로 늘어나는 추세에 있다.BACKGROUND OF THE INVENTION A semiconductor device is a very sophisticated and complicated device fabricated by forming various kinds of conductors, non-conductors, and semiconductors on a semiconductor substrate, processing them to form electronic and electrical elements, and combining them by wiring. Many devices are integrated on a narrow semiconductor substrate, and device integration in semiconductor devices continues to increase exponentially.

반도체장치의 소자 고집적화 경향에 따라 좁은 면적내에 어떻게 다수의 소자를 형성할 것인가가 주된 문제가 되며, 이를 위해서는 배선과 소자의 크기를 줄이는 것이 중요한 작업이 된다. 한편, 소자 고집적화에 따른 경향의 하나로 반도체장치의 다층화, 입체화 혹은 배선의 다층화가 이루어지고 있다. 소자 및 배선의 크기가 축소되고 다층화가 진행됨에 따라 소자와 배선, 배선과 배선을 잇는 콘택을 형성하는 것도 반도체장치 제조에서 중요성을 더해가고 있다.The main problem is how to form a large number of devices in a small area according to the trend of high integration of semiconductor devices. For this purpose, it is important to reduce wiring and device sizes. On the other hand, one of the trends due to the high integration of devices is the multilayering, three-dimensional or wiring of semiconductor devices. As the size of devices and wirings are reduced and multilayering proceeds, the formation of contacts connecting devices and wirings, wirings and wirings is also becoming more important in the manufacture of semiconductor devices.

콘택의 형성상의 어려움은 우선 콘택의 면적은 줄어들고 상대적으로 콘택 깊이는 깊어짐으로 가로세로비(aspect ratio)가 늘어나고 단차가 부분적으로 심하게 되어 공정의 측면에서 콘택을 이루는 금속을 콘택홀에 채워넣기 어렵게 된다는 것이다. 가령, 단순 스퍼터링 등의 공정에서는 콘택을 형성하는 과정에서 콘택홀 입구의 오버 행(over hang)과 콘택 속의 공극(void)이 생기는 것으로 인하여 콘택의 신뢰성이 떨어지게 된다. 또한, 형성되는 반도체의 기능 측면에서 콘택에 의한 저항이 늘어나고, 연결되는 소자와 콘택의 재질이 다르기 때문에 접촉되는 계면에서의 저항이 늘어난다는 점을 고려해야 할 때 설계상의 어려움이 부각된다.The difficulty in forming a contact is that the area of the contact decreases and the contact depth becomes relatively deep, thus increasing the aspect ratio and increasing the stepped portion, making it difficult to fill the contact hole with the contact hole in terms of the process. will be. For example, in the process of simple sputtering, the contact reliability decreases due to an overhang of the contact hole inlet and a void in the contact during the formation of the contact. In addition, in terms of the function of the semiconductor to be formed, the resistance due to the contact increases, and the design difficulty is highlighted when considering that the resistance at the interface to be contacted is increased because the material of the contact and the contact element are different.

반도체장치에서 동작속도가 빠르고 효율적으로 동작하기 위해서는 소자 작동상의 지연 시간(delay time)이 작아야 한다. 종래에는 주로 게이트 지연 시간이 지연 시간의 큰 비중을 차지했지만, 근래에는 소자 고집적화에 따라 선폭 치수가 줄어들게 되면서 저항과 정전용량에 따른 지연 시간, 즉, RC 지연 시간이 큰 비중을 차지하게 되었다. 콘택의 저항의 증가는 이러한 RC 지연 시간을 증가시켜 반도체장치의 동작 혹은 연산 속도를 늦추고, 소모 전력을 높이는 등의 부정적인 현상을 초래한다. 따라서, 소자 고집적화가 요구되는 반도체장치에서 콘택의 저항을 줄이기 위한 방안이 적극적으로 요청되는 것이다.In order to operate quickly and efficiently in a semiconductor device, a delay time of device operation must be small. Conventionally, the gate delay time mainly takes up a large portion of the delay time, but in recent years, as the line width is reduced due to the high device integration, the delay time according to the resistance and the capacitance, that is, the RC delay time, takes up a large portion. Increasing the resistance of the contact increases the RC delay time, resulting in a negative phenomenon such as slowing down the operation or operation of the semiconductor device and increasing power consumption. Therefore, a method for reducing contact resistance in a semiconductor device requiring high device integration is actively requested.

콘택홀에 금속을 채워넣어 정상적인 콘택 기능을 하도록 하기 위해서는 알미늄과 같은 금속의 리플로우(reflow)를 이용하는 방법, 리플로우와 여러 번의 적층을 통해 콘택을 형성하는 방법, 공간 채움성이 좋은 CVD 텅스텐을 콘택 메탈(contact metal)로 사용하는 방법 등이 있다. 그리고, 콘택의 형성 두께가 넓이에 비해 상대적으로 커져서 생기는 저항의 증가는 전도성이 좋은 재료를 사용하는 방법이 연구되고 있으며, 콘택의 저항 증가에 가장 중요한 요소중의 하나인 콘택 계면에서의 저항문제는 계면에 스파이크(spike) 현상과 같은 불안정한 요소를 줄일 수 있고, 계면을 이루는 두 물질을 전기적으로 밀접하게 연결할 수 있는 층간 물질을 형성하여 사용하는 방법이 많이 이루어지고 있다.In order to fill the contact hole with a normal contact function, it is necessary to use a reflow of metal such as aluminum, to form a contact through reflow and multiple stacking, and to fill a space-filled CVD tungsten. And a method of using as a contact metal. In addition, the increase in resistance caused by the increase in the formation thickness of the contact is relatively large compared to the width, and a method of using a conductive material has been studied. The problem of resistance at the contact interface, which is one of the most important factors for increasing the contact resistance, There are many methods to form and use an interlayer material that can reduce unstable elements such as spike phenomenon at the interface and electrically connect two materials forming the interface.

그리고, 배선과 콘택 금속으로 사용되는 알미늄이나 텅스텐과, 실리콘이 접촉되는 계면에서는 실리콘이 금속으로 확산됨으로 인한 스파이크(spike) 현상이 있기 쉽다. 스파이크 현상이 나타날 경우에는 계면의 전기적인 접속이 정상적으로 이루어지지 않아 저항값이 크게 올라가는 문제가 있으므로 실리콘의 확산을 막을 수 있는 베리어 메탈(barrier metal)을 콘택 금속 적층 전에 먼저 적층하게 된다. 베리어 메탈로 주로 사용되는 것은 Ti/TiN 층이다.At the interface where aluminum or tungsten, which is used as a wiring and a contact metal, and silicon are in contact with each other, there is a tendency of a spike phenomenon due to diffusion of silicon into the metal. When the spike phenomenon occurs, the electrical connection of the interface is not normally made, so the resistance value increases significantly, so that a barrier metal, which can prevent the diffusion of silicon, is first deposited before the contact metal is laminated. Mainly used as barrier metal is a Ti / TiN layer.

이상의 사항을 고려하면서 도면을 통해 종래의 MOS 트랜지스터의 소오스/드레인에서 금속 콘택을 형성하는 방법의 일 예를 살펴보기로 한다.Considering the above, an example of a method of forming a metal contact in a source / drain of a conventional MOS transistor will be described with reference to the accompanying drawings.

도1은 종래의 반도체장치 제조과정에서 필드 절연막(11)에 의해 기판(10)의 영역 분리 후 게이트 절연막(12)과 게이트(15)를 형성하고 게이트(15) 측벽에 스페이서(17)를 형성한 상태에서 액티브(active) 영역에 대한 이온주입이 이루어진 다음 웨이퍼 전면에 티타늄이나 코발트 등의 금속을 적층하고 RTA(Rapid Thermal Anneal)을 통해 기판의 실리콘과 반응시켜 소오스/드레인 영역(13) 및 게이트(15) 전극 상부에 티타늄 혹은 코발트의 실리사이드(19)(TiSi2, CoSi2)를 형성한 상태를 나타낸다. 적층된 후 기판(10)의 실리콘과 반응하여 실리사이드(19)를 형성하지 못한 잔여 금속은 습식 식각을 통해 제거하게 되므로 필드 절연막(11)이나 기타 비활성 영역에 적층된 금속층과 소오스/드레인 영역(13)에 적층된 금속층 가운데 반응하지 않은 일부 금속층은 이때 제거된다. 그 결과, 소오스/드레인 영역(13) 및 게이트(15) 상부에서만 실리사이드화가 이루어지게 된다.FIG. 1 shows a gate insulating film 12 and a gate 15 formed after separating a region of a substrate 10 by a field insulating film 11 in a conventional semiconductor device manufacturing process, and forming spacers 17 on sidewalls of the gate 15. In one state, ion implantation is performed on the active region, and then a metal such as titanium or cobalt is deposited on the front surface of the wafer, and reacted with silicon of the substrate through a rapid thermal annealing (RTA) to source / drain regions 13 and gate (15) The state in which the titanium or cobalt silicide 19 (TiSi 2 , CoSi 2 ) was formed on the electrode. After stacking, the remaining metal that does not form silicide 19 by reacting with silicon of the substrate 10 is removed by wet etching, so that the metal layer and the source / drain region 13 stacked on the field insulating layer 11 or other inactive region 13 are removed. Some of the metal layers which did not react among the metal layers laminated on the cavities are then removed. As a result, silicidation occurs only on the source / drain regions 13 and the gate 15.

도2는 도1의 상태에서 층간 절연막(ILD:Inter Layer Dielectric:21)을 적층한 다음 콘택홀(23)을 건식 식각을 통해 형성한 상태이다. 이 과정에서 콘택홀(23)이 형성될 부분의 층간 절연막(21) 아래에는 금속 실리사이드(19)가 존재하는데 금속 실리사이드층 두께의 일부도 식각을 통해서 제거될 수 있다.FIG. 2 is a state in which an interlayer dielectric (ILD: Inter Layer Dielectric) 21 is stacked in the state of FIG. 1, and then a contact hole 23 is formed through dry etching. In this process, the metal silicide 19 is present under the interlayer insulating layer 21 of the portion where the contact hole 23 is to be formed. A part of the thickness of the metal silicide layer may be removed by etching.

도3은 도2와 같이 콘택홀(23)이 형성된 상태에서 콘택홀(23) 내면에 베리어 메탈(31)로 Ti/TiN층을 형성하고 텅스텐을 적층한 다음 CMP가공을 실시하여 플러그(33)를 형성한 상태를 나타낸다. 텅스텐은 CVD(Chemical Vapour Depisition)를 통해 적층된다. CVD 텅스텐은 공간 채움성이 뛰어나서 집적율이 높은 반도체 장치의 깊은 콘택 플러그 형성용으로 많이 사용된다. 층간 절연막(21) 위로 적층되는 텅스텐막을 패터닝 가공하여 배선을 형성할 수도 있으나, CMP가공으로 플러그를 제외한 이 텅스텐막을 제거하고 알미늄을 적층, 패터닝하여 배선을 형성하는 경우가 많다. 층간 절연막(21) 상부에 적층된 베리어 메탈은 CMP(Chemical Mechanical Polishing)가공을 통해서 텅스텐막과 동시에 제거할 수 있다.FIG. 3 is a Ti / TiN layer formed of a barrier metal 31 on the inner surface of the contact hole 23 in the state in which the contact hole 23 is formed as shown in FIG. It shows the state which formed. Tungsten is deposited via Chemical Vapor Depisition (CVD). CVD tungsten is widely used for forming deep contact plugs in semiconductor devices having high space filling and high integration rates. Although the wiring can be formed by patterning the tungsten film laminated over the interlayer insulating film 21, the wiring is often formed by removing and removing the tungsten film except for the plug by CMP processing and laminating and patterning aluminum. The barrier metal stacked on the interlayer insulating film 21 can be removed simultaneously with the tungsten film through CMP (Chemical Mechanical Polishing) processing.

그런데 이상에서 도면을 참조하면서 살펴본 종래의 콘택 형성과정에서, 콘택 금속과 실리콘 계면의 전기적 접촉상태를 충실히 하기 위한 금속 실리사이드층이 층간 절연막을 식각하는 과정에서 식각율이나 시간의 조절이 잘못 이루어져 과도하게 제거되는 현상이 발생할 수 있다. 이 경우 계면의 접촉저항은 크게 증가되어 전기신호 전달이 잘 이루어지지 않고 신호가 전달되는 경우에도 높은 저항으로 인한 RC 지연시간이 커져서 소자의 기능에 문제가 생길 수 있다.However, in the conventional contact forming process described above with reference to the drawings, the metal silicide layer for improving the electrical contact state between the contact metal and the silicon interface is erroneously adjusted due to incorrect etching rate or time during the etching of the interlayer insulating film. Removal may occur. In this case, the contact resistance of the interface is greatly increased, and even if the signal is not transmitted well, the RC delay time due to the high resistance increases even when the signal is transmitted, which may cause a problem in the function of the device.

본 발명은 이상에서 살펴본 반도체장치에서의 콘택 저항증가로 인한 RC 지연시간이 늘어나는 등의 문제를 개선하기 위한 것으로, 콘택에서 계면의 저항을 줄여서 지연시간을 감소시키고 반도체장치의 기능을 효율화시킬 수 있는 반도체장치 콘택 형성방법을 제공하는 것을 목적으로 한다.The present invention is to improve the RC delay time due to the increase in the contact resistance in the semiconductor device described above, and to reduce the delay time by reducing the resistance of the interface in the contact can improve the function of the semiconductor device An object of the present invention is to provide a method for forming a semiconductor device contact.

도1은 종래의 반도체장치 제조과정에서 금속을 적층하고 기판의 실리콘과 반응시켜 실리콘 노출부에 금속 실리사이드를 형성한 상태를 나타내는 공정단면도,1 is a cross-sectional view illustrating a state in which metal silicide is formed on a silicon exposed portion by stacking metal and reacting with silicon on a substrate in a conventional semiconductor device manufacturing process;

도2는 도1의 상태에서 층간 절연막(ILD:Inter Layer Dielectric)을 적층한 다음 콘택홀을 건식 식각을 통해 형성한 상태를 나타내는 공정단면도,FIG. 2 is a process cross-sectional view illustrating a state in which a contact hole is formed through dry etching after stacking an interlayer dielectric (ILD) in the state of FIG. 1; FIG.

도3은 도2와 같이 콘택홀이 형성된 상태에서 콘택홀 내부에 베리어 메탈층을 형성하고 CVD 텅스텐을 적층하고 CMP 가공하여 플러그를 형성한 상태를 나타내는 공정단면도,FIG. 3 is a cross-sectional view illustrating a state in which a barrier metal layer is formed inside a contact hole in a state where a contact hole is formed, a CVD tungsten is laminated, and a plug is formed by CMP processing;

도4는 본 발명에 따라 게이트 상부 및 소오스/드레인 영역의 실리콘층에 코발트 실리사이드(CoSi2)를 형성한 상태를 나타내는 단면도,4 is a cross-sectional view illustrating a state in which cobalt silicide (CoSi 2 ) is formed on a silicon layer in an upper gate and a source / drain region according to the present invention;

도5는 도4의 상태에서 층간 절연막(Inter Layer Dielectric)층을 형성하고 패터닝 과정을 통해 게이트 전극과 소오스/드레인 영역 위로 콘택홀을 형성한 상태를 나타내는 단면도,FIG. 5 is a cross-sectional view illustrating a state in which a contact hole is formed over a gate electrode and a source / drain region by forming an interlayer dielectric layer in the state of FIG. 4 and patterning;

도6은 도5의 상태에서 콘택홀 저면에 코발트 실리사이드를 재형성한 상태를 나타내는 단면도,FIG. 6 is a cross-sectional view illustrating a state in which cobalt silicide is formed on the bottom of a contact hole in the state of FIG. 5; FIG.

도7은 도6의 상태에서 웨이퍼 전면에 베리어 메탈로 티타늄(Ti)과 티타늄 나이트라이드(TiN)를 차례로 적층하고 CVD를 통해 텅스텐을 적층하여 콘택 플러그를 형성한 상태를 나타내는 단면도이다.FIG. 7 is a cross-sectional view illustrating a state in which a contact plug is formed by sequentially depositing titanium (Ti) and titanium nitride (TiN) with a barrier metal on the front surface of a wafer in the state of FIG. 6 and depositing tungsten through CVD.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10: 기판 11: 필드 절연막10: substrate 11: field insulating film

12: 게이트 절연막 13: 소오스/드레인 영역12: gate insulating film 13: source / drain region

15: 게이트 17: 스페이서(spacer)15 gate 17 spacer

19,61: 실리사이드(silicide) 21: 층간 절연막(ILD)19, 61: silicide 21: interlayer insulating film (ILD)

23: 콘택홀(contact hole) 31: 베리어 메탈23: contact hole 31: barrier metal

33: 플러그(plug)33: plug

상기 목적을 달성하기 위한 본 발명의 반도체장치 콘택 형성방법은, MOS 트랜지스터 소자를 가지는 반도체장치를 형성함에 있어서, 소오스/드레인 영역과 게이트 상부 등 콘택이 형성될 부분을 실리사이드화 하는 단계, 층간절연막을 적층하고 실리사이드화 된 영역 위로 콘택홀을 형성하는 단계, 상기 실리사이드화에 이용된 금속을 적층하여 상기 콘택홀 저면에 상기 금속의 실리사이드를 재 형성하는 단계, 베리어 메탈을 적층하는 단계, CVD 텅스텐을 적층하여 콘택을 채우는 단계를 구비하여 이루어지는 것을 특징으로 한다.In the semiconductor device contact forming method of the present invention for achieving the above object, in the formation of a semiconductor device having a MOS transistor element, the step of silicided the portion where the contact is to be formed, such as the source / drain region and the gate top, interlayer insulating film Forming a contact hole over the stacked and silicided region, laminating a metal used for the silicidation to re-form silicide of the metal on the bottom of the contact hole, laminating a barrier metal, laminating CVD tungsten Characterized in that it comprises a step of filling the contact.

본 발명에서 실리사이드화에 사용되는 금속은 티타늄과 코발트 등을 들 수 있다. 이들 금속은 실리콘과 접하여 열처리를 거치면 온도에 따라 확산되면서 실리사이드층을 이루고 안정된 접촉면을 이루게 되고, 그 위에 형성되는 도전층과 아래의 실리콘층 사이에서 오믹 콘택(ohmic contact)층으로 계면 저항을 낮추는 기능을 한다.Examples of the metal used for the silicidation in the present invention include titanium and cobalt. When these metals are in contact with silicon and subjected to heat treatment, the metal diffuses with temperature to form a silicide layer and a stable contact surface, and lowers interfacial resistance as an ohmic contact layer between the conductive layer formed thereon and the silicon layer below. Do it.

그리고, 본 발명에서 사용되는 실리사이드화의 일반적인 과정을 나누어 설명하면, 먼저 실리사이드 형성에 사용되는 금속을 적층하고, RTP(Rapid thermal prcessing) 등의 열처리 과정을 통해 상기 금속과 하부 실리콘층의 결합을 유도한 다음, 실리사이드 반응을 이루지 않은 상태로 남아있는 금속은 습식 식각 혹은 습식 세정 과정을 통해 제거하게 된다.In addition, the general process of silicide formation used in the present invention will be described in detail, first laminating the metal used for silicide formation, and induces bonding of the metal and the lower silicon layer through a heat treatment process such as rapid thermal prcessing (RTP). Then, the metal remaining without the silicide reaction is removed by wet etching or wet cleaning.

이하 도4에서 도7까지의 공정 순서를 나타내는 도면을 참조하면서 본 발명을 좀 더 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the drawings showing the process steps from FIG. 4 to FIG. 7.

도4는 도1과 같은 도면으로, 본 발명에서 기판(10)을 필드 절연막(11)으로 분리하고 게이트 절연막(12) 및 게이트(15) 패턴을 형성한 다음 이온주입을 통해 소오스/드레인 영역(13)을 형성하고 게이트(15) 상부 및 소오스/드레인 영역(13)의 실리콘층에 코발트 실리사이드(19)(CoSi2)를 형성한 상태를 나타내는 단면도이다. 실리사이드(19) 형성을 위해서 웨이퍼 전면에 코발트층을 스퍼터링 등의 방법을 통해 적층하고 RTA(Rapid Thermal Anneal)을 통해 노출된 실리콘과 코발트 금속과의 실시사이드화(silicidation)을 유도한다. 그리고 실리사이드를 형성하지 않고 잔류한 금속 코발트는 습식 식각을 통해 웨이퍼 전면에 걸쳐 제거하게 된다.FIG. 4 is a view similar to FIG. 1, in which the substrate 10 is separated into a field insulating film 11, a gate insulating film 12 and a gate 15 pattern are formed, and then source / drain regions are formed through ion implantation. 13 is a cross-sectional view showing a state in which cobalt silicide 19 (CoSi 2 ) is formed on the gate 15 and the silicon layer of the source / drain region 13. In order to form the silicide 19, a cobalt layer is deposited on the entire surface of the wafer by sputtering or the like, and induction of silicidation of the silicon and the cobalt metal exposed through the rapid thermal annealing (RTA) is performed. And metal cobalt remaining without forming silicide is removed over the entire wafer surface by wet etching.

도5는 도4의 상태에서 층간 절연막(Inter Layer Dielectric:21)층을 형성하고 패터닝 과정을 통해 게이트(15) 전극과 소오스/드레인 영역(13) 위로 콘택홀(23)을 형성한 상태를 나타내는 단면도이다. 이때 식각 과정에서, 콘택홀(23)을 채워 콘택을 이룰 금속과 전극을 형성하는 실리콘층과의 계면에서 접촉저항을 줄이기 위해 미리 형성된 코발트 실리사이드(19)층이 상당부분 제거된 상태를 보이고 있다. 이 상태는 의도적으로 실리사이드를 제거한 것이 아니고 식각 조절시의 변이에 의해 실리사이드가 제거된 것이다.FIG. 5 illustrates a state in which an interlayer dielectric 21 layer is formed in the state of FIG. 4 and a contact hole 23 is formed over the gate 15 electrode and the source / drain region 13 through a patterning process. It is a cross section. At this time, in the etching process, the cobalt silicide 19 layer formed in advance in order to reduce contact resistance at the interface between the metal to form the contact hole 23 and the silicon layer forming the electrode is removed. This state does not intentionally remove silicide, but silicide is removed due to variation in etching control.

도6은 도5의 상태에서 콘택홀(23) 저면에 코발트 실리사이드(19)를 재형성한 상태를 나타내는 단면도이다. 콘택홀(23) 내면을 포함하여 전체 웨이퍼면에 도4의 과정에서 실리사이드화에 사용된 금속과 동일한 금속인 코발트를 다시 한번 적층하고 일정 시간 RTP과정을 거치고 코발트에 대한 식각력이 있는 세정액으로 세정을 실시하여 콘택홀(23) 저면에 다시 코발트 실리사이드(61)를 형성하고 여타의 부분에서는 코발트 금속을 제거한 상태를 나타내고 있다.FIG. 6 is a cross-sectional view illustrating a state in which cobalt silicide 19 is formed on the bottom of the contact hole 23 in the state of FIG. 5. Cobalt, which is the same metal used for silicidation in the process of Fig. 4, is laminated on the entire wafer surface including the inner surface of the contact hole 23 again and subjected to RTP for a predetermined time, and cleaned with an etching solution for cobalt. The cobalt silicide 61 is formed on the bottom of the contact hole 23 again, and the cobalt metal is removed from the other portions.

도7은 도6의 상태에서 웨이퍼 전면에 베리어 메탈(31)로 티타늄(Ti)과 티타늄 나이트라이드(TiN)를 차례로 적층하고 CVD를 통해 텅스텐을 적층하여 콘택 플러그(33)를 형성한 상태를 나타내는 단면도이다. 텅스텐을 공간 채움성이 좋은 CVD 방법으로 적층하는데 대개 소오스 가스(source gas)로는 텅스텐 플로라이드(WF6)를 사용한다. 텅스텐과 실리콘 사이의 확산을 막는 베리어 메탈은 티타늄이면 가능하지만 티타늄은 CVD 텅스텐의 소오스 가스인 WF6와 쉽게 반응하여 제거될 수 있으므로 티타늄 위로 티타늄 나이트라이드를 함께 적층하여 안정화시킨다. 텅스텐을 적층한 상태에서 층간 절연막 상부의 텅스텐층과 베리어 메탈층은 CMP로 제거하고 콘택 플러그를 형성하는 부분만 남긴다. 후에 배선을 위해서는 알미늄을 적층, 패턴닝하면 된다.FIG. 7 illustrates a state in which the contact plug 33 is formed by sequentially depositing titanium (Ti) and titanium nitride (TiN) with the barrier metal 31 on the front surface of the wafer in the state of FIG. It is a cross section. Tungsten is deposited by a space-filling CVD method, and tungsten fluoride (WF 6 ) is generally used as a source gas. Barrier metals that prevent diffusion between tungsten and silicon are possible with titanium, but titanium can be easily reacted with and removed from the source gas of CVD tungsten, WF 6 , thus stacking titanium nitride over titanium to stabilize it. In the state where tungsten is stacked, the tungsten layer and the barrier metal layer on the interlayer insulating film are removed by CMP, leaving only the portion forming the contact plug. Later, for wiring, aluminum may be laminated and patterned.

본 발명에 따르면, 층간 절연막을 패터닝하여 콘택홀을 식각 형성하는 과정에서 하부에 미리 형성된 오믹 콘택용 실리사이드층이 손상되는 경우에도 재 실리사이드화를 통해 콘택 계면에서 저항이 늘어나는 현상을 줄일 수 있으며, 반도체장치 고집적화에 따라 콘택 등의 크기 감소에 따른 저항의 증가 및 이로 인한 불량 증가를 줄일 수 있다.According to the present invention, even when the silicide layer for ohmic contact previously formed is damaged in the process of etching the contact hole by patterning the interlayer insulating film, the phenomenon of increasing the resistance at the contact interface can be reduced through resilicide. As the device is highly integrated, an increase in resistance due to a decrease in size of a contact or the like and an increase in defects due to this can be reduced.

Claims (3)

MOS 트랜지스터 소자를 가지는 반도체장치를 형성함에 있어서,In forming a semiconductor device having a MOS transistor element, 콘택이 형성될 부분을 실리사이드화 하는 단계,Silicidating the portion where the contact is to be formed, 층간절연막을 적층하고 상기 부분 위로 콘택홀을 형성하는 단계,Stacking an interlayer insulating film and forming a contact hole over said portion, 상기 실리사이드화에 이용된 금속을 적층하여 상기 콘택홀 저면에 상기 금속의 실리사이드를 재 형성하는 단계,Stacking the metal used for silicidation to re-form silicide of the metal on the bottom of the contact hole; 베리어 메탈을 적층하는 단계 및Laminating the barrier metal, and CVD 텅스텐을 적층하여 콘택을 채우는 단계를 구비하여 이루어지는 것을 특징으로 하는 반도체장치의 콘택 형성방법.And depositing CVD tungsten to fill the contact. 제 1 항에 있어서,The method of claim 1, 상기 금속으로는 코발트를 사용하는 것을 특징으로 하는 반도체장치의 콘택 형성방법.The method of forming a contact of a semiconductor device, wherein cobalt is used as the metal. 제 1 항에 있어서,The method of claim 1, 상기 실리사이드화 또는 실리사이드 재 형성은,The silicided or silicide re-formation, 실리사이드 형성에 사용되는 금속을 적층하는 단계,Laminating the metal used to form the silicide, 열처리 과정을 통해 상기 금속과 하부 실리콘층의 결합을 유도하는 단계,Inducing bonding of the metal and the lower silicon layer through a heat treatment process; 실리콘과 반응하지 않고 남아있는 금속은 습식 식각으로 제거하는 단계를 구비하여 이루어지는 것을 특징으로 하는 반도체장치의 콘택 형성방법.And removing the metal remaining without reacting with silicon by wet etching.
KR1019990047463A 1999-10-29 1999-10-29 A method of forming contact in semiconductor devices KR20010039174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990047463A KR20010039174A (en) 1999-10-29 1999-10-29 A method of forming contact in semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990047463A KR20010039174A (en) 1999-10-29 1999-10-29 A method of forming contact in semiconductor devices

Publications (1)

Publication Number Publication Date
KR20010039174A true KR20010039174A (en) 2001-05-15

Family

ID=19617608

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990047463A KR20010039174A (en) 1999-10-29 1999-10-29 A method of forming contact in semiconductor devices

Country Status (1)

Country Link
KR (1) KR20010039174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469833B1 (en) * 2001-09-27 2005-02-02 미쓰비시덴키 가부시키가이샤 Semiconductor device
KR100645068B1 (en) * 2005-08-01 2006-11-10 삼성전자주식회사 Semiconductor device and method of fabricating the same
KR100735522B1 (en) * 2005-11-07 2007-07-04 삼성전자주식회사 Method for fabricating semiconductor device and semiconductor device by the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469833B1 (en) * 2001-09-27 2005-02-02 미쓰비시덴키 가부시키가이샤 Semiconductor device
US6888245B2 (en) 2001-09-27 2005-05-03 Renesas Technology Corp. Semiconductor device
KR100645068B1 (en) * 2005-08-01 2006-11-10 삼성전자주식회사 Semiconductor device and method of fabricating the same
KR100735522B1 (en) * 2005-11-07 2007-07-04 삼성전자주식회사 Method for fabricating semiconductor device and semiconductor device by the same
US7662716B2 (en) 2005-11-07 2010-02-16 Samsung Electronics Co., Ltd. Method for forming silicide contacts

Similar Documents

Publication Publication Date Title
US6800549B2 (en) Method of fabricating semiconductor device including forming contact hole with anisotropic and isotropic etching and forming discontinuous barrier layer
TW541659B (en) Method of fabricating contact plug
CN100514596C (en) Manufacturing method and structure of metal interconnector
US20070252277A1 (en) Semiconductor devices and fabrication method thereof
US7223689B2 (en) Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer
US10090155B2 (en) Semiconductor device having interconnect structure
JP2011018742A (en) Method of manufacturing semiconductor device
US6211569B1 (en) Interconnection lines for improving thermal conductivity in integrated circuits and method for fabricating the same
US7344974B2 (en) Metallization method of semiconductor device
JP2003100659A (en) Semiconductor device and method of manufacturing
US6380082B2 (en) Method of fabricating Cu interconnects with reduced Cu contamination
US8587128B2 (en) Damascene structure
KR20010039174A (en) A method of forming contact in semiconductor devices
US6627504B1 (en) Stacked double sidewall spacer oxide over nitride
JPH09153546A (en) Semiconductor device and its manufacture
JP4232215B2 (en) Manufacturing method of semiconductor device
KR100503312B1 (en) Method for manufacturing a contact electrode of semiconductor device
JP2005197700A (en) Method for forming metal pattern of semiconductor element
US6734098B2 (en) Method for fabricating cobalt salicide contact
US5930670A (en) Method of forming a tungsten plug of a semiconductor device
KR100707679B1 (en) Method for forming salicide in semiconductor device
KR100954685B1 (en) Method of forming metal line of semiconductor devices
KR100924546B1 (en) Metal line of semiconductor device and method for manufacturing the same
KR100545900B1 (en) Semiconductor device manufacturing method
JP2011018829A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination