KR20010030433A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
KR20010030433A
KR20010030433A KR1020000054855A KR20000054855A KR20010030433A KR 20010030433 A KR20010030433 A KR 20010030433A KR 1020000054855 A KR1020000054855 A KR 1020000054855A KR 20000054855 A KR20000054855 A KR 20000054855A KR 20010030433 A KR20010030433 A KR 20010030433A
Authority
KR
South Korea
Prior art keywords
insulating film
film
contact hole
forming
etching
Prior art date
Application number
KR1020000054855A
Other languages
Korean (ko)
Inventor
가와구치마사키
Original Assignee
가네꼬 히사시
닛본 덴기 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가네꼬 히사시, 닛본 덴기 가부시끼가이샤 filed Critical 가네꼬 히사시
Publication of KR20010030433A publication Critical patent/KR20010030433A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners

Abstract

PURPOSE: To provide a method of manufacturing a semiconductor device adapted for applications such as devices, where a junction leakage current at storage nodes is required to be reduced or whose device areas are required to be reduced. CONSTITUTION: A second insulating film 15 is formed above the surface of a semiconductor substrate 1, and a third insulating film 16 is formed on the film 15 as an interlayer film. Furthermore, a contact hole 7 is formed in a manner so as to pass through the film 16 and reaching the surface of the film 15. A fourth insulating film is formed on the film 16 having the hole 7 formed therein. The fourth insulating film and the film 15 are etched, using an anisotropic etching method to form a sidewall 9 made of the fourth insulating film on the side surface of the hole 7, and to expose the surface of the substrate 1 to the hole 7.

Description

반도체장치 제조방법{Manufacturing method of semiconductor device}Manufacturing method of semiconductor device

본 발명은 콘택홀이 층간절연막에 형성되는 반도체장치 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor device in which contact holes are formed in an interlayer insulating film.

반도체장치 제조기술에 있어서, 콘택홀 형성기술은 매우 중요한 역할을 한다. 도 3 및 도 4는 제1및 제2종래기술을 설명하는 반도체장치 제조공정을 나타내는 단면도이다.In the semiconductor device manufacturing technology, the contact hole forming technology plays a very important role. 3 and 4 are cross-sectional views illustrating a semiconductor device manufacturing process for explaining the first and second conventional techniques.

도 3은 반도체장치의 기본적인 콘택홀을 나타낸다. 게이트산화막(2), 층간절연막(17), 게이트전극(3), 그리고 배선(18)이 반도체기판(1)상에 형성되고, 콘택홀(7)이 층간절연막(17)을 관통하여 반도체기판(1)의 표면에 도달하도록 형성된다.3 shows a basic contact hole of a semiconductor device. A gate oxide film 2, an interlayer insulating film 17, a gate electrode 3, and a wiring 18 are formed on the semiconductor substrate 1, and a contact hole 7 penetrates the interlayer insulating film 17 to form a semiconductor substrate. It is formed to reach the surface of (1).

도 4는 콘택홀(7)이 게이트전극(3)에 대하여 셀프얼라인방법으로 개구된 셀프얼라인콘택홀의 일예를 나타낸다. 이하, 도면을 참조하여, 콘택홀 제조방법을 설명한다.4 shows an example of a self-aligned contact hole in which the contact hole 7 is opened in a self-aligned manner with respect to the gate electrode 3. Hereinafter, a method of manufacturing a contact hole will be described with reference to the drawings.

먼저, 반도체기판(1)상에 게이트산화막(2)이 형성된다. 다음에, 각 막마다 소정의 불순물을 소정의 농도로 도핑함으로써 소정의 저항치를 갖는 다결정실리콘 및 실리콘질화막이 순차적으로 형성된다.First, a gate oxide film 2 is formed on the semiconductor substrate 1. Next, a polycrystalline silicon and a silicon nitride film having a predetermined resistance value are sequentially formed by doping predetermined impurities at a predetermined concentration for each film.

이어서, 실리콘질화막과 다결정실리콘막은 공지된 포토레지스트법을 이용하여 순차적으로 에치백되어, 게이트전극(3)과 그의 상부에 형성된 실리콘질화막(4)으로 구성된 게이트전극구조체(30)를 형성한다.Subsequently, the silicon nitride film and the polycrystalline silicon film are sequentially etched back using a known photoresist method to form a gate electrode structure 30 composed of the gate electrode 3 and the silicon nitride film 4 formed thereon.

다음에, 전면에 실리콘질화막이 형성되고, 전면이 이방성드라이식각으로 에치백되어 게이트전극구조체(30)의 측면상에만 실리콘질화막으로 이루어진 측벽(11)을 형성한다. 그 결과, 게이트전극(3)은 상부의 실리콘질화막(4)과 실리콘질화막의 측벽(11)으로 덮여진다. 이 경우에, 실리콘질화막으로 이루어진 측벽 형성공정시에 에치백스톱퍼로서 게이트전극구조체(30)의 상부에, 예컨대, 실리콘산화막이 형성될 수 있다.Next, a silicon nitride film is formed on the front surface, and the front surface is etched back by an anisotropic dry etching to form sidewalls 11 made of a silicon nitride film only on the side surface of the gate electrode structure 30. As a result, the gate electrode 3 is covered with the upper silicon nitride film 4 and the sidewalls 11 of the silicon nitride film. In this case, for example, a silicon oxide film may be formed on the gate electrode structure 30 as an etch back stopper in the sidewall forming process made of the silicon nitride film.

다음에, BPSG 등의 재료로 이루어진 실리콘산화막을 사용하여 전면에 층간절연막(17)이 형성된다. 그 도중에, 배선(18) 형성공정이 삽입된다. 배선(18)의 형성을 위하여, 예컨대, 불순물을 소정의 농도로 도핑하여 소정의 저항치를 갖는 다결정실리콘막을 형성하고, 공지된 포토레지스트법으로 이 막을 패터닝한다. 다음에, 배선(18)의 상부에 층간절연막(17)이 다시 형성된다.Next, an interlayer insulating film 17 is formed over the entire surface using a silicon oxide film made of a material such as BPSG. In the meantime, the wiring 18 forming step is inserted. For the formation of the wiring 18, for example, an impurity is doped to a predetermined concentration to form a polysilicon film having a predetermined resistance value, and the film is patterned by a known photoresist method. Next, the interlayer insulating film 17 is formed again on the wiring 18.

이어서, 포토레지스트법을 사용하여 콘택홀(7)을 형성한다. 콘택홀 형성시의 식각은, 실리콘산화막이 실리콘질화막에 대하여 선택적으로 식각될 수 있는 조건하에서 수행된다. 식각조건으로서는, 예컨대, 100℃의 기판온도, 60mTorr의 압력, 그리고 800W의 RF전력에서, 25sccm의 유량으로 CHF3가스와 75sccm의 유량으로 CO가스를 식각실로 주입하는 RIE식각장치를 사용하는 일본특개평6-132252호 공보에 개시된 바와 같은 조건들이 언급될 수 있다.Next, the contact hole 7 is formed using the photoresist method. The etching at the time of forming the contact hole is performed under the condition that the silicon oxide film can be selectively etched with respect to the silicon nitride film. As etching conditions, for example, at a substrate temperature of 100 ° C., a pressure of 60 mTorr, and an RF power of 800 W, a Japanese-made RIE etching apparatus using a RIE etching apparatus that injects a CHF 3 gas at a flow rate of 25 sccm and a CO gas at a flow rate of 75 sccm is used. Conditions as disclosed in Japanese Patent Laid-Open No. 6-132252 may be mentioned.

그러나, 콘택홀 형성후에, 식각분위기에 노출된 기판표면에의 손상, 예컨대, 식각분위기내의 이온의 침투에 의한 결함, 증착물, 금속오염 등으로부터의 제거 또는 회복처리, 또는 자연산화막의 제거를 위한 처리 등이 수행되는 것이 일반적인 시스템이다.However, after the formation of the contact holes, damage to the surface of the substrate exposed to the etch atmosphere, for example, defects caused by penetration of ions in the etch atmosphere, removal or recovery from deposits, metal contamination, and the like, or treatment for removal of the native oxide film Etc. is a common system.

표면처리로서는, 예컨대, 과산화수소와 암모니아, 염산, 그리고 황산으로부터 선택된 하나와의 혼합용액(이하, 세정용액으로 기재)을 사용하는 습식처리가 반도체기판의 표면에 수행된다. 또는, 노출된 기판표면을 약하게 열산화하고, 이어서 1:30 내지 1:100의 농도범위로 희석된 버퍼드(buffered)플루오르화수소산용액을 사용하여 형성된 산화막을 제거함으로써 손상층의 제거가 수행된다.As the surface treatment, for example, a wet treatment using a mixed solution of hydrogen peroxide with one selected from ammonia, hydrochloric acid and sulfuric acid (hereinafter referred to as cleaning solution) is performed on the surface of the semiconductor substrate. Alternatively, the damage layer is removed by slightly thermally oxidizing the exposed substrate surface, and then removing the oxide film formed using a buffered hydrofluoric acid solution diluted to a concentration range of 1:30 to 1: 100. .

자연산화막의 제거를 위하여는, 1:30 내지 1:400의 범위로 희석된 플루오르화수소산용액, 플루오르화수소와 플루오르화암모늄의 혼합용액인 버퍼드플루오르화수소산용액 등이 사용될 수 있다.To remove the natural oxide film, a hydrofluoric acid solution diluted in the range of 1:30 to 1: 400, a buffered hydrofluoric acid solution that is a mixed solution of hydrogen fluoride and ammonium fluoride, and the like may be used.

제1또는 제2종래기술에 따르면, 콘택홀의 측면이 층간절연막의 역할을 하는 BPSG 등의 노출된 실리콘산화막을 갖기 때문에, 세정용액이나 버퍼드플루오르화수소산용액을 사용하는 습식처리가 수행되는 경우에, 콘택홀의 측면도 식각되어 콘택홀의 직경이 확대되는 문제점이 발생된다.According to the first or second conventional technology, since the side of the contact hole has an exposed silicon oxide film such as BPSG serving as an interlayer insulating film, when a wet treatment using a cleaning solution or a buffered hydrofluoric acid solution is performed, In addition, the side surface of the contact hole is also etched to cause a problem that the diameter of the contact hole is expanded.

또한, 콘택홀의 측면에 산화종(oxidizing species)을 저지하는 재료가 포함되어 있지 않기 때문에, 층간절연막내의 콘택홀의 근방에 있는, 예컨대 게이트전극 또는 배선도 산화되어, 치수의 감소, 이상산화 등의 결함이 발생한다.In addition, since no oxidizing species is contained in the side of the contact hole, the gate electrode or the wiring in the vicinity of the contact hole in the interlayer insulating film is also oxidized, so that defects such as reduction in size and abnormal oxidation are eliminated. Occurs.

배선까지의 거리가 큰 경우에는, 산화반응이 확산제어되어 산화가 거의 일어나지 않는다. 그러나, DRAM(다이내믹랜덤액세스메모리)와, SRAM(스태틱랜덤액세스메모리) 등의 최근의 디바이스에 있어서는, 콘택홀과 배선간의 거리에 대한 마진이 O.1㎛보다 작아서, 상술한 영향이 더 이상 무시될 수 없는 경우가 많다.In the case where the distance to the wiring is large, the oxidation reaction is diffusion controlled so that the oxidation hardly occurs. However, in recent devices such as DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory), the margin for the distance between the contact hole and the wiring is smaller than 0.1 mu m, so the above-described effects are no longer ignored. In many cases it can not be.

또한, 이 경우에, 세정용액 또는 버퍼드플루오르화수소산용액에 노출되는 콘택홀의 측면상의 BPSG 등의 실리콘산화막도 식각되어, 콘택홀의 직경이 확대되는 부가적인 문제점이 발생한다.In this case, the silicon oxide film such as BPSG on the side of the contact hole exposed to the cleaning solution or the buffered hydrofluoric acid solution is also etched, thereby causing an additional problem of increasing the diameter of the contact hole.

일본 특개평1-208831호 및 평3-181135호 공보에 기재된 제3및 제4종래기술에 따르면, 실리콘질화막이 콘택홀의 측면에 형성되어, 상술한 문제점들이 개선된다.According to the third and fourth conventional techniques described in Japanese Patent Laid-Open Nos. 1-208831 and 3-181135, the silicon nitride film is formed on the side of the contact hole, thereby improving the above-mentioned problems.

이들 문헌들에 개시된 콘택홀은 콘택홀의 측면에 실리콘질화막을 형성함으로서 일정한 효과를 얻는 것에 목적이 있다. 본 발명과의 관계를 고려해 보면, 여기에 언급된 기술에 따라서 콘택홀의 측면이 실리콘질화막의 설치에 의해 보호되기 때문에, 이들 종래기술들은 세정용액 또는 버퍼드플루오르화수소산용액에 의한 콘택홀의 직경의 확대 그리고 산화처리를 수행하는 동안 원하지 않는 부분의 산화의 문제점들이 개선되는 효과를 가진다.The contact holes disclosed in these documents have an object to obtain a certain effect by forming a silicon nitride film on the side of the contact hole. Considering the relationship with the present invention, since the side of the contact hole is protected by the installation of the silicon nitride film according to the technique mentioned here, these prior arts expand the diameter of the contact hole by the cleaning solution or the buffered hydrofluoric acid solution. And problems of oxidation of unwanted portions during the oxidation treatment are improved.

그러나, 일본특개평1-208831호 또는 평3-181135호 공보에 개시된 기술에서도, 하기와 같은 문제점들이 해결되지 않고 남아있게 된다.However, even in the technique disclosed in Japanese Patent Laid-Open No. Hei 1-208831 or Hei 3-181135, the following problems remain unresolved.

즉, 제3및 제4종래기술은, 도 5a에 도시된 바와 같이, 먼저, 공지된 포토레지스트법에 의해, 층간절연막(17)으로서 제공되는 BPSG막 등을 포토레지스트(19)를 마스크로 사용하여 이방성드라이식각함으로써, 반도체기판(1)에 도달하는 콘택홀(7)을 형성하는 것이다. 다음에, 그 후 전면에 실리콘질화막을 형성하고 이방성식각을 사용하여 전면을 에치백하여, 도 5b에 도시된 바와 같이, 콘택홀의 측면에만 실리콘질화막으로 이루어진 측벽(9)이 형성된다.That is, in the third and fourth conventional techniques, as shown in Fig. 5A, first, by using a known photoresist method, a BPSG film or the like provided as the interlayer insulating film 17 is used as the photoresist 19 as a mask. By anisotropic dry etching, a contact hole 7 reaching the semiconductor substrate 1 is formed. Next, a silicon nitride film is formed on the front surface and the back surface is etched back using anisotropic etching, so that the sidewall 9 made of the silicon nitride film is formed only on the side of the contact hole, as shown in FIG. 5B.

이 공정에서, 콘택홀의 저면은 총 2번이 노출된다. 즉, 먼저, 도 5a에 도시된 바와 같이, 콘택홀 형성을 위한 층간절연막(17)의 식각시와, 다음에, 도 5b에 도시된 바와 같이, 실리콘질화막으로 이루어진 측벽(9)의 형성을 위한 식각시이다.In this process, the bottom of the contact hole is exposed a total of two times. That is, first, as shown in FIG. 5A, when etching the interlayer insulating film 17 for forming a contact hole, and next, as shown in FIG. 5B, for forming the sidewall 9 made of silicon nitride film. During etching.

일반적으로, 막을 식각하는 경우에, 결과막의 균일성을 고려하여 원하는 막두께로의 식각에 요구되는 시간을 넘는 시간동안 식각이 수행된다. 이를 일반적으로 오버식각이라고 한다.In general, in the case of etching a film, etching is performed for a time exceeding the time required for etching to a desired film thickness in consideration of the uniformity of the resultant film. This is commonly referred to as overetching.

더욱이, 최근에는, 층간절연막의 두께감소는 콘택홀 직경의 축소가 요구되는 것에 비하여 심하지 않다. 그 결과, 콘택홀의 애스펙트비가 커지는 경향이다.Moreover, in recent years, the thickness reduction of the interlayer insulating film is not as severe as that in which a reduction in the contact hole diameter is required. As a result, the aspect ratio of the contact hole tends to increase.

이러한 콘택홀의 형성에 사용되는 식각에 있어서는, 식각이온종(etching ion species)에 주어지는 에너지는 이방성을 강화하기 위하여 커지고 있다. 따라서, 기판의 표면이 식각분위기에 노출되는 경우에, 이러한 이온종에 의한 손상, 또는, 이온종에 의해 다른 장소로부터 유래된 오염물의 이동에 의한 손상이 발생된다.In etching used to form such contact holes, the energy given to etching ion species is increasing to enhance anisotropy. Therefore, when the surface of the substrate is exposed to the etching atmosphere, damage caused by such ionic species or damage caused by movement of contaminants derived from other places by the ionic species occurs.

이 경우에, 오버식각시간을 포함하는 전체 식각시간은, 예컨대, 목적으로 하는 막두께를 위해 요구되는 시간의 대략 1.5배도 설정되어, 식각해야 할 막의 목적두께가 커질수록, 오버식각시간도 길어진다.In this case, the total etching time including the overetching time is set, for example, approximately 1.5 times as long as the time required for the desired film thickness, so that the larger the target thickness of the film to be etched, the longer the overetching time is. .

다시 말하면, 오버식각시간이 길어질수록, 반도체기판의 표면이 입는 손상 또는 오염은 더욱 심각해진다. 결과적으로, 제3 및 제4종래기술에 있어서, 반도체기판의 표면은 큰 두께를 갖는 층간절연막내의 콘택홀 형성을 위한 식각시에 심각한 손상을 입는다.In other words, the longer the overetch time is, the more serious the damage or contamination of the surface of the semiconductor substrate is. As a result, in the third and fourth prior arts, the surface of the semiconductor substrate is severely damaged upon etching for forming contact holes in the interlayer insulating film having a large thickness.

이러한 손상 또는 오염이 반도체기판영역으로 도입되는 경우에, 이 영에 형성된 확산영역에 전기적특성, 특히 접합누설전류특성이 악화된다. 특히, 스토리지노드의 확산층에서 접합누설전류의 미세감소가 요구되는 DRAM 또는 SRAM 등의 디바이스에서는 심각한 문제가 된다.When such damage or contamination is introduced into the semiconductor substrate region, the electrical characteristics, particularly the junction leakage current characteristics, deteriorate in the diffusion region formed in this region. In particular, a device such as DRAM or SRAM, which requires a small reduction of the junction leakage current in the diffusion layer of the storage node, is a serious problem.

본 발명의 목적은, 바람직하지 않은 콘택홀 직경의 확대, 바람직하지 않은 게이트전극 등의 산화, 그리고 바람직하지 않은 반도체기판에의 손상도입 등의 문제를 동시에 억제할 수 있는 반도체장치 제조방법을 제공하는 것에 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device capable of simultaneously suppressing problems such as undesirably increasing the diameter of a contact hole, oxidizing an undesired gate electrode, and introducing an undesired damage to a semiconductor substrate. Is in.

도 1a 내지 도 1e는 본 발명의 제1실시예에 따른 반도체장치 제조방법을 공정순으로 나타낸 단면도들이다.1A to 1E are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a first embodiment of the present invention in a process order.

도 2a 및 도 2b는 본 발명의 제2실시예에 따른 반도체장치 제조방법을 공정순으로 나타낸 단면도들이다.2A and 2B are cross-sectional views sequentially illustrating a method of manufacturing a semiconductor device in accordance with a second embodiment of the present invention.

도 3은 제1종래기술에 따른 반도체장치 제조방법을 나타내는 단면도이다.3 is a cross-sectional view illustrating a method of manufacturing a semiconductor device according to the first conventional technology.

도 4는 제2종래기술에 따른 반도체장치 제조방법을 나타내는 단면도이다.4 is a cross-sectional view illustrating a method of manufacturing a semiconductor device according to the second conventional technology.

도 5a 및 도 5b는 각각 제3및 제4종래기술에 따른 반도체장치 제조방법을 나타내는 단면도이다.5A and 5B are cross-sectional views illustrating a method for manufacturing a semiconductor device according to the third and fourth conventional techniques, respectively.

※도면의 주요부분에 대한 부호의 설명※ Explanation of symbols for main parts of drawing

1 : 반도체기판 2 : 게이트산화막1 semiconductor substrate 2 gate oxide film

3 : 게이트전극 4 : 실리콘질화막3: gate electrode 4: silicon nitride film

7,17 : 콘택홀 9,9a,9b,11 : 측벽7,17: contact hole 9,9a, 9b, 11: side wall

14 : 제1절연막 15 : 제2절연막14: first insulating film 15: second insulating film

16 : 제3절연막 17 : 층간절연막16: third insulating film 17: interlayer insulating film

18 : 배선 19 : 포토레지스트18 wiring 19 photoresist

본 발명에 따른 반도체장치 제조방법은, 제1절연막을 반도체기판의 표면상에 형성하는 단계, 제2절연막을 제1절연막상에 형성하는 단계, 제3절연막을 제2절연막상에 형성하는 단계, 제3절연막을 관통하여 제2절연막의 표면에 달하는 콘택홀을 형성하는 단계, 제4절연막을 콘택홀을 포함하는 전면에 형성하는 단계, 제4절연막을 이방성식각방법을 사용하여 식각하여, 제4절연막으로 이루어진 측벽을 콘택홀의 측면부상에 형성하고, 제2절연막을 노출시키는 단계, 및 노출된 제2절연막을 제거한 후, 제1절연막을 제거함으로써 반도체기판을 노출시키는 단계를 포함한다.In the semiconductor device manufacturing method according to the present invention, forming a first insulating film on the surface of the semiconductor substrate, forming a second insulating film on the first insulating film, forming a third insulating film on the second insulating film, Forming a contact hole penetrating through the third insulating film and reaching the surface of the second insulating film, forming a fourth insulating film on the entire surface including the contact hole, and etching the fourth insulating film by using an anisotropic etching method Forming a sidewall formed of an insulating film on the side portion of the contact hole, exposing a second insulating film, and removing the exposed second insulating film and then exposing the semiconductor substrate by removing the first insulating film.

본 발명의 상술한 및 여타의 목적, 특징, 및 장점은 첨부도면을 참조한 하기의 상세한 설명에 의해 보다 분명해질 것이다.The above and other objects, features, and advantages of the present invention will become more apparent from the following detailed description with reference to the accompanying drawings.

이하, 첨부도면을 참조하여, 본 발명의 실시예들을 설명한다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

도 1a 내지 도 1e는 본 발명의 제1실시예에 따른 반도체장치 제조방법을 공정순으로 나타낸 단면도들이다.1A to 1E are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with a first embodiment of the present invention in a process order.

먼저, 도 1a에 도시된 바와 같이, 반도체기판(1)상에 열산화법에 의해 10㎚두께의 게이트산화막(2)을 형성한다. 다음에, 1×1019~1×1021atoms/㎤범위로 인을 도핑함으로써 얻어진 소정의 치항치를 갖는 100㎚두께의 다결정실리콘막을 도전막(게이트전극(3))으로서 화학기상증착(CVD)법으로 형성하고, 다음에, 100㎚두께의 실리콘질화막을 제1층간절연막(4)으로서 CVD법으로 형성한다. 다결정실리콘막에의 인도핑은 막형성후 기상열확산(vapor phase thermal diffusion)법 또는 이온주입법에 의해 행해질 수 있다. 게이트전극의 저항치를 추가로 감소시키기 위해서, 게이트전극은 다결정실리콘막과 WSi 등의 고융점금속실리사이드의 적층으로 형성될 수 있다. 또한, 게이트산화막(2)은 제1절연막으로서 실리콘질화막의 장력(tensile stress)을 완화하는 패드산화막으로서 작용한다.First, as shown in FIG. 1A, a gate oxide film 2 having a thickness of 10 nm is formed on the semiconductor substrate 1 by thermal oxidation. Next, a chemical vapor deposition (CVD) method is performed by using a 100 nm thick polycrystalline silicon film having a predetermined tooth value obtained by doping phosphorus in the range of 1 × 10 19 to 1 × 10 21 atoms / cm 3 as a conductive film (gate electrode 3). Next, a silicon nitride film having a thickness of 100 nm is formed as the first interlayer insulating film 4 by the CVD method. Guiding to the polysilicon film may be performed by vapor phase thermal diffusion or ion implantation after film formation. In order to further reduce the resistance value of the gate electrode, the gate electrode may be formed by laminating a polycrystalline silicon film and a high melting point metal silicide such as WSi. In addition, the gate oxide film 2 acts as a pad oxide film to relieve the tensile stress of the silicon nitride film as the first insulating film.

다음에, 제1절연막(4)과 도전막(게이트전극(3))이 포토레지스트를 마스크로 사용하여 포토레지스트법에 의해 순차적으로 드라이식각되어, 동일한 형태로 패터닝된 게이트전극(3)과 제1절연막(4)으로 이루어진 게이트전극구조체(30)가 형성된다.Next, the first insulating film 4 and the conductive film (gate electrode 3) are sequentially dry-etched by the photoresist method by using the photoresist as a mask, and patterned in the same manner. A gate electrode structure 30 formed of one insulating film 4 is formed.

다음에, 게이트전극구조체가 형성된 반도체기판(1)의 표면상에 제2층간절연막(5)으로서 20㎚두께의 실리콘질화막을 CVD법으로 형성한다.Next, a silicon nitride film having a thickness of 20 nm is formed as a second interlayer insulating film 5 on the surface of the semiconductor substrate 1 on which the gate electrode structure is formed by CVD.

이어서, 제2절연막(5)상에 층간절연막의 역할을 하는 제3절연막(6)으로서 500㎚두께의 BPSG막을 CVD법으로 형성한다. 여기에서, BPSG(borophosphosilicate glass)막은 실리콘산화막에 수%의 B(붕소) 및 P(인)을 첨가한 것으로서, 열처리에 의해 리플로우성을 나타내며, 층간절연막에 적합한 재료로 잘 알려져 있다. 또한, 소오스-드레인확산층은 늦어도 제3절연막(6)을 형성하기 전에 형성된다. 예컨대, 제1절연막(4) 형성전에, 주입에너지 30keV, 주입량 1×1014atoms/㎠으로 P를 주입하고, 이어서 제1절연막(4) 형성후에, 주입에너지 80keV, 주입량 5×1015atoms/㎠으로 As를 주입함으로써, LDD형 MOS트랜지스터를 형성할 수 있다.Next, a 500 nm-thick BPSG film is formed on the second insulating film 5 as the third insulating film 6 serving as an interlayer insulating film by CVD. Here, a BPSG (borophosphosilicate glass) film is obtained by adding several percent B (boron) and P (phosphorus) to a silicon oxide film, exhibits reflowability by heat treatment, and is well known as a material suitable for an interlayer insulating film. In addition, the source-drain diffusion layer is formed at least before forming the third insulating film 6. For example, P is injected at an injection energy of 30 keV and an injection amount of 1 × 10 14 atoms / cm 2 before the formation of the first insulating film 4, followed by injection of 80 keV and an injection amount of 5 × 10 15 atoms / after the formation of the first insulating film 4. By injecting As in cm 2, an LDD type MOS transistor can be formed.

다음에, 포토레지스트를 마스크를 사용하는 포토레지스트법을 사용하여 제3절연막(6)을 관통하는 콘택홀(7)을 형성한다. 이 경우에, 실리콘산화막이 실리콘질화막에 대하여 선택적으로 식각될 수 있는 조건하에서 식각이 수행된다. 식각조건으로서는, 예컨대, 100℃의 기판온도, 60mTorr의 압력, 그리고 800W의 RF전력에서, 25sccm의 유량으로 CHF3가스와 75sccm의 유량으로 CO가스를 식각실로 주입하는 RIE식각장치를 사용하는 조건이 언급될 수 있다. 이 조건들에서는 제2절연막(5)상에서 식각이 정지되기 때문에, 콘택홀의 저면이 제2절연막(5)의 형태를 유지하므로, 반도체기판(1)의 표면이 식각분위기에 노출되지 않는다.Next, the contact hole 7 which penetrates the 3rd insulating film 6 is formed using the photoresist method which uses a photoresist as a mask. In this case, etching is performed under the condition that the silicon oxide film can be selectively etched with respect to the silicon nitride film. As an etching condition, for example, at a substrate temperature of 100 ° C., a pressure of 60 mTorr, and an RF power of 800 W, a condition using a RIE etching apparatus that injects a CHF 3 gas at a flow rate of 25 sccm and a CO gas at a flow rate of 75 sccm is used. May be mentioned. In these conditions, since the etching is stopped on the second insulating film 5, the bottom surface of the contact hole maintains the shape of the second insulating film 5, so that the surface of the semiconductor substrate 1 is not exposed to the etching atmosphere.

다음에, 포토레지스트 제거후에, 도 1b에 도시된 바와 같이, 전면에 제4절연막으로서 20㎚두께의 실리콘질화막을 형성한다.Next, after removing the photoresist, a silicon nitride film having a thickness of 20 nm is formed on the entire surface as a fourth insulating film, as shown in Fig. 1B.

다음에, 도 1c에 도시된 바와 같이, 전면을 이방성식각으로 에치백하여, 콘택홀(7)의 측면에만 실리콘질화막으로 구성된 측벽(9a,9b)을 형성한다. 에치백에 이어서, 도 1d에 도시된 바와 같이 제2절연막(5)을 식각하고, 도 1e에 도시된 바와 같이 게이트산화막(2)을 식각함으로써, 반도체기판(1)의 표면이 콘택홀(7)의 저면으로서 노출된다.Next, as shown in FIG. 1C, the entire surface is etched back by anisotropic etching to form sidewalls 9a and 9b made of silicon nitride film only on the side surfaces of the contact holes 7. Following the etch back, the surface of the semiconductor substrate 1 is etched by etching the second insulating film 5 as shown in FIG. 1D and etching the gate oxide film 2 as shown in FIG. 1E. ) Is exposed as the bottom.

여기에서, 게이트전극(3)은 그 상부의 제1절연막(4) 및 제2절연막(5), 그리고 측벽(9b)에 의해 완전히 덮여지는 형태로 형성된다. 이러한 상태는, 콘택홀 형성시의 식각이 실리콘질화막에 대하여 실리콘산화막이 선택적으로 식각되는 조건하에서 수행되기 때문에, 콘택홀(7)이 게이트전극(3)위의 부분으로 연장되더라도, 실리콘질화막으로 이루어진 게이트전극(3) 상부의 제1절연막(4), 제2절연막(5) 그리고 측벽(9b)이 제거되지 않으므로 실현될 수 있다.Here, the gate electrode 3 is formed to be completely covered by the first insulating film 4 and the second insulating film 5 and the sidewall 9b. In this state, since the etching at the time of forming the contact hole is performed under the condition that the silicon oxide film is selectively etched with respect to the silicon nitride film, even if the contact hole 7 extends to the portion above the gate electrode 3, the silicon nitride film is formed. Since the first insulating film 4, the second insulating film 5, and the sidewall 9b on the gate electrode 3 are not removed, this can be realized.

다시 말하면, 본 발명의 제1실시예는, 콘택홀(7)이 게이트전극(3)에 대하여 셀프얼라인으로 형성되는 셀프얼라인기술을 콘택홀(7) 형성에 적용한 것이다. 이러한 방식으로, 본 발명은 셀프얼라인콘택방법의 효과와 본 발명의 고유의 효과를 각 방법의 장점들을 손상시키지 않고 양립시킬 수 있다.In other words, the first embodiment of the present invention applies a self-alignment technique in which the contact holes 7 are self-aligned with respect to the gate electrode 3 to the formation of the contact holes 7. In this way, the present invention can achieve the effects of the self-aligned contact method and the inherent effects of the present invention without compromising the advantages of each method.

다음에, 콘택홀(7)의 저면은 필요에 따라서 상술한 여러가지 처리가 행해지고, 이어서 콘택홀(7)내에 도전막이 채워진다.Next, the above-described various processes are performed on the bottom surface of the contact hole 7, and then a conductive film is filled in the contact hole 7.

도 2a 및 도 2b는 본 발명의 제2실시예에 따른 반도체장치 제조방법을 공정순으로 나타낸 단면도들이다.2A and 2B are cross-sectional views sequentially illustrating a method of manufacturing a semiconductor device in accordance with a second embodiment of the present invention.

도 2a 및 도 2b는 단일 콘택홀의 형성에 적용된 경우의 실시예를 설명한다.2A and 2B illustrate an embodiment when applied to the formation of a single contact hole.

먼저, 도 2a에 도시된 바와 같이, 먼저, 도 2a에 도시된 바와 같이, 반도체기판(1)상에 열산화법에 의해 제1절연막(14)으로서 10㎚두께의 실리콘산화막을 형성한다. 이 도면에서 게이트전극은 도시되어 있지 않지만, 제1실시예에서와 마찬가지로 산화막과 함께 형성될 수 있다.First, as shown in FIG. 2A, first, as shown in FIG. 2A, a 10 nm thick silicon oxide film is formed on the semiconductor substrate 1 as the first insulating film 14 by thermal oxidation. Although the gate electrode is not shown in this figure, it can be formed together with the oxide film as in the first embodiment.

다음에, 전면에 제2절연막(15)으로서 10㎚두께의 실리콘질화막을 CVD법으로 형성하고, 이어서, 층간절연막의 역할을 하는 제3절연막(16)으로서 500㎚두께의 BPSG막을 CVD법으로 형성한다. 제1절연막(4)(실리콘산화막)은 제2절연막(15)으로서 실리콘질화막의 장력을 완화하는 패드산화막으로서 역할한다.Next, a 10 nm thick silicon nitride film is formed on the entire surface by the CVD method, and then a BPSG film 500 nm thick is formed by the CVD method as the third insulating film 16 serving as an interlayer insulating film. do. The first insulating film 4 (silicon oxide film) serves as a pad oxide film that relaxes the tension of the silicon nitride film as the second insulating film 15.

다음에, 포토레지스트법을 사용에 의해 포토레지스트를 마스크로 사용하여 제3절연막(16)을 에치백하여 콘택홀(17)을 개구한다. 이 경우에, 실리콘산화막이 실리콘질화막에 대하여 선택적으로 식각될 수 있는 조건하에서 식각이 수행된다. 식각조건으로서는, 예컨대, 100℃의 기판온도, 60mTorr의 압력, 그리고 800W의 RF전력에서, 25sccm의 유량으로 CHF3가스와 75sccm의 유량으로 CO가스를 식각실로 주입하는 RIE식각장치를 사용하는 조건이 언급될 수 있다. 이 조건들에서는 제2절연막(15)상에서 식각이 정지되기 때문에, 반도체기판(1)의 표면이 식각분위기에 노출되지 않는다.Next, by using the photoresist method, the third insulating film 16 is etched back using the photoresist as a mask to open the contact hole 17. In this case, etching is performed under the condition that the silicon oxide film can be selectively etched with respect to the silicon nitride film. As an etching condition, for example, at a substrate temperature of 100 ° C., a pressure of 60 mTorr, and an RF power of 800 W, a condition using a RIE etching apparatus that injects a CHF 3 gas at a flow rate of 25 sccm and a CO gas at a flow rate of 75 sccm is used. May be mentioned. Under these conditions, since the etching is stopped on the second insulating film 15, the surface of the semiconductor substrate 1 is not exposed to the etching atmosphere.

다음에, 포토레지스트 제거후에, 전면에 제4절연막으로서 50㎚두께의 실리콘질화막을 CVD법으로 형성하고, 전면을 이방성식각으로 에치백하여, 콘택홀의 측면에만 실리콘질화막으로 구성된 측벽(9)을 형성한다.Next, after removing the photoresist, a 50 nm thick silicon nitride film is formed on the entire surface by a CVD method, and the entire surface is etched back by anisotropic etching to form sidewalls 9 formed of the silicon nitride film on only the side surfaces of the contact holes. do.

에치백에 이어서, 도 2b에 도시된 바와 같이, 제2절연막(15)을 식각하고 이어서 제1절연막(14)을 식각함으로써, 반도체기판(1)의 표면이 콘택홀의 저면으로서 노출된다.Following the etch back, as shown in FIG. 2B, by etching the second insulating film 15 and then etching the first insulating film 14, the surface of the semiconductor substrate 1 is exposed as the bottom surface of the contact hole.

다음에, 콘택홀(7)의 저면은 필요에 따라서 상술한 여러가지 처리가 행해지고, 이어서 콘택홀(7)내에 도전막이 채워진다.Next, the above-described various processes are performed on the bottom surface of the contact hole 7, and then a conductive film is filled in the contact hole 7.

특정한 실시예를 참조하여 본 발명을 설명하였지만, 이 설명은 제한적인 의미로 해석되지 않는다. 당업자에게는 본 발명의 설명을 참조하여 개시된 실시예들의 다양한 수정이 가능하다. 따라서, 첨부된 청구범위는 본 발명의 진정한 범위내에 있는 모든 수정과 실시예들을 포함한다.Although the present invention has been described with reference to specific embodiments, this description is not to be interpreted in a limiting sense. Various modifications of the disclosed embodiments are possible to those skilled in the art with reference to the description of the present invention. Accordingly, the appended claims include all modifications and embodiments that fall within the true scope of the invention.

상술한 바와 같이, 본 발명에 따르면, 콘택홀의 저면을 제외하고 콘택홀의 내부 표면을 실리콘질화막으로 덮는 것이 가능하다. 따라서, 콘택홀의 형성후에 수행되는, 콘택홀의 저면으로서 노출된 기판표면에의 손상 등의 제거를 목적으로 하는 세정처리나 자연산화막 등의 제거를 위한 습식식각에 의한 콘택홀 직경의 확대, 또한, 산화처리시에 산화종의 층간절연막으로 확산하는 것을 방지할 수 있다.As described above, according to the present invention, it is possible to cover the inner surface of the contact hole with the silicon nitride film except for the bottom of the contact hole. Therefore, the diameter of the contact hole is increased by wet etching for removal of a natural oxide film or the like, for the purpose of removing damage to the exposed substrate surface as the bottom of the contact hole, which is performed after the formation of the contact hole. Diffusion into the interlayer insulating film of the oxide species at the time of treatment can be prevented.

또한, 본 발명에 따르면, 콘택홀 형성시의 층간절연막의 식각이 기판전면에 설치된 실리콘질화막상에서 일단 정지될 수 있고, 측벽의 형성시에 기판표면의 노출이 단 한 번으로 제한될 수 있다. 따라서, 식각분위기에 콘택홀의 표면노출시간을 현저하게 단축시킬 수 있으므로, 콘택홀의 저면을 형성하는 기판에 도입되는 손상을 크게 감소시킬 수 있다.Further, according to the present invention, the etching of the interlayer insulating film at the time of forming the contact hole can be stopped once on the silicon nitride film provided on the front surface of the substrate, and the exposure of the surface of the substrate can be limited to only one time when the sidewalls are formed. Therefore, the surface exposure time of the contact hole can be significantly shortened in the etch atmosphere, and damage to the substrate forming the bottom of the contact hole can be greatly reduced.

또한, 본 발명은 셀프얼라인방법에 의한 콘택홀형성프로세스에 적합하기 때문에, 본 발명의 목적을 얻을 수 있고, 동시에 콘택홀의 셀프얼라인형성을 실현할 수 있다.In addition, since the present invention is suitable for the contact hole forming process by the self-aligning method, the object of the present invention can be obtained, and at the same time, the self-aligning of the contact holes can be realized.

결과적으로, 예컨대, DRAM 및 SRAM과 같이 스토리지노드에서의 접합누설전류의 저감이 요구되거나, 디바이스면적의 감소가 요구되거나, 또는 콘택홀과 배선간의 분리를 위한 마진이 요구되는 디바이스에의 적용이 적합한 반도체장치의 제조방법을 제공하는 것이 가능하다.As a result, it is suitable to be applied to devices requiring reduction of junction leakage current in storage nodes, for example, DRAM and SRAM, reduction of device area, or a margin for separation between contact holes and wiring. It is possible to provide a method for manufacturing a semiconductor device.

Claims (6)

반도체장치 제조방법에 있어서:In the semiconductor device manufacturing method: 제1절연막을 반도체기판의 표면상에 형성하는 단계;Forming a first insulating film on the surface of the semiconductor substrate; 제2절연막을 상기 제1절연막상에 형성하는 단계;Forming a second insulating film on the first insulating film; 제3절연막을 상기 제2절연막상에 형성하는 단계;Forming a third insulating film on the second insulating film; 상기 제3절연막을 관통하여 상기 제2절연막의 표면에 달하는 콘택홀을 형성하는 단계;Forming a contact hole penetrating through the third insulating layer and reaching the surface of the second insulating layer; 제4절연막을 상기 콘택홀을 포함하는 전면에 형성하는 단계;Forming a fourth insulating layer on the entire surface including the contact hole; 상기 제4절연막을 이방성식각방법을 사용하여 식각하여, 상기 제4절연막으로 이루어진 측벽을 상기 콘택홀의 측면부상에 형성하고, 상기 제2절연막을 노출시키는 단계; 및Etching the fourth insulating film by using an anisotropic etching method to form a sidewall formed of the fourth insulating film on the side portion of the contact hole and exposing the second insulating film; And 노출된 상기 제2절연막을 제거한 후, 상기 제1절연막을 제거함으로써 상기 반도체기판을 노출시키는 단계를 포함하는 반도체장치 제조방법.And removing the exposed second insulating film and exposing the semiconductor substrate by removing the first insulating film. 제1항에 있어서, 상기 제2및 제4절연막들은 실리콘질화막들인 것을 특징으로 하는 반도체장치 제조방법.The method of claim 1, wherein the second and fourth insulating layers are silicon nitride layers. 제2항에 있어서, 상기 제1절연막은 실리콘산화막인 것을 특징으로 하는 반도체장치 제조방법.The method of claim 2, wherein the first insulating film is a silicon oxide film. 제3항에 있어서, 상기 실리콘산화막은 게이트산화막인 것을 특징으로 하는 반도체장치 제조방법.The method of claim 3, wherein the silicon oxide film is a gate oxide film. 반도체장치 제조방법에 있어서:In the semiconductor device manufacturing method: 게이트산화막과 게이트전극을 반도체기판상에 순차적으로 형성하는 단계;Sequentially forming a gate oxide film and a gate electrode on the semiconductor substrate; 제1절연막을 상기 게이트전극과 상기 게이트산화막상에 형성하는 단계;Forming a first insulating film on the gate electrode and the gate oxide film; 제2절연막을 상기 제1절연막상에 형성하는 단계;Forming a second insulating film on the first insulating film; 상기 제2절연막을 관통하여 상기 제1절연막의 표면에 달하는 콘택홀을 형성하는 단계;Forming a contact hole penetrating through the second insulating layer and reaching the surface of the first insulating layer; 제3절연막을 상기 콘택홀을 포함하는 전면에 형성하는 단계;Forming a third insulating layer on the entire surface including the contact hole; 상기 제3절연막을 이방성식각방법을 사용하여 식각하여, 상기 제3절연막으로 이루어진 측벽을 상기 콘택홀의 측면부상에 형성하고, 상기 제1절연막을 노출시키는 단계; 및Etching the third insulating film using an anisotropic etching method to form a sidewall formed of the third insulating film on the side portion of the contact hole and exposing the first insulating film; And 노출된 상기 제1절연막을 제거한 후, 상기 게이트산화막을 제거함으로써 상기 반도체기판을 노출시키는 단계를 구비하는 반도체장치 제조방법.And removing the gate oxide film to expose the semiconductor substrate after removing the exposed first insulating film. 제5항에 있어서, 상기 제1및 제3절연막들은 실리콘질화막들인 것을 특징으로 하는 반도체장치 제조방법.6. The method of claim 5, wherein the first and third insulating films are silicon nitride films.
KR1020000054855A 1999-09-20 2000-09-19 Manufacturing method of semiconductor device KR20010030433A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11-265301 1999-09-20
JP26530199A JP2001093855A (en) 1999-09-20 1999-09-20 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
KR20010030433A true KR20010030433A (en) 2001-04-16

Family

ID=17415309

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000054855A KR20010030433A (en) 1999-09-20 2000-09-19 Manufacturing method of semiconductor device

Country Status (3)

Country Link
JP (1) JP2001093855A (en)
KR (1) KR20010030433A (en)
TW (1) TW457541B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980294B1 (en) 2003-06-28 2010-09-06 주식회사 하이닉스반도체 The method for forming capacitor in semiconductor device
JP2005294518A (en) * 2004-03-31 2005-10-20 Toshiba Corp Semiconductor device and method for manufacturing the same
US20060189080A1 (en) * 2005-02-21 2006-08-24 Hynix Semiconductor Inc. Method for fabricating semiconductor device
CN102522328B (en) * 2011-12-30 2014-01-29 江苏宏微科技有限公司 Manufacturing method of MOS (Metal Oxide Semiconductor)-device grid-electrode hole

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970024209A (en) * 1995-10-18 1997-05-30 문정환 High dielectric constant capacitor and its manufacturing method
JPH09289177A (en) * 1996-04-22 1997-11-04 Mitsubishi Electric Corp Semiconductor device and its manufacture
KR19990065385A (en) * 1998-01-13 1999-08-05 윤종용 Contact hole formation method of semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970024209A (en) * 1995-10-18 1997-05-30 문정환 High dielectric constant capacitor and its manufacturing method
JPH09289177A (en) * 1996-04-22 1997-11-04 Mitsubishi Electric Corp Semiconductor device and its manufacture
KR19990065385A (en) * 1998-01-13 1999-08-05 윤종용 Contact hole formation method of semiconductor memory device

Also Published As

Publication number Publication date
TW457541B (en) 2001-10-01
JP2001093855A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
JP4605399B2 (en) Method for forming field effect transistor
US5162259A (en) Method for forming a buried contact in a semiconductor device
US20070082440A1 (en) Semiconductor device and manufacturing method thereof
JP2585140B2 (en) Wiring contact structure of semiconductor device
KR980012571A (en) Flash memory manufacturing method
KR100423904B1 (en) Method of forming semiconductor device having a contact connected with mos transistor
JP3505493B2 (en) Method for manufacturing semiconductor device
US8008204B2 (en) Method of manufacturing semiconductor device
US6699744B2 (en) Method of forming a MOS transistor of a semiconductor device
US20030085434A1 (en) Semiconductor device and method for manufacturing the same
JP2816192B2 (en) Method for manufacturing semiconductor device
KR100261610B1 (en) Process of fabricating semiconductor device having low-resistive titanium silicide layer free from short-circuit and leakage current
KR20020043182A (en) Semiconductor device and its manufacturing method
KR19980018188A (en) Method for Manufacturing Self Aligned POCl₃ for Submicron Microelectronics Applications Using Amorphized Polysilicon
KR20010030433A (en) Manufacturing method of semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
US6001681A (en) Method to reduce the depth of a buried contact trench by using a thin split polysilicon thickness
KR19990018279A (en) MOSFET device for preventing gate-source-drain short caused by salicide and method for manufacturing same
KR100603510B1 (en) Method for manufacturing a semiconductor device
KR100426492B1 (en) Method for forming charge storage electrode of semiconductor device
KR0129984B1 (en) Semiconductor device and its manufacturing method
KR100945648B1 (en) Transistor in a semiconductor device and a method of manufacturing the same
KR100390828B1 (en) A forming method of etch stop layer for borderless contact by rapid thermal process
KR100256528B1 (en) Method for manufacturing semiconductor device
KR100372819B1 (en) method for forming gate spacer in semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application