KR100352579B1 - Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam. - Google Patents

Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam. Download PDF

Info

Publication number
KR100352579B1
KR100352579B1 KR1020000009950A KR20000009950A KR100352579B1 KR 100352579 B1 KR100352579 B1 KR 100352579B1 KR 1020000009950 A KR1020000009950 A KR 1020000009950A KR 20000009950 A KR20000009950 A KR 20000009950A KR 100352579 B1 KR100352579 B1 KR 100352579B1
Authority
KR
South Korea
Prior art keywords
focused ion
nanoparticles
ion beam
development
technology
Prior art date
Application number
KR1020000009950A
Other languages
Korean (ko)
Other versions
KR20010084721A (en
Inventor
김태환
강승언
추동철
심재환
정민
Original Assignee
김태환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김태환 filed Critical 김태환
Priority to KR1020000009950A priority Critical patent/KR100352579B1/en
Publication of KR20010084721A publication Critical patent/KR20010084721A/en
Application granted granted Critical
Publication of KR100352579B1 publication Critical patent/KR100352579B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02351Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to corpuscular radiation, e.g. exposure to electrons, alpha-particles, protons or ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures

Abstract

본 발명은 차세대 고메모리 집적회로 소자인 단전자 터널링 소자 또는 양자소자 제작에 있어서 전자구속을 위한 나노입자를 집속이온빔을 이용하여 형성하는 기술이다. 집속이온빔 시스템은 집적회로의 수정 또는 마스크없는 리소그래피에 사용되는 시스템으로 액체금속이온원의 개발로 인해 마이크로 미터이하의 초미세구조를 직접 가공할 수 있는 기술적인 발전을 이루고 있다. 현재까지 나노입자를 형성하기 위해 에피텍셜법이나 화학기상증착법을 이용한 나노입자 성장기법이 주로 사용되고 있고 형성된 나노입자를 이용한 전자소자들이 소개되고 있다. 집속이온빔을 이용해 형성된 수십 Å 크기의 나노입자들은 가장 단순한 공정에 의해 효과적인 나노입자를 형성할 수 있는 새로운 방법이다. 집속이온빔의 방사선효과를 이용해 나노입자를 형성하고 집속이온빔에 의한 이차전자에 의하여 나노입자를 결정화하는 방법은 지금까지 알려진 방법으로는 아주 단순한 공정을 특징으로 하고 있으며 상온의 열적에너지를 극복할 수 있는 구속에너지를 갖는 나노입자의 형성이 가능한 방법이다. 이러한 기술의 개발은 차세대 반도체 전자소자개발의 촉진제 역할을 할 수 있는 획기적인 새로운 기술이다.The present invention is a technology for forming nanoparticles for electron confinement using a focused ion beam in the fabrication of a single electron tunneling device or a quantum device, which is a next generation high memory integrated circuit device. Focused ion beam systems are used for the modification of integrated circuits or maskless lithography, and the development of liquid metal ion sources has led to technological advances in the direct processing of ultra-fine structures of less than micrometers. To date, nanoparticle growth techniques using epitaxial or chemical vapor deposition are mainly used to form nanoparticles, and electronic devices using the formed nanoparticles have been introduced. The tens of nanometer-sized nanoparticles formed using focused ion beams are a new way to form effective nanoparticles by the simplest process. The method of forming nanoparticles using the radiation effect of focused ion beam and crystallizing nanoparticles by secondary electrons by focused ion beam is characterized by a very simple process so far and can overcome thermal energy at room temperature. It is possible to form nanoparticles with confined energy. The development of this technology is a revolutionary new technology that can serve as an accelerator for the development of next-generation semiconductor electronic devices.

Description

집속이온빔을 이용한 동위치에서 식각 및 나노결정체 형성 기술개발{Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam.}Development of etching and nanocrystal formation technology in situ using focused ion beam {Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam.}

본 발명은 차세대 고메모리 집적회로 소자인 단전자 터널링 소자 또는 양자소자 제작에 있어서 전자구속을 위한 나노결정체형성에 집속이온빔을 이용하는 기술이다. 집속이온빔 시스템은 집적회로의 수정 또는 마스크 없는 리소그래피에 사용되는 시스템으로 액체금속이온원의 개발로 인해 마이크로 이하의 초미세구조를 직접 가공할 수 있는 기술적인 발전을 이루고 있다. 또한 최근 차세대 반도체소자 제작에 있어서 그 미세구조를 형성할 수 있는 기술적인 바탕을 제공하고 있다. 차세대 반도체 소자의 선두주자라 할 수 있는 단전자 트랜지스터 또는 양자소자는 전자를 구속할 수 있는 나노입자형성이 핵심기술이라 할 수 있다. 현재까지 나노입자 혹은 양자점을 형성하기 위해 에피텍셜법 또는 화학기상증착법을 이용하는 성장기술이 주로 훌륭한 성과를 나타내고 있다. 집속이온빔을 이용해 나노결정체를 형성하는 것은 수십 Å 크기의 나노결정체를 임의적으로 형성할 수 있는 기술이며 기존의 복잡한 공정에 비해 가장 간단하며 효과적으로 조절이 가능한 방법이다.The present invention uses a focused ion beam to form nanocrystals for electron confinement in the fabrication of single electron tunneling devices or quantum devices, which are next generation high memory integrated circuit devices. Focused ion beam systems are used for the modification of integrated circuits or maskless lithography. The development of liquid metal ion sources has led to technological advances in the direct processing of sub-microstructures. In addition, in recent years in the fabrication of next-generation semiconductor devices has provided a technical basis for forming the microstructure. In the single-electron transistor or quantum device, which is the leader of the next-generation semiconductor device, nanoparticle formation that can constrain electrons is a key technology. To date, growth techniques that use epitaxial or chemical vapor deposition to form nanoparticles or quantum dots have shown excellent results. Forming nanocrystals using a focused ion beam is a technology that can randomly form nanocrystals of several tens of micrometers in size and is the simplest and most effectively controllable method compared to conventional complex processes.

차세대 반도체 소자인 단전자 트랜지스터 또는 양자소자제작에 필요한 나노결정체 형성에 있어 집속이온빔의 방사선효과를 이용하는 기술로서 현재까지의 기술에 비해 가장 단순하며 효과적인 크기의 나노입자를 형성할 수 있는 기술로 사료된다.It is a technology that uses the radiation effect of focused ion beam to form nanocrystals for the production of next-generation semiconductor devices, such as single-electron transistors or quantum devices. .

도 1 집속이온빔 방사선효과에 의한 나노결정체 형성 단면 개략도1 is a schematic cross-sectional view of nanocrystal formation by focused ion beam radiation effect

도 2 나노결정체 형성 평면 개략도Fig. 2 Schematic diagram of nanocrystal formation

도 3 나노입자공정을 이용해 제작된 단전자 트랜지스터Fig. 3 Single electron transistor fabricated using nanoparticle process

도 4 집속이온빔 방사선효과에 의해 형성된 나노결정체의 고배율 투과전자 현미경 이미지High magnification transmission electron microscopy image of nanocrystals formed by focused ion beam radiation effect

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 집속이온빔 프르브 2 : 빔 에너지 분포1 Focused ion beam probe 2 Beam energy distribution

3 : 집속이온빔 주입영역 4 : 나노결정체 형성지역3: focused ion beam injection region 4: nano crystal forming region

5 : 나노결정체 6 : 금속층(Al)5: nanocrystal 6: metal layer (Al)

7 : 절연체층(MgO) 8 : 기판(p-Si)7: Insulator layer (MgO) 8: Substrate (p-Si)

9 : 소스 전극 10 : 이온빔에 의해 식각된 지역9 source electrode 10 area etched by ion beam

11 : 게이트 전극 12 : 드레인 전극11 gate electrode 12 drain electrode

13 : 배율표시13: magnification display

본 발명은 차세대 초고밀도 반도체소자 제작시 핵심기술이 되는 전자구속을 위한 초미세구조 형성에 있어 집속이온빔을 이용하는 기술이다. 금속 또는 반도체 나노입자는 전류를 형성하는 터널전자를 구속시킬 수 있는 나노크기의 구조를 가져야 한다. 이러한 나노크기의 금속 혹은 반도체 군섬은 인공적 또는 자연발생적으로 형성하게 되는데 일반적으로 상온에서의 열적요동에너지보다 큰 구속에너지를 제공하기 위해 수십 nm 이하의 구조를 형성해야 한다.The present invention is a technique using a focused ion beam in the formation of ultra-fine structure for electron confinement, which is a core technology in the production of next generation ultra high density semiconductor devices. The metal or semiconductor nanoparticles should have a nanoscale structure that can confine the tunnel electrons that form the current. Such nanoscale metal or semiconductor islands are formed artificially or spontaneously. Generally, a structure of several tens of nm or less must be formed to provide a confining energy larger than thermal fluctuation energy at room temperature.

집속이온빔을 이용한 시료의 표면가공 시 직접 빔에 노출된 영역주위는 빔방사선효과에 의해 부분적인 결함을 나타내게 된다. 이러한 결함들은 시료에 주입된 빔의 에너지, 집속도, 노출시간 등에 따라 변하지만 모든 조건이 동일한 경우 시간에 따라 결함이 증가하게 된다. 본 발명에서 사용한 집속이온빔의 소스의 가열 전류밀도와 휘도 및 에너지 분포는 각각 1.5 A/cm2와 10 A/cm2sr 와 10 eV 이다. 식각 및 나노결정체 형성을 위하여 사용된 Ga+이온빔의 에너지는 15 keV 이다. 방출되는 빔의 전류는 5 ㎂ 이고 탐사 빔의 전류와 직경은 50 pA 와 0.1 ㎛ 이다. 게이트와 소스 및 드레인 전극들의 영역을 2 시간동안 Ga+이온 빔을 시효의 표면에 노출하여 각각 분리하였다. 일단 각각의 전극을 식각한 후 소스-드레인 전극과 게이트 채널에 나노입자를 형성하기 위하여 소스-드레인 전극 영역과 게이트 채널 영역에 300 초와 600 초 동안 빔을 노출하였다. 빔을 시료에 주입시킨 후 적당한 시간이 흐른 후 형성된 결함들의 중첩에 의해 빔에 바로 노출되지 않은 영역에서는 나노입자군섬이 형성되고 시간이 더 지난 후에는 형성된 나노입자군섬의 밀도가 차츰 낮아지게 된다. 또한 형성된 나노입자들은 이온과 시료원자의 충돌로 발생되는 이차전자, 혹은 다른 원인에 의해 결정화되는 과정을 거쳐 나노 결정체를 형성하게 된다. 도 1, 도 2 는 각각 빔의 방사선효과에 의한 나노결정체 형성의 단면 개략도, 평면 개략도를 나타내고 있다.When processing the surface of the specimen using the focused ion beam, the area around the area directly exposed to the beam shows partial defects due to the beam radiation effect. These defects vary depending on the energy, focusing speed, and exposure time of the beam injected into the sample, but if all the conditions are the same, the defects increase with time. The heating current density, luminance and energy distribution of the source of the focused ion beam used in the present invention are 1.5 A / cm 2 , 10 A / cm 2 sr and 10 eV, respectively. The energy of the Ga + ion beam used for etching and nanocrystal formation is 15 keV. The current of the emitted beam is 5 ㎂ and the current and diameter of the probe beam are 50 pA and 0.1 μm. Regions of the gate and source and drain electrodes were separated by exposing the Ga + ion beam to the surface of aging for 2 hours. After each electrode was etched, beams were exposed to the source and drain electrode regions and the gate channel region for 300 and 600 seconds to form nanoparticles in the source and drain electrodes and the gate channel. After the injection of the beam into the sample, the nanoparticle group islands are formed in a region not directly exposed to the beam due to the overlap of defects formed after a suitable time passes, and the density of the formed nanoparticle group islands gradually decreases after a longer time. In addition, the formed nanoparticles form nanocrystals through crystallization by secondary electrons or other causes generated by collisions of ions and sample atoms. 1 and 2 show cross-sectional and planar schematics of nanocrystal formation, respectively, by the radiation effect of the beam.

두 가지 방법에 의해 나노결정체의 형성을 확인할 수 있는데 먼저 나노결정체 형성지역에 터널전류를 인가시켜 전기적 성질을 조사하거나 혹은 직접적인 방법으로 고배율 전자현미경을 이용해 관측하는 방법이다. 상온에서의 전류-전압 특성에서 Coulomb staircase 현상과 전도도-전압 특성에서 전도도의 주기적인 진동을나타내었다. 도 3 은 집속이온빔을 이용한 동위치에서 식각 및 나노결정체 형성과정으로 제작된 단전자 트랜지스터의 상이다. 그림에서 나노결정체형성지역으로 표시된 지역에 입사되는 이온빔을 적절하게 조절하면 그 지역에 나노결정체가 형성되고 소스-드레인에 전압을 가하면 전자는 소스전극에서 나노결정체를 통해 드레인 전극으로 이동하게 된다. 나노입자공정을 이용해 제작된 소자의 전기적 특성에 대한 상온에서의 측정시 게이트전압이 인가되지 않은 상태에서 전류-전압 특성은 Coulomb staircase 현상을 나타내고 전도도-전압 특성에서는 주기적인 전도도 진동 특성이 관측되었으며 게이트 전압이 인가된 경우 게이트전압에 의한 전류진동효과인 주기적인 Coulomb 진동 현상도 관측되었다. 이러한 전기적 성질은 나노결정체에 의해 나타나는 Coulomb blockade 현상으로 예측될 수 있으며 상온의 열적에너지보다 큰 구속에너지를 갖는 나노결정체가 생성되었음을 증명한다. 도 4 는 나노결정체가 형성된 지역을 고배율 투과전자현미경에 의해 관측한 사진이다. 도 4 의 나노입자형성지역에 대한 고배율 투과전자현미경 상은 집속이온빔 방사선효과에 의해 형성된 나노결정체의 크기가 수십 Å 임을 나타내며 각 나노결정체들은 일정한 결정방향을 갖고 있음을 알 수 있다. 또한 형성된 나노결정체간의 거리는 대략 10 Å 부근으로 낮은 바이어스 전압에 의해 터널전류를 형성할 수 있으며 단전자 트랜지스터의 양자효과인 Coulomb blockade 효과를 상온에서 나타낼 수 있다.The formation of nanocrystals can be confirmed by two methods. First, the tunnel current is applied to the nanocrystal formation region to investigate the electrical properties or the direct observation is performed by using a high magnification electron microscope. Coulomb staircase phenomena in the current-voltage characteristics at room temperature and periodic oscillations in the conductivity-voltage characteristics are shown. 3 is an image of a single electron transistor manufactured by etching and nanocrystal formation at the same position using a focused ion beam. Properly adjusting the ion beam incident on the area indicated by the nanocrystal formation area in the figure results in the formation of nanocrystals in that area and the transfer of electrons from the source electrode to the drain electrode through the nanocrystals. In the measurement of the electrical characteristics of the device fabricated by using nanoparticle process, the current-voltage characteristic shows the Coulomb staircase phenomenon without the gate voltage applied, and the conductivity-voltage characteristic shows periodic conductivity vibration characteristics. When the voltage was applied, the periodic coulomb vibration phenomenon was observed. This electrical property can be predicted by the Coulomb blockade phenomenon exhibited by the nanocrystals, demonstrating that the nanocrystals have a confining energy greater than the thermal energy at room temperature. 4 is a photograph of the region where the nanocrystals are formed by high magnification transmission electron microscope. The high magnification transmission electron microscope image of the nanoparticle formation region of FIG. 4 indicates that the size of the nanocrystals formed by the focused ion beam radiation effect is several tens of micrometers and each nanocrystals have a constant crystal orientation. In addition, the distance between the formed nanocrystals is approximately 10 kHz, and the tunnel current can be formed by a low bias voltage, and the Coulomb blockade effect, which is a quantum effect of a single electron transistor, can be exhibited at room temperature.

집속이온빔을 이용한 동위치에서 식각 및 나노입자형성 기술은 차세대 반도체 소자 또는 양자소자 제작에 있어 반드시 필요한 기술로서 아주 단순하며 동위치에서 식각 및 조절될 수 있는 크기의 나노결정체를 형성할 수 있는 획기적인 새로운 방법을 제시하여 차세대 반도체 소자 개발의 촉진제 역할을 할 것으로 사료된다.Etching and nanoparticle formation techniques using focused ion beams are essential for the fabrication of next-generation semiconductor devices or quantum devices. They are very simple and are a revolutionary new method for forming nanocrystals of size that can be etched and controlled in situ By presenting the method, it is expected to act as an accelerator for the development of next-generation semiconductor devices.

Claims (1)

동위치에서 식각 및 나노결정체형성 공정에 있어서,In the in-situ etching and nanocrystal forming process, 집속이온빔을 이용한 직접 식각에 의하여 초미세 구조를 제작하는 동시에 집속이온빔의 방사선 효과에 의해 나타나는 결함의 중첩으로 형성되는 나노결정체를 특징으로하는 집속이온빔을 이용한 동위치에서 식각 및 나노결정체형성 기술.Etching and nanocrystal forming technology at the same position using a focused ion beam characterized by nanocrystals formed by superimposition of defects caused by the radiation effect of the focused ion beam while producing an ultrafine structure by direct etching using the focused ion beam.
KR1020000009950A 2000-02-28 2000-02-28 Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam. KR100352579B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000009950A KR100352579B1 (en) 2000-02-28 2000-02-28 Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000009950A KR100352579B1 (en) 2000-02-28 2000-02-28 Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam.

Publications (2)

Publication Number Publication Date
KR20010084721A KR20010084721A (en) 2001-09-06
KR100352579B1 true KR100352579B1 (en) 2002-09-12

Family

ID=19650919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000009950A KR100352579B1 (en) 2000-02-28 2000-02-28 Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam.

Country Status (1)

Country Link
KR (1) KR100352579B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058151A (en) * 2000-12-29 2002-07-12 박호군 Fabrication method of single electron tunneling transistor operated at room temperature utilizing focused-ion beam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990036013A (en) * 1996-05-28 1999-05-25 모리시타 요이찌 Magnetoresistive element, magnetoresistive head, memory element and manufacturing method thereof
KR19990077530A (en) * 1998-03-02 1999-10-25 가네꼬 히사시 Focussed ion beam apparatus and control method for same
KR20010026433A (en) * 1999-09-06 2001-04-06 강승언 The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process
KR20010036222A (en) * 1999-10-06 2001-05-07 강승언 The Fabrication Method of the In-Plane-Gate Type of the Single Electron Transistors Utilizing the Focused Ion Beam Process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990036013A (en) * 1996-05-28 1999-05-25 모리시타 요이찌 Magnetoresistive element, magnetoresistive head, memory element and manufacturing method thereof
KR19990077530A (en) * 1998-03-02 1999-10-25 가네꼬 히사시 Focussed ion beam apparatus and control method for same
KR20010026433A (en) * 1999-09-06 2001-04-06 강승언 The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process
KR20010036222A (en) * 1999-10-06 2001-05-07 강승언 The Fabrication Method of the In-Plane-Gate Type of the Single Electron Transistors Utilizing the Focused Ion Beam Process

Also Published As

Publication number Publication date
KR20010084721A (en) 2001-09-06

Similar Documents

Publication Publication Date Title
US8173095B2 (en) Method and apparatus for producing graphene oxide layers on an insulating substrate
US7749922B2 (en) Nanowire structures and electrical devices
JP5639063B2 (en) Method of manufacturing laterally grown semiconductor nanowire and transistor obtained by the method
US20150010714A1 (en) Ion beam processing of sic for fabrication of graphene structures
DE102015102225A1 (en) Method for processing a layer and method for producing an electronic device
JP5588355B2 (en) Manufacture of atomic scale equipment
KR20020058151A (en) Fabrication method of single electron tunneling transistor operated at room temperature utilizing focused-ion beam
US6414333B1 (en) Single electron transistor using porous silicon
US20060076504A1 (en) Electron source, and charged-particle apparatus comprising such an electron source
KR100370659B1 (en) Fabrication method of nanocrystals by using focused ion beam
US7713850B2 (en) Method for forming a structure provided with at least one zone of one or several semiconductor nanocrystals localised with precision
KR100352579B1 (en) Methods of Lithography and Nanocrystalline Formation in situ by Using the Focused Ion Beam.
JP3653970B2 (en) Quantum dot manufacturing method
WO2020221525A1 (en) Method for producing a 2d material, 2d material, and the uses thereof
JP4309869B2 (en) Semiconductor device and manufacturing method thereof
JP2008192795A (en) Manufacturing method of carbon nanotube transistor
TW200522152A (en) Nano-electronic devices using discrete exposure method
KR100495866B1 (en) Array-type molecular electronic device and method of fabricating the same
Liu et al. Patterning two‐dimensional semiconductors with thermal etching
KR100442815B1 (en) Single electron transistor formed by porous silicon and fabricating method thereof
RU2712534C9 (en) Method of forming thin ordered semiconductor filamentary nanocrystals without participation of external catalyst on silicon substrates
JP4854180B2 (en) Method for producing InSb nanowire structure
KR20010026433A (en) The Fabrication Technology of Single Electron Tunnel Diodes Using Focused Ion Beam Nanoparticle Process
Bari Fabrication, Characterization, and Modelling of Self-Assembled Silicon Nanostructure Vacuum Field Emission Devices
KR20010036222A (en) The Fabrication Method of the In-Plane-Gate Type of the Single Electron Transistors Utilizing the Focused Ion Beam Process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080228

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee