KR20010035907A - Alluminium cast alloy having no ag for high strength and low cost and manufacturing method thereof - Google Patents

Alluminium cast alloy having no ag for high strength and low cost and manufacturing method thereof Download PDF

Info

Publication number
KR20010035907A
KR20010035907A KR1019990042686A KR19990042686A KR20010035907A KR 20010035907 A KR20010035907 A KR 20010035907A KR 1019990042686 A KR1019990042686 A KR 1019990042686A KR 19990042686 A KR19990042686 A KR 19990042686A KR 20010035907 A KR20010035907 A KR 20010035907A
Authority
KR
South Korea
Prior art keywords
aluminum
alloy
strength
molten metal
temperature
Prior art date
Application number
KR1019990042686A
Other languages
Korean (ko)
Other versions
KR100323300B1 (en
Inventor
김경현
이태호
Original Assignee
황해웅
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황해웅, 한국기계연구원 filed Critical 황해웅
Priority to KR1019990042686A priority Critical patent/KR100323300B1/en
Publication of KR20010035907A publication Critical patent/KR20010035907A/en
Application granted granted Critical
Publication of KR100323300B1 publication Critical patent/KR100323300B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE: An aluminum casting alloy and a method for manufacturing the same are provided to reduce manufacturing cost to half by replacing expensive Ag added to an existing high strength aluminum alloy, 201 alloy, with inexpensive Cd, and improve recovery ratio and economic feasibility by replacing forged products with casted products. CONSTITUTION: The method for manufacturing the aluminum casting alloy comprises the processes of obtaining aluminum alloy molten metal comprising 4.5 to 5.0 wt.% of Cu, 0.3 to 0.7 wt.% of Mn, 0.15 to 0.45 wt.% of Ti, 0.01 to 0.05 wt.% of Zr, 0.08 to 0.2 wt.% of Cd and a balance of Al, bubbling the molten metal for controlling inclusions and degassing, casting the molten metal into an aluminum alloy ingot by injecting molten metal which is maintained at a temperature of 730 to 760 deg.C into a mold which is preheated to a temperature of 250 deg.C, solution heat treating each ingots at a temperature of 535 to 545 deg.C for 9 to 14 hours in order to remove internal segregation and stress produced during casting, and aging treating the water cooled ingot at a temperature of 170 deg.C after water cooling.

Description

은 무함유 저가의 고강도용 알루미늄 주조합금 및 그 제조방법{ALLUMINIUM CAST ALLOY HAVING NO AG FOR HIGH STRENGTH AND LOW COST AND MANUFACTURING METHOD THEREOF}Low-cost, high-strength aluminum main alloy containing no silver and its manufacturing method {ALLUMINIUM CAST ALLOY HAVING NO AG FOR HIGH STRENGTH AND LOW COST AND MANUFACTURING METHOD THEREOF}

본 발명은 고강도용 알루미늄 주조합금에 관한 것으로, 특히 기존의 고강도 알루미늄 주조합금인 고가의 Ag를 함유한 201 합금을 대체할 수 있도록 가격이 저렴하면서 강도와 연성 등의 기계적 특성이 우수한 Ag 무함유 고강도용 알루미늄 주조합금 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength aluminum main alloy, in particular, to replace the existing high-strength aluminum main alloy 201 alloy containing expensive Ag, low-cost, high Ag-free high strength with excellent mechanical properties such as strength and ductility The present invention relates to a molten aluminum main alloy and a method of manufacturing the same.

현재, 고강도 알루미늄 주조합금은 항공기, 특수 방산, 자동차 및 기타 산업용 부품으로 크게 각광받고 있으며, 우주 항공기용 부품으로 하우징, 실린더 헤드 및 피스톤, 터빈 임펠러, 미사일 핀(fin), 랜딩기어 하우징, 냉각팬 등 다양한 부품의 제조에 사용되며, 그 사용 범위도 계속 증가추세에 있다.At present, the high strength aluminum main alloy is in the spotlight for aircraft, special defense, automotive and other industrial parts, and for space aircraft, housing, cylinder head and piston, turbine impeller, missile fin, landing gear housing, cooling fan It is used in the manufacture of various parts, and the range of use is also increasing.

그러나 기존의 고강도 알루미늄 주조합금인 201 합금은 고가의 Ag을 0.5∼1.0% 정도 함유하므로 생산단가가 현저히 높아 아직은 특수 방위산업에만 사용이 국한되어 있는 실정이므로 고가의 Ag을 대체할 수 있는 원소의 개발이 절실히 요구되고 있다. 특히, 러시아에서는 Cd를 강화 원소로 첨가한 VAL계 알루미늄 주조합금이 제조되고 있으며, Cd는 합금원소로 3% 이상 과다 함유될 경우 환경에 유해하지만 본 발명에서와 같이 0.15% 이하의 극미량 첨가시 환경유해성이 없으므로 Cd를 합금원소로 이용하기 위한 연구가 활발히 진행중이다.However, since the existing high strength aluminum main alloy 201 alloy contains about 0.5 ~ 1.0% of expensive Ag, the production cost is very high and it is still limited to use in special defense industry. This is urgently needed. Particularly, in Russia, VAL-based aluminum main alloys containing Cd as a reinforcing element are manufactured, and when Cd is contained in an excessive amount of 3% or more as an alloying element, it is harmful to the environment. Since there is no harmful effect, studies are actively underway to use Cd as an alloying element.

따라서, 본 발명의 고강도·고연성 알루미늄 주조합금은 Cd의 미량 첨가 및 열처리 기술 확립을 통해 고강도를 유지하면서 주조부품의 단점인 연성이 크게 향상된 합금으로 기존의 단조 부품을 주조부품으로 대체가능하므로 제품의 회수율을 향상시키고 복잡한 형상의 제품 개발에도 적용이 가능하며, 또한 강도가 우수하여 기존의 단조공정을 거치지 않아도 사용가능하기 때문에 제조단가를 크게 절감할 수 있을 것으로 기대된다.Therefore, the high-strength and high-ductility aluminum main alloy of the present invention is an alloy with greatly improved ductility, which is a disadvantage of casting parts, while maintaining high strength through the addition of a small amount of Cd and heat treatment technology. It is expected that the manufacturing cost can be greatly reduced because it can be applied to improve the recovery rate of the product and to develop the product of the complex shape, and can also be used without going through the forging process due to its excellent strength.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 기존의 고강도용 알루미늄 합금인 201 합금에 첨가된 고가의 Ag를 가격이 저렴한 Cd로 대체하여 제품의 제조단가를 절반으로 크게 절감시키고, 주조용 알루미늄 합금의 단점인 연성을 2배 정도 향상시켜 기존의 단조품을 주조품으로 대체하여 회수율 및 경제성이 우수한 알루미늄-구리-망간-티타늄-카드뮴계 Ag 무함유 저가의 고강도용 알루미늄 주조합금 및 그 제조방법을 제공함에 그 목적이 있다.The present invention is to replace the expensive Ag added to the existing high-strength aluminum alloy 201 alloy with a low-cost Cd in order to solve the problems of the prior art as described above, greatly reducing the manufacturing cost of the product in half, casting Low-strength aluminum main alloys containing aluminum-copper-manganese-titanium-cadmium-based Ag with excellent recovery and economical efficiency by replacing the existing forging with casting by improving the ductility, which is a disadvantage of aluminum alloy, by about 2 times The purpose is to provide.

도 1은 170℃에서 시효처리한 경우 Cd 첨가량을 변화시킴에 따라 경도가 변화하는 것을 나타내는 그래프도,Figure 1 is a graph showing that the hardness changes as the amount of Cd added when aged at 170 ℃,

도 2는 Cd 첨가에 따른 기계적 특성의 변화를 나타내는 그래프도,2 is a graph showing the change in mechanical properties according to the addition of Cd,

도 3은 Cd를 첨가하지 않은 시험편과 0.15중량% Cd를 첨가한 발명예의 170℃에서 각각 최대경도를 나타낸 시효조건에서의 투과전자현미경 조직사진,3 is a transmission electron microscope histogram under the aging conditions showing the maximum hardness at 170 ℃ of the test piece without the addition of Cd and 0.15% by weight Cd of the invention example,

도 4는 170℃에서 33시간 동안 과시효처리시 얻어진 조직을 투과전자현미경을 사용하여 관찰한 결과를 비교하여 나타낸 조직사진이다.Figure 4 is a tissue photograph comparing the results obtained by using a transmission electron microscope to the tissue obtained during the overage treatment for 33 hours at 170 ℃.

상기 목적을 위하여 본 발명에서는 기지인 알루미늄(Al)에 중량%로, Cu:4.5∼5.0%, Mn:0.3∼0.7%,Ti:0.15∼0.45%, Zr:0.01∼0.05%, Cd:0.08∼0.2%를 함유한 알루미늄 주조합금을 제공한다.For this purpose, in the present invention, by weight% to known aluminum (Al), Cu: 4.5 to 5.0%, Mn: 0.3 to 0.7%, Ti: 0.15 to 0.45%, Zr: 0.01 to 0.05%, Cd: 0.08 to An aluminum main alloy containing 0.2% is provided.

또한, 본 발명에서는 상기 조성의 알루미늄 합금 용탕을 얻은후, 주조시 발생되는 비금속 개재물 제어 및 탈가스 처리를 위해 버블링처리하며, 이후 730∼760℃로 유지되는 용탕을 250℃로 예열한 주형에 주입하여 알루미늄 합금 주괴로 주조하고, 주조시 발생된 내부 편석과 응력을 제거하기 위하여 각각의 주괴를 535∼545℃에서 9∼14 시간 동안 용체화처리하고, 수냉한 다음에 170℃에서 시효처리를 실시하는 것을 특징으로 하는 Ag 무함유 저가의 고강도 알루미늄 주조합금의 제조방법을 제공한다.In addition, in the present invention, after the aluminum alloy molten metal of the composition is obtained, bubbling treatment for the control of non-metallic inclusions generated during casting and degassing treatment, after which the molten metal maintained at 730 ~ 760 ℃ is preheated to the mold preheated to 250 ℃ Injected and cast into aluminum alloy ingot, each ingot was melted at 535-545 ℃ for 9-14 hours to remove internal segregation and stress generated during casting, water cooled and then aged at 170 ℃ Provided is a method for producing a low-strength, high-strength aluminum main alloy containing no Ag.

이하에서는 양호한 실시예와 관련하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the preferred embodiments.

본 발명에서는 기존의 201 알루미늄 주조합금을 대체한 Ag 무함유 저가의 고강도용 알루미늄 주조합금을 개발하기 위하여 Al-Cu-Mn-Ti계 합금에 저가의 Cd를 첨가하여 제조단가를 절반 정도로 낮추었으며, 또한 Cd 첨가에 의한 시효경화 현상을 이용하여 인장강도 430 MPa의 고강도와 동시에 연신율 10% 정도의 우수한 연성을 가지는 고강도용 알루미늄 주조합금을 제공하고 있다.In the present invention, in order to develop a low-strength, high-strength aluminum main alloy containing Ag, which replaces the existing 201 aluminum main alloy, low-cost Cd was added to the Al-Cu-Mn-Ti alloy to reduce the manufacturing cost by about half. In addition, by using the aging hardening phenomenon by the addition of Cd to provide a high strength aluminum main alloy having a high tensile strength of 430 MPa and excellent ductility of about 10% elongation.

본 발명의 알루미늄 주조합금은,중량%로, Cu:4.5∼5.0%, Mn:0.3∼0.7%,Ti:The aluminum main alloy of the present invention is, by weight, Cu: 4.5 to 5.0%, Mn: 0.3 to 0.7%, Ti:

0.15∼0.45%, Zr:0.01∼0.05%, Cd:0.08∼0.2%를 함유하고 잔여량은 알루미늄(Al) 원소로 이루어지는데, 각각의 성분의 작용 및 조성 범위 한정 이유를 설명하면 다음과 같다.0.15 to 0.45%, Zr: 0.01 to 0.05%, and Cd: 0.08 to 0.2%, and the remaining amount is composed of an aluminum (Al) element. The operation of each component and the reason for limiting the composition range are as follows.

Mn은 알루미늄 합금중에 Fe 불순물이 존재하면 침상 형태의 Al3Fe 화합물이 형성되며, 이것은 기계적 성질에 나쁜 영향을 미치므로 Mn을 첨가하여 침상의 화합물을 구상 형태로 만들어 기계적 성질을 향상시킨다. 그러나 과다 첨가될 경우 입계에 Al12Mn2Cu와 같은 화합물이 형성되어 기계적 성질에 나쁜 영향을 미치며, Mn을 0.5% 이하로 첨가시는 Al12Mn2Cu화합물의 형성이 기계적 성질에 미치는 악영향은 없다. 따라서 침상의 Fe 금속간화합물을 구상화시켜 기계적 특성을 향상시키고 과량 첨가에 따른 Al12Mn2Cu 화합물의 형성을 억제하기 위하여 Mn의 첨가량을 상기 범위로 한정하였다.Mn is formed of acicular Al 3 Fe compound in the presence of Fe impurities in the aluminum alloy, and this adversely affects the mechanical properties. Therefore, Mn is added to make the acicular compound into a globular form to improve the mechanical properties. However, when excessively added, compounds such as Al 12 Mn 2 Cu are formed at grain boundaries, which adversely affects the mechanical properties.When Mn is added below 0.5%, the adverse effect of the formation of Al 12 Mn 2 Cu compounds on the mechanical properties is none. Therefore, the amount of Mn was limited to the above range in order to spheroidize the Fe intermetallic compound to improve mechanical properties and to suppress the formation of Al 12 Mn 2 Cu compound due to the excessive addition.

Ti 및 Zr은 주조용 알루미늄 합금에서 응고시 생성되는 초정 알루미늄의 결정립을 미세화시키고 재결정을 억제하도록 작용하는데, Ti 와 Zr 첨가시 TiAl3, ZrAl3금속간화합물을 형성하여 응고시 초정 알루미늄의 불균일 핵생성 위치로 작용하므로 결정립을 미세화시켜 강도 및 연성을 증가시킨다. 그러나 과다 첨가하는 경우 입계편석에 의한 개재물 형성에 의해 알루미늄 합금의 기계적 특성, 특히 연성에 나쁜 영향을 미친다. 합금 조성에 따라 약간의 차이는 있으나 본 발명의 기초 실험을 통해 연구한 결과 최적 첨가량은 Ti의 경우 0.15∼0.45%이며, Zr의 경우 0.01∼0.05%로 확인되었다.Ti and Zr work to refine the crystal grains of primary aluminum produced during solidification in cast aluminum alloys and to suppress recrystallization.In the case of addition of Ti and Zr, TiAl 3 and ZrAl 3 intermetallic compounds form a nonuniform nucleus of primary aluminum during solidification. It acts as a formation site, thereby miniaturizing grains, increasing strength and ductility. However, when excessively added, inclusions due to grain boundary segregation adversely affect the mechanical properties of the aluminum alloy, particularly the ductility. Although there are some differences depending on the alloy composition, the result of the study through the basic experiment of the present invention, the optimum addition amount was found to be 0.15 to 0.45% for Ti and 0.01 to 0.05% for Zr.

Cd는 기존의 고강도 알루미늄 합금에서 고가의 Ag 대신에 보다 경제성이 우수하고 주조용 합금에서 얻을 수 없었던 우수한 연신율을 지니는 알루미늄 합금을 개발하기 위하여 첨가된 것으로, 알루미늄 합금에서 강화상의 석출을 촉진시키며 조대화를 지연시키기 때문에 기계적 특성을 크게 향상시키고 있다. 실제로 Cd 함량에 따른 인장시험을 수행한 결과 첨가량이 0.2%까지 증가할수록 강도값은 증가하였으며, 0.3% 이상 첨가시는 오히려 강도값은 감소하였다. 연신율의 경우 0.15% 첨가시까지 약 12%로 유지되었으나 그 이상 첨가시는 감소하였으므로 연신율 및 강도를 동시에 고려시 적정 Cd 첨가량은 0.08-0.2%인 것을 알게 되었다. 이러한 연구 결과는 Al 내에 Cd의 고용한(限)이 용체화 처리 온도인 543℃에서 약 0.17% 전후라는 보고와 일치하며, 0.2% 이상 첨가시 Cd이 알루미늄 내에 고용되지 못하고 미세편석되어 기계적 성질이 감소하는 것으로 판단된다.Cd is added to develop an aluminum alloy that is more economical and has a good elongation not obtained in a casting alloy, instead of expensive Ag, and promotes precipitation of reinforcing phases in aluminum alloys. Because of this delay, the mechanical properties are greatly improved. In fact, as a result of the tensile test according to the Cd content, the strength value increased as the amount added up to 0.2%, but the strength value decreased when more than 0.3% was added. Elongation was maintained at about 12% until the addition of 0.15%, but decreased more than the addition, it was found that the appropriate amount of Cd addition is 0.08-0.2% considering elongation and strength at the same time. These findings are consistent with the report that the solubility of Cd in Al was about 0.17% at 543 ° C, the solution treatment temperature. It seems to decrease.

이와 같이, 본 발명의 알루미늄 주조합금은 Al-Cu 합금에 초정 알루미늄의 미세화제로 Ti과 Zr을 각각 첨가하고, 알루미늄 합금의 비금속 개재물을 제어하기 위하여 Mn을 첨가하였으며, 특히, 시효경화성(Age Hardenability)을 향상시키기 위하여 고가의 Ag 대신에 가격이 100분의 1에 지나지 않는 Cd를 첨가하여 초저가의 합금을 제조하였다.As described above, in the aluminum main alloy of the present invention, Ti and Zr were respectively added to Al-Cu alloy as a refiner of primary aluminum, and Mn was added to control the non-metallic inclusions of the aluminum alloy, in particular, age hardenability. In order to improve the cost, instead of expensive Ag, the price of only one-hundred percent of Cd was added to prepare an ultra low-cost alloy.

다음에 본 발명의 알루미늄 주조합금의 제조방법을 설명한다.Next, the manufacturing method of the aluminum main alloy of this invention is demonstrated.

본 발명에서는 알루미늄 주조합금을 제조하기 위하여 전기로에서 순수 알루미늄(Al)에 Al-Cu, Al-Mn, Al-Ti, Al-Zr 및 Al-Cd 모합금을 첨가하여 용해시키며, 개재물을 제어하고 탈가스 처리를 위하여 제조된 알루미늄 합금용탕에 약 10 분 동안 Ar가스를 취입하면서 버블링(Bubbling)처리하였으며, 드로스(Dross)를 제거후 주형(Mold)에 주입하여 주조하였다.In the present invention, Al-Cu, Al-Mn, Al-Ti, Al-Zr, and Al-Cd mother alloys are added to and dissolved in pure aluminum (Al) in an electric furnace to manufacture aluminum main alloy. The aluminum alloy molten metal prepared for gas treatment was bubbled while blowing Ar gas for about 10 minutes, and then dross was removed and injected into a mold to cast.

주형은 용탕을 주입하기 앞서 약 250℃로 예열하였으며, 주입시 용탕 온도는 약 730∼760℃로 유지하였다. 주형을 상기와 같이 예열하고 주입시 용탕 온도를 상기 범위로 유지하는 것은 합금 주조시 응고 균열이나 수축공 등의 결함을 제어하고 적당한 냉각 속도에 따른 결정립 미세화 효과를 얻기 위해서이다. 실제로 주형의 예열 온도를 변화시키고 용탕 주입 온도를 변화시켜 실험을 수행한 결과 주형의 예열 온도가 너무 높으면 응고후 결정립이 매우 조대하며, 반면 예열 온도가 너무 낮으면 균열과 주조 결함이 많이 관찰되었음을 확인하였다.The mold was preheated to about 250 ° C. prior to injection of the molten metal, and the injection temperature was maintained at about 730˜760 ° C. The preheating of the mold as described above and maintaining the molten metal temperature at the time of injection is to control defects such as solidification cracks and shrinkage holes during alloy casting and to obtain a grain refinement effect according to an appropriate cooling rate. In fact, experiments were carried out by changing the preheating temperature of the mold and the molten metal injection temperature, and found that if the preheating temperature of the mold was too high, the grains after coagulation were very coarse, whereas if the preheating temperature was too low, many cracks and casting defects were observed. It was.

상기 과정을 통해 알루미늄 주괴를 주조후, 주조시 발생된 내부 편석과 응력을 제거하기 위하여 각각의 주괴를 535∼545℃에서 9∼14 시간 동안 용체화처리하는데, 이러한 용체화처리 온도 및 시간은 기존의 알려진 Al-Cu계 합금에 대한 기초 자료를 바탕으로 많은 연구를 수행한 결과 얻어진 결론이며, 상기 온도 범위 및 시간에서 용체화처리시 기지 조직이 균일하고 각종 개재물의 제어에 효과적이었다.After casting the aluminum ingot through the above process, in order to remove the internal segregation and stress generated during casting, each ingot is subjected to a solution treatment for 9-14 hours at 535 ~ 545 ℃, the solution temperature and time The conclusions were obtained based on a number of studies based on the basic data of known Al-Cu-based alloys, and the matrix structure was uniform and effective in controlling various inclusions during the solution treatment at the temperature range and time.

용체화처리된 시편을 170℃에서 시효처리를 실시하는데, 이는 150∼200℃ 범위의 온도에서 많은 기초 실험을 수행한 결과 시효경도가 가장 높고 최대 경도에 도달하는 시간이 짧은 온도가 170℃로 규명되었으며, 이는 이온도에서 강화상인 θ' 상의 석출이 가장 활발하게 발생하기 때문이다.The solution-treated specimens are aged at 170 ° C, which results in 170 ° C of the highest aging hardness and the shortest time to reach maximum hardness. This is because precipitation of the reinforcement phase θ 'phase occurs most actively in the ionicity.

이하에서는 실시예와 관련하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.

실시예Example

기존의 Ag을 함유한 201 알루미늄 주조합금은 고가이므로 Ag 원소를 배제하고 타원소 첨가량을 변화시키면서 Cd를 첨가하여 본 발명의 알루미늄 주조합금을 제조하였다(발명예1,2). 얻어진 알루미늄 주조합금 시편(발명예1)은 각각 중량%로, Cu:5.0%, Mn:0.7%, Ti:0.45%, Zr:0.05%, Cd:0.1%를 함유하고 잔여량은 알루미늄(Al)원소로 제조된 합금이고, 발명예2는 Cu:5.0%, Mn:0.7%, Ti:0.45%, Zr:0.05%, Cd:0.2%를 함유하고 잔여량은 알루미늄 원소로 이루어지는 합금조성이다. 비교예는 Cd 성분을 0.3 중량% 함유하는 외에는 상기 발명예1,2와 동일한 조성이고, 종래 기존 합금예에서는 고가의 Ag원소와 Mg원소가 첨가되며 또한 Cd, Zr 원소를 함유하지 않은 조성이다.Since the 201 aluminum main alloy containing Ag is expensive, the aluminum main alloy of the present invention was manufactured by adding Cd while removing the Ag element and changing the amount of ellipses (invention examples 1 and 2). The obtained aluminum alloy alloy specimens (Invention Example 1) each contain% by weight of Cu: 5.0%, Mn: 0.7%, Ti: 0.45%, Zr: 0.05%, and Cd: 0.1%, and the remaining amount is aluminum (Al) element. Inventive Example 2 contains Cu: 5.0%, Mn: 0.7%, Ti: 0.45%, Zr: 0.05%, and Cd: 0.2%, and the remaining amount is an alloy composition composed of aluminum element. The comparative example is the same composition as inventive examples 1 and 2 except for containing 0.3 wt% of the Cd component, and in the conventional conventional alloy example, expensive Ag and Mg elements are added and do not contain Cd and Zr elements.

상기와 같은 조성의 발명예와 종래예 및 비교예의 시편들은 본 발명의 알루미늄 주조합금의 제조방법에 따라 상기 조성의 알루미늄 합금 용탕을 얻은후, Ar 가스를 주입하면서 버블링처리한 다음 드로스를 제거하고 760℃로 유지되는 용탕을 약 250℃로 예열한 주형에 주입하여 알루미늄 합금 주괴로 주조하였다. 이어서 각각의 주괴를 545℃에서 10 시간 동안 용체화처리하고, 수냉한 다음에 170℃에서 시효처리를 실시하여 제조하였다. 얻어진 각각의 시편에 대한 경도 및 강도와 연신율을 측정한 결과를 도 1 내지 도 2에 나타내고 있으며, 도 3 및 도 4에서는 얻어진 시편의 조직사진을 나타내고 있다.Samples of the invention examples, conventional examples and comparative examples of the composition as described above to obtain the aluminum alloy molten metal of the composition according to the manufacturing method of the aluminum main alloy of the present invention, followed by bubbling treatment while injecting Ar gas to remove dross The molten metal maintained at 760 ° C. was poured into a mold preheated to about 250 ° C. and cast into an aluminum alloy ingot. Each ingot was then prepared by solution treatment at 545 ° C. for 10 hours, water cooled and then aged at 170 ° C. The results of measuring the hardness, strength, and elongation of each of the obtained specimens are shown in Figs. 1 and 2, and in Figs. 3 and 4, the photographs of the obtained specimens are shown.

도 1은 170℃에서 시효처리한 경우 Cd 첨가량을 변화시킴에 따라 경도가 변화하는 것을 나타내고 있는데, Cd를 첨가하지 않은 종래예의 경우 약 15시간 전후 시효처리시 최대 경도가 나타났으며 최대경도값은 139Hv이었다. 그러나 Cd를 첨가한 발명예1,2 및 비교예의 경우 약 3시간 전후 시효처리시 최대경도가 얻어지며, 최대경도값은 160∼170Hv로 Cd를 첨가하지 않은 종래예에 비해 20∼30Hv 정도 높게 나타났다.Figure 1 shows that the hardness changes as the amount of Cd changes when the aging treatment at 170 ℃ changes, the maximum hardness appeared when the aging treatment before and after about 15 hours in the conventional example without the addition of Cd and the maximum hardness value 139 Hv. However, in the case of Inventive Examples 1, 2 and Comparative Examples with added Cd, the maximum hardness was obtained during aging treatment about 3 hours, and the maximum hardness value was 160 to 170 Hv, which was about 20 to 30 Hv higher than the conventional example without adding Cd. .

도 2는 최대경도 열처리 조건으로 시효처리시 Cd 첨가에 따른 상온 인장특성을 나타내고 있는데, Cd 첨가량이 0.2%까지 증가할수록 강도값은 증가하였으며 Cd를 첨가하지 않은 종래예의 인장강도가 390MPa인 반면에, 0.2% Cd를 첨가한 발명예2의 경우는 440MPa의 인장강도를 나타내므로 50MPa 정도의 강도값 증가를 나타내었다. 그러나 0.3%Cd를 첨가한 비교예의 경우는 오히려 강도값이 감소하였다. 또한, 연신율은 0.15%Cd를 첨가할 때까지 약 12%로 유지되었으나 그 이상 첨가시 급격히 감소하였으므로 연신율 및 강도를 동시에 고려시 적정 Cd 첨가량은 0.15%인 것으로 판단된다.2 shows room temperature tensile characteristics according to the addition of Cd during aging treatment under the maximum hardness heat treatment conditions. As the amount of Cd added increased to 0.2%, the strength value increased and the tensile strength of the conventional example without adding Cd was 390 MPa. In the case of Inventive Example 2 to which 0.2% Cd was added, the tensile strength of 440 MPa was increased, thereby increasing the strength value of about 50 MPa. However, in the case of the comparative example in which 0.3% Cd was added, the strength value decreased. In addition, the elongation was maintained at about 12% until the addition of 0.15% Cd, but since the elongation was sharply decreased when the addition is more than 0.15% Cd, the appropriate amount of Cd addition is considered to be 0.15% considering the elongation and strength at the same time.

그리고 도 3은 Cd를 첨가하지 않은 합금과 0.15% Cd를 첨가한 합금의 170℃에서 각각 최대경도를 나타내는 시효조건에서 미세조직을 투과전자현미경으로 관찰한 결과이다. Cd를 첨가하지 않은 시편(a∼c)의 경우, 최대경도를 나타낸 시효조건에서 대부분의 석출물이 G.P.(2) zone(θ″)으로 확인되었으나 Cd가 첨가된 시편(d∼f)의 경우, Cd를 첨가하지 않은 시편에서 관찰되지 않는 다른 형태의 반점과 줄무늬가 관찰되는데, 이는 조직사진(f)의 제한시야회절상을 분석한 결과, 일반적인 Al-Cu 합금에서 주 강화상으로 알려진 θ'(CuAl2)상으로 확인되었다. 따라서, Cd를 첨가할 경우 주강화상인 θ'(CuAl2)상의 석출을 촉진하며, 석출물의 밀도를 높이고, 균일하게 분포시킴을 관찰할 수 있었다. 이러한 미세조직의 변화는 도 1에서와 같이, 합금의 경도를 높이고 최대경도가 나타나는 시효시간을 단축시키는 효과가 현저함을 확인하였다.3 is a result of observing the microstructure with a transmission electron microscope at aging conditions showing the maximum hardness of each of the alloy without added Cd and 0.15% Cd added at 170 ℃. In the case of specimens (a to c) without addition of Cd, most of the precipitates were identified as GP (2) zones (θ ″) under the aging conditions showing the maximum hardness. Other spots and streaks not observed in the Cd-free specimens were observed, which was analyzed by the limited field diffraction image of the texture photograph (f). 2 ) confirmed as phase. Therefore, it was observed that the addition of Cd promotes precipitation of the θ '(CuAl 2 ) phase, which is the main strengthening image, increases the density of the precipitate, and distributes uniformly. As shown in FIG. 1, the change of the microstructure was remarkably effective in increasing the hardness of the alloy and shortening the aging time at which the maximum hardness appeared.

한편, 도 4는 170℃에서 33시간 동안 과시효처리시 얻어진 조직을 투과전자현미경을 사용하여 관찰한 결과를 비교하여 나타낸 조직사진으로 좌측 사진은 명시야상(bright field image)이고 우측 사진은 암시야상(dark field image)인데, Cd를 첨가하지 않은 시험편예(a)의 경우 석출물의 조대화가 상당히 발생하였으나 Cd를 첨가한 발명예(b,c)의 경우는 석출물의 조대화가 일어나지 않아 강도를 그대로 유지하고 있음을 관찰하였다.On the other hand, Figure 4 is a tissue photograph comparing the results obtained by using a transmission electron microscope to the tissue obtained during 33 hours overaging treatment at 170 ℃, the left picture is a bright field image and the right picture is a dark field image (dark field image), in the specimen (a) without the addition of Cd, the coarsening of the precipitates occurred considerably, but in the case of the inventive examples (b, c) with the addition of Cd, the coarsening of the precipitates did not occur and thus the strength was increased. It was observed to remain as it is.

이와 같이, 본 발명에 의하여 제조된 알루미늄 주조합금은 고강도 알루미늄 합금에 사용되는 고가의 Ag을 가격이 저렴한 Cd로 대체함으로써 제조단가를 기존의 201합금의 1/2 가격으로 절감할 수 있으며(Ag: 400,000원/, Cd: 4,000/), 소재가격이 절반 정도로 저렴함에 불구하고 인장강도는 430MPa급으로 유사하고, 주조제품의 단점인 연신율은 10% 정도로 기존 소재 보다 약 2배 정도 크게 향상되었다.As such, the aluminum main alloy manufactured according to the present invention can reduce the manufacturing cost to 1/2 the price of the existing 201 alloy by replacing the expensive Ag used in the high strength aluminum alloy with a low-cost Cd (Ag: 400,000 won /, Cd: 4,000 /), although the material price is about half cheaper, the tensile strength is similar to 430MPa, and the drawback of the cast product is 10%, which is about 2 times higher than the existing material.

그리고, 주조 공정에서의 제품 회수율은 60∼80%로서, 단조 공정의 20∼30% 보다 3배 정도 높아서 제조단가를 크게 낮추는 동시에 복잡 형상의 부품도 제조할 수 있으며, 생산 공정을 단축할 수 있어서 생산성 향상이 크게 기대된다.In addition, the product recovery rate in the casting process is 60 to 80%, which is about three times higher than the 20 to 30% of the forging process, which greatly reduces the manufacturing cost and can also manufacture complicated parts and shorten the production process. Productivity improvement is greatly expected.

따라서, 지금까지 알루미늄합금을 단조공정을 거쳐 제조했던 함정용 기어박스, 전차용 허브, 105㎜대전차용 연습탄용 스파이크, 조명탄용 콘테일(Contail), 자주포의 파이날 구동 하우징(Final Drive Housing) 및 케이싱 부품, 선박용 기어케이스 등 특수 방산 부품을 주조에 의하여 제조할 수 있어서 제조단가를 크게 저하시킬 수 있을 것으로 기대된다. 또한, 기존의 철강재에 의해 제조하던 특수방산 및 자동차 부품을 알루미늄 주조합금 부품으로 대체가능하므로 경량화에 의한 연비 향상 및 기동성 향상에 크게 기대된다.Therefore, the trap gearbox, tank hub, 105mm antitank tank spike, flare shell, final drive housing of self-propelled gun and casing parts, which have been manufactured by aluminum forging process so far It is expected that the production cost of the special dissipation parts such as ship gear case can be reduced by casting. In addition, special defense and automotive parts manufactured by conventional steel can be replaced with aluminum main alloy parts, which is expected to greatly improve fuel efficiency and mobility by weight reduction.

Claims (3)

중량%로, Cu:4.5∼5.0%, Mn:0.3∼0.7%, Ti:0.15∼0.45%, Zr:0.01∼0.05%, Cd:0.08∼0.2%를 함유하고 잔여량은 알루미늄(Al) 원소로 이루어진 Ag 무함유 저가의 고강도용 알루미늄 주조합금.By weight%, Cu: 4.5-5.0%, Mn: 0.3-0.7%, Ti: 0.15-0.45%, Zr: 0.01-0.05%, Cd: 0.08-0.2% and the remaining amount consists of aluminum (Al) element Low cost, high strength aluminum main alloy free of Ag. 제1항에 있어서, 상기 Cd는 0.15 중량% 함유하는 것을 특징으로 하는 Ag 무함유 저가의 고강도용 알루미늄 주조합금.The low-strength, high-strength aluminum main alloy containing Ag according to claim 1, wherein the Cd is 0.15% by weight. 중량%로, Cu:4.5∼5.0%, Mn:0.3∼0.7%, Ti:0.15∼0.45%, Zr:0.01∼0.05%, Cd:0.08∼0.2%를 함유하고 잔여량은 알루미늄(Al) 원소로 이루어진 알루미늄 합금 용탕을 얻은후, 개재물 제어 및 탈가스 처리를 위하여 버블링처리하며, 이후 730∼760℃로 유지되는 용탕을 250℃로 예열한 주형에 주입하여 알루미늄 합금 주괴로 주조하며, 또한 주조시 발생된 내부 편석과 응력을 제거하기 위하여 각각의 주괴를 535∼545℃에서 9∼14 시간 동안 용체화처리하고, 수냉한 다음에 170℃에서 시효처리를 실시하는 것을 특징으로 하는 Ag 무함유 저가의 고강도 알루미늄 주조합금의 제조방법.By weight%, Cu: 4.5-5.0%, Mn: 0.3-0.7%, Ti: 0.15-0.45%, Zr: 0.01-0.05%, Cd: 0.08-0.2% and the remaining amount consists of aluminum (Al) element After the aluminum alloy molten metal is obtained, bubbling treatment is performed for inclusion control and degassing treatment. Then, the molten metal maintained at 730 to 760 ° C is injected into a mold preheated at 250 ° C to be cast into an aluminum alloy ingot, and also generated during casting. Low-strength, low-strength, Ag-free, high strength, characterized in that each ingot is melted at 535 to 545 ° C. for 9 to 14 hours to remove internal segregation and stress, and then cooled in water and then aged at 170 ° C. Manufacturing method of aluminum main alloy.
KR1019990042686A 1999-10-04 1999-10-04 Alluminium cast alloy having no ag for high strength and low cost and manufacturing method thereof KR100323300B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990042686A KR100323300B1 (en) 1999-10-04 1999-10-04 Alluminium cast alloy having no ag for high strength and low cost and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990042686A KR100323300B1 (en) 1999-10-04 1999-10-04 Alluminium cast alloy having no ag for high strength and low cost and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20010035907A true KR20010035907A (en) 2001-05-07
KR100323300B1 KR100323300B1 (en) 2002-02-06

Family

ID=19613919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990042686A KR100323300B1 (en) 1999-10-04 1999-10-04 Alluminium cast alloy having no ag for high strength and low cost and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100323300B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441212B1 (en) * 2001-07-09 2004-07-22 대신금속 주식회사 High Strength-High Ductility Aluminum Casting Alloy containing Sn and Method thereof
CN103643070A (en) * 2013-12-20 2014-03-19 西南铝业(集团)有限责任公司 Purifying and treating process in aluminum alloy smelter for railway vehicle body
KR101387647B1 (en) * 2012-02-06 2014-04-24 (주)일광주공 Super high strength aluminium cast alloy and manufacturing method of the same
CN105483476A (en) * 2016-01-27 2016-04-13 东莞佛亚铝业有限公司 High-strength, high-conductivity and high-heat-resisting aluminum alloy and preparation method thereof
CN109022936A (en) * 2018-09-17 2018-12-18 广州宇智科技有限公司 A kind of liquid spinodal decomposition type Al-Ca-Ta alloy of no solidification shrinkage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890004862B1 (en) * 1986-04-22 1989-11-30 한국기계 연구소 Al alloy for vtr head drum and the revolving parts
US5616189A (en) * 1993-07-28 1997-04-01 Alcan International Limited Aluminum alloys and process for making aluminum alloy sheet
KR960017882A (en) * 1994-11-10 1996-06-17 전성원 Wear-resistant aluminum alloy for automotive parts
JPH1017975A (en) * 1996-06-27 1998-01-20 Kyushu Mitsui Alum Kogyo Kk Aluminum alloy for casting
JPH10280077A (en) * 1997-04-01 1998-10-20 Furukawa Electric Co Ltd:The Al alloy for high pressure casting, cast rotor using same, and production of cast rotor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441212B1 (en) * 2001-07-09 2004-07-22 대신금속 주식회사 High Strength-High Ductility Aluminum Casting Alloy containing Sn and Method thereof
KR101387647B1 (en) * 2012-02-06 2014-04-24 (주)일광주공 Super high strength aluminium cast alloy and manufacturing method of the same
CN103643070A (en) * 2013-12-20 2014-03-19 西南铝业(集团)有限责任公司 Purifying and treating process in aluminum alloy smelter for railway vehicle body
CN103643070B (en) * 2013-12-20 2015-11-25 西南铝业(集团)有限责任公司 A kind of vehicle body of railway vehicle purification process technique in aluminium alloy smelting furnace
CN105483476A (en) * 2016-01-27 2016-04-13 东莞佛亚铝业有限公司 High-strength, high-conductivity and high-heat-resisting aluminum alloy and preparation method thereof
CN109022936A (en) * 2018-09-17 2018-12-18 广州宇智科技有限公司 A kind of liquid spinodal decomposition type Al-Ca-Ta alloy of no solidification shrinkage

Also Published As

Publication number Publication date
KR100323300B1 (en) 2002-02-06

Similar Documents

Publication Publication Date Title
CN111032897A (en) Method of forming cast aluminum alloy
CN109972003B (en) High-elongation heat-resistant aluminum alloy suitable for gravity casting and preparation method thereof
CN109881062B (en) High-strength, high-toughness and high-modulus extrusion casting magnesium alloy and preparation method thereof
CN113774259B (en) Al-Cu-Mg alloy and method for eliminating harmful iron-containing phase
CN111424200B (en) High-strength high-heat-resistance low-scandium-silver-added Al-Cu-Mg alloy and heat treatment process thereof
CN109136681B (en) 6061 aluminum cast bar and casting process thereof
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
EP3342889B1 (en) Aluminium casting alloy
KR20200048518A (en) 400MPa GRADE HIGH-STRENGTH ALUMINUM ALLOY AND ITS MANUFACTURING METHOD
KR100323300B1 (en) Alluminium cast alloy having no ag for high strength and low cost and manufacturing method thereof
KR100703130B1 (en) Non heat treatable high ductility aluminum cast alloys and manufacturing method thereof
CN110791688B (en) High-strength high-fracture-toughness aluminum alloy bar and preparation method thereof
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
KR101499096B1 (en) Aluminum alloy and manufacturing method thereof
CN115433859B (en) Modification method of deformed aluminum alloy based on rare earth alloy
CN115786787B (en) High-strength and high-toughness Al-Cu cast aluminum alloy and preparation method thereof
KR20060135990A (en) Non heat treatable high ductility aluminum cast alloys and manufacturing method thereof
JP2002161342A (en) Structural steel superior in strength, fatigue resistance and corrosion resistance
KR102277133B1 (en) Method for manufacturing high strength aluminum alloy forged plate
KR100441212B1 (en) High Strength-High Ductility Aluminum Casting Alloy containing Sn and Method thereof
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
KR100497053B1 (en) High strength aluminum casting alloy with improved age-hardenability
CN115961191B (en) 800 MPa-strength high-performance aluminum alloy with strontium-zirconium-titanium-yttrium quaternary composite microalloying and preparation method thereof
KR102566987B1 (en) High strength aluminum-zinc-magnesium-cooper alloy thick plate and method of manufacturing the same
CN115125422B (en) Corrosion-resistant high-strength-toughness Al-Li-Cu-Zr-Er alloy plate and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090119

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee