KR20010026433A - The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process - Google Patents

The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process Download PDF

Info

Publication number
KR20010026433A
KR20010026433A KR1019990037745A KR19990037745A KR20010026433A KR 20010026433 A KR20010026433 A KR 20010026433A KR 1019990037745 A KR1019990037745 A KR 1019990037745A KR 19990037745 A KR19990037745 A KR 19990037745A KR 20010026433 A KR20010026433 A KR 20010026433A
Authority
KR
South Korea
Prior art keywords
ion beam
single electron
electron tunnel
focused ion
tunnel junction
Prior art date
Application number
KR1019990037745A
Other languages
Korean (ko)
Inventor
강승언
김태환
추동철
심재환
Original Assignee
강승언
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강승언 filed Critical 강승언
Priority to KR1019990037745A priority Critical patent/KR20010026433A/en
Publication of KR20010026433A publication Critical patent/KR20010026433A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A single electron tunnel diode produced by using a condensed ion beam is provided to effectively control a thermal fluctuation at room temperature and to improve reliability. CONSTITUTION: After an insulating layer(4) such as SiO2 or MgO is deposited on a silicon substrate(5), an aluminum layer(3) is deposited on the insulating layer(4) and then patterned to form a source electrode(6), a drain electrode(7) and a single electron tunnel junction(2). In particular, the single electron tunnel junction(2) is formed by a nano particle process. In the process, a gallium ion beam is emitted by a condensed ion beam probe(1), and thereby defect is created in the single electron tunnel junction(2). The defect forms a nano island capable of confining electrons and producing a coulomb blockade effect at room temperature as well.

Description

집속이온빔 나노입자 공정을 이용한 단전자 터널 다이오우드 제작 기술{The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process}The fabrication technology of single electrode tunnel diodes using focused ion beam nanoparticle process

단전자 터널링 소자는 현재의 고밀도 메모리 집적회로 소자를 대체할 수 있는 테라바이트급 이상의 메모리소자제작을 가능하게 하는 차세대 초고밀도 메모리소자이다. 현재까지 단전자 터널링 소자의 제작에 있어서 가장 큰 문제점은 상온에서 열적요동에 의한 제어의 어려움과 공정의 복잡함으로 인해 재현성 및 신뢰성이 떨어진다는 것이다. 이 중에서 가장 시급히 해결되야 할 문제는 상온에서 열적요동을 효과적으로 제어할 수 있는 방법의 개발과 공정의 단순화로 신뢰성을 확보하여 실제 공정에 적용가능한 소자를 제작하는데 목적이 있다.The single electron tunneling device is a next generation ultra high density memory device that enables fabrication of terabyte or more memory devices that can replace current high density memory integrated circuit devices. Until now, the biggest problem in the fabrication of single-electron tunneling device is that the reproducibility and reliability are inferior due to the difficulty of controlling by thermal fluctuations at room temperature and the complexity of the process. The most urgent problem to be solved is the development of a method capable of effectively controlling thermal fluctuations at room temperature and the simplification of the process to secure reliability and to manufacture a device applicable to the actual process.

차세대 초고밀도 메모리 집적회로 소자로 주목받고 있는 단전자 트랜지스터 제작의 새로운 접근으로 상온동작을 가능하게 하며 공정의 단순화로 신뢰성 및 재현성을 높일 수 있는 기술로 사료된다.The new approach to the production of single-electron transistors, which is drawing attention as the next generation ultra high density memory integrated circuit device, is expected to enable room temperature operation and to improve the reliability and reproducibility by simplifying the process.

도 1 집속이온빔을 이용한 단전자 터널 접합 형성 과정Figure 1 Process of forming a single electron tunnel junction using a focused ion beam

도 2 단전자 터널 접합 이미지Fig. 2 Single-electron tunnel junction image

도 3 단전자 터널 다이오드 특성 측정 결과Fig. 3 Measurement result of single electron tunnel diode

<도면의 주요부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

1 : 집속이온빔 프르브 2 : 단전자 터널접합 생성지역1: focused ion beam probe 2: single electron tunnel junction generation area

3 : 금속층(알루미늄) 4 : 절연체층(SiO2또는 MgO)3: metal layer (aluminum) 4: insulator layer (SiO 2 or MgO)

5 : 기판(p-Si) 6 : 소스전극5 substrate (p-Si) 6 source electrode

7 : 드레인 전극 8 : 가변전원7: drain electrode 8: variable power supply

9 : 전류계(pico-ampere meter) 10 : 스퍼터 영역9: pico-ampere meter 10: sputter area

11 : 전자 채널 영역11: electron channel region

본 발명은 기가 또는 테라바이트급 이상의 차세대 초고밀도 메모리 집적회로 소자로 사용될 수 있는 단전자 터널링 소자 제작방법에 있어서 집속이온빔을 이용하는 새로운 기술이다. 단전자 터널링 소자는 소스에서 드레인으로 이동하는 전자가 터널 접합으로 연결된 섬에 구속되는 현상에 의해 나타나는 Coluomb blockade 효과와 이로 인한 전도도의 진동효과를 이용하는 소자이다. 이를 제작하기 위해서 근본적으로 전자를 구속할 수 있는 금속 혹은 양자 반도체 군섬을 인공적으로 또는 자연발생적으로 형성하여야 한다. 일반적으로 이를 형성하기 위해 직접적인 혹은 간접적인 여러 가지 방법을 사용하게 된다.The present invention is a novel technique using a focused ion beam in a method for manufacturing a single electron tunneling device that can be used as a next generation ultra high density memory integrated circuit device of more than a gigabyte or terabytes. The single-electron tunneling device utilizes the Coluomb blockade effect caused by the phenomenon that electrons moving from the source to the drain are confined to the island connected by the tunnel junction, and thus the vibration effect of the conductivity. In order to fabricate this, a metal or quantum semiconductor island, which can fundamentally constrain electrons, must be formed artificially or naturally. Generally, there are a variety of direct and indirect ways to form this.

집속이온빔을 이용해 효과적인 나노입자 군섬을 형성하기 위해 Ga+빔 중심부근의 방사선 효과에 의해 생성되는 결함에 의해 나노입자를 형성하는 방법이 발명의 핵심이다. 즉, 전자이동을 위한 전자채널 형성부근에 집속이온빔을 노출시키면 전자채널에 결함이 생기게 되고 이 결함으로 인해 전자를 구속할 수 있는 효과적인 나노군섬들이 형성되며 이 섬들은 열적요동에 의해 정확한 동작이 어려운 상온에서도 단전자 터널링 소자의 기본특성인 Coulomb blockade 효과를 나타낸다.The core of the invention is a method of forming nanoparticles by defects generated by the radiation effect near the center of the Ga + beam to form an effective group of nanoparticle islands using a focused ion beam. In other words, if the focused ion beam is exposed near the electron channel formation for electron transport, defects are generated in the electron channel, and this defect forms effective nano-group islands that can confine the electrons. Even at room temperature, the Coulomb blockade effect, which is a basic characteristic of a single electron tunneling device, is exhibited.

도 1 에 집속이온빔을 이용한 방법에 대한 개략적인 묘사가 나타나 있다. 이러한 집속이온빔에 의하여 제작된 상온동작 단전자 터널접합에 대한 상이 도 2 에 나타나 있다.A schematic depiction of the method using the focused ion beam is shown in FIG. 1. An image of the room temperature operating single-electron tunnel junction manufactured by the focused ion beam is shown in FIG. 2.

단전자 터널링 소자의 제작공정은 두단계로 다음과 같이 요약된다.The manufacturing process of the single electron tunneling device is summarized as follows in two steps.

1. 시료증착단계로서 Si기판위에 절연체층으로 SiO2또는 MgO를 2000 ∼ 3000 Å 두께로 증착하고 그 위에 알루미늄을 1000 Å 이하의 두께로 증착한다.1. As a sample deposition step, SiO 2 or MgO is deposited on the Si substrate as an insulator layer at a thickness of 2000 to 3000 GPa and aluminum is deposited to a thickness of 1000 GPa or less.

2. 광리소그래피법을 이용해 Al 금속층을 식각한 후 Ga+빔을 이용해 도 2 의 패턴형태로 소스, 드레인을 연결하는 Al 금속선을 제거한다. 이때 가속 전압은 15 kV, 빔전류는 50 pA 이다. 제작된 단전자 터널 다이오드에 대한 전류-전압 및 전도도-전압 축을 통하여 확인된 성능 특성평가결과가 도 3 에 나타나 있다.2. The Al metal layer is etched by the photolithography method, and then the Al metal line connecting the source and the drain in the pattern form of FIG. 2 is removed by using a Ga + beam. The acceleration voltage is 15 kV and the beam current is 50 pA. The performance characteristic evaluation results confirmed through the current-voltage and conductivity-voltage axes of the fabricated single electron tunnel diode are shown in FIG. 3.

집속이온빔 나노입자 공정을 이용해 상온동작 가능한 단전자 터널다이오드 제작의 성공으로부터 실제 차세대 초고집적 메모리 소자로 사용될 수 있는 단전자 트랜지스터개발에 대한 획기적인 새로운 방법을 제시하여 상용화된 단전자 트랜지스터 개발의 촉진제 역할을 할 것으로 사료된다.From the success of manufacturing single-electron tunnel diodes that can operate at room temperature using the focused ion beam nanoparticle process, we have shown a breakthrough new method for the development of single-electron transistors that can be used as the next-generation ultra-high-density memory devices. It is believed to be.

Claims (1)

단전자 터널 다이오드 제작공정에 있어서,In the single electron tunnel diode manufacturing process, 반도체기판-절연체층-금속층으로 이루어진 시료제작단계,Sample manufacturing step consisting of a semiconductor substrate-insulator layer-metal layer, 광리소그래피 후 집속이온빔에 의해 노출시켜 금속층에 형성되는 결함에 의해 나노양자군섬을 형성시키는 단계를 특징으로 하는 집속이온빔 나노입자 공정을 이용한 단전자 터널 다이오드 제작기술.A single-electron tunnel diode manufacturing technique using a focused ion beam nanoparticle process, characterized in that the nano-quantum group is formed by a defect formed in the metal layer by exposure by the focused ion beam after photolithography.
KR1019990037745A 1999-09-06 1999-09-06 The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process KR20010026433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990037745A KR20010026433A (en) 1999-09-06 1999-09-06 The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990037745A KR20010026433A (en) 1999-09-06 1999-09-06 The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process

Publications (1)

Publication Number Publication Date
KR20010026433A true KR20010026433A (en) 2001-04-06

Family

ID=19610289

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990037745A KR20010026433A (en) 1999-09-06 1999-09-06 The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process

Country Status (1)

Country Link
KR (1) KR20010026433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352579B1 (en) * 2000-02-28 2002-09-12 김태환 Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam.
KR100907241B1 (en) * 2007-07-12 2009-07-10 한국원자력연구원 A method for controling the operation mode of nano-wire transistor using proton beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352579B1 (en) * 2000-02-28 2002-09-12 김태환 Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam.
KR100907241B1 (en) * 2007-07-12 2009-07-10 한국원자력연구원 A method for controling the operation mode of nano-wire transistor using proton beam

Similar Documents

Publication Publication Date Title
JP3000360B2 (en) Method for forming quantum dots in semiconductor device
KR100982419B1 (en) Method of forming conductive line of semiconductor device using carbon nanotube and semiconductor device manufactured by the method
JP2007123657A (en) Semiconductor device and manufacturing method thereof
Namatsu et al. Fabrication of Si single-electron transistors with precise dimensions by electron-beam nanolithography
KR20010032341A (en) Single electron devices
US6479365B2 (en) Single electron transistor using porous silicon and manufacturing method thereof
KR20020058151A (en) Fabrication method of single electron tunneling transistor operated at room temperature utilizing focused-ion beam
US6221720B1 (en) Method of making an electronic device and the same
JP3560630B2 (en) Single electronic device
KR100370659B1 (en) Fabrication method of nanocrystals by using focused ion beam
US7018881B2 (en) Suspended gate single-electron device
KR20010026433A (en) The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process
KR100434536B1 (en) A single electron transistor and a fabricating method thereof
JP4774665B2 (en) Manufacturing method of semiconductor device
KR100966007B1 (en) Room Temperature operating Single Electron Device using Carbon Nano Tube and Fabrication Method thereof
KR20030043513A (en) Method for manufacturing a silicon single electron transistor memory device
JP2008192795A (en) Manufacturing method of carbon nanotube transistor
US20050139819A1 (en) Process for fabricating nanoelectronic device by intermittent exposure
JP2005333146A (en) Semiconductor apparatus and method for manufacturing the same
KR20010036222A (en) The Fabrication Method of the In-Plane-Gate Type of the Single Electron Transistors Utilizing the Focused Ion Beam Process
JP3228250B2 (en) Microstructure element and manufacturing method thereof
KR100468834B1 (en) Single electron transistor using oxidation process and manufacturing method
KR100442815B1 (en) Single electron transistor formed by porous silicon and fabricating method thereof
KR101010115B1 (en) Semiconductor Device and Method for Manufacturing the same
KR100352579B1 (en) Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application