KR20010001006A - Process of the preparation of lead powder for use in a lead storage battery by cementation reaction - Google Patents

Process of the preparation of lead powder for use in a lead storage battery by cementation reaction Download PDF

Info

Publication number
KR20010001006A
KR20010001006A KR1019990019956A KR19990019956A KR20010001006A KR 20010001006 A KR20010001006 A KR 20010001006A KR 1019990019956 A KR1019990019956 A KR 1019990019956A KR 19990019956 A KR19990019956 A KR 19990019956A KR 20010001006 A KR20010001006 A KR 20010001006A
Authority
KR
South Korea
Prior art keywords
lead
powder
acid
ions
sponge
Prior art date
Application number
KR1019990019956A
Other languages
Korean (ko)
Other versions
KR100337807B1 (en
Inventor
김기원
신준호
안효준
박효정
정상식
김창호
오상민
이석수
Original Assignee
박준일
경상대학교 생산기술연구소
김기원
신준호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박준일, 경상대학교 생산기술연구소, 김기원, 신준호 filed Critical 박준일
Priority to KR1019990019956A priority Critical patent/KR100337807B1/en
Publication of KR20010001006A publication Critical patent/KR20010001006A/en
Application granted granted Critical
Publication of KR100337807B1 publication Critical patent/KR100337807B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/02Oxides
    • C01G21/08Lead dioxide [PbO2]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A preparation method of lead powders for lead-acid battery is provided to give improved specific surface area and acid absorption by a chemical cementation reaction unlike a conventional mechanical method. The resultant lead powders with a platelet shape has excellent discharge and active properties for electrodes. CONSTITUTION: The method comprises the steps of: precipitating resin-shaped sponge lead by dipping lead ions and Al or Mg, an active metal, into an acidic solution containing Cl ions(by cementation reaction); eliminating and washing absorbed Cl ions by dipping it into water; drying and oxidizing in a high temperature oven(250-400°C); ball-milling(ball:powder=1:0.16, ball size: diameter 6mm) for 1-2hrs. to get fine powders with 3-5micrometer of particle size.

Description

시멘테이션 반응을 이용한 납축 전지용 연분의 제조 방법{Process of the preparation of lead powder for use in a lead storage battery by cementation reaction}Process of the preparation of lead powder for use in a lead storage battery by cementation reaction

본 발명은 시멘테이션 반응을 이용한 납축 전지용 연분의 제조 방법에 관한 것이다.The present invention relates to a method for producing lead powder for lead acid batteries using cementation reaction.

현재 가장 일반적으로 상용화되고 있는 연축 전지용 연분 제조 방법은 연괴(lead ingot)를 용해시킨 후, 고온의 공기와 수증기 혼합물 분위기에서 용융납을 분사시켜 산화납 분말을 얻는 바톤-포트(Barton-pot) 방법과, 연괴를 용해시켜 제조된 연구와 강구를 공기와 수증기가 공급되는 고온 분위기의 수평축 회전체 안에서 회전과 미끄러짐 운동으로 서로 마찰에 의해 산화납 분말을 얻는 볼밀 제조 방법이 있다.The most common commercially available method for producing lead-acid powder for lead-acid batteries is a Barton-pot method in which lead oxide is obtained by dissolving lead ingot and then spraying molten lead in an atmosphere of hot air and steam mixture. And a ball mill manufacturing method in which lead oxide powders are obtained by friction with each other by rotating and sliding movement in a horizontal shaft rotating body of a high-temperature atmosphere supplied with air and water vapor.

일반적으로 이러한 방법에 의해 상업적으로 제조된 산화납을 리사지 (litharg)라고 부른다. 이외에 용융납을 분사할 때, 기체 압력 또는 초음파를 가하는 방법이 있지만, 현재는 사용되지 않고 있으며, 탄산납(lead carbonate)의 분해 및 아연을 이용한 납의 환원과 같이 순수하게 화학적인 방법도 있지만 실제 배터리 제조에는 아직 이용되고 있지 않다.In general, lead oxide commercially produced by this method is called litharg. In addition, there is a method of applying gas pressure or ultrasonic waves when spraying molten lead, but it is not currently used, and there are purely chemical methods such as decomposition of lead carbonate and reduction of lead using zinc, but actual batteries It is not yet used for manufacture.

현재 상용화되고 있는 연분 제조 방식으로 제조된 바톤 산화납(Barton oxide) 분말은 구형의 분말로서 볼밀 연분(mill dust)에 비해 입도는 작지만, 비표면적이 작고 산흡수도가 떨어져 전극의 활물질로 사용 시 활물질의 이용률이 떨어지며, 볼밀 연분은 구형의 박편 형태로 바톤 산화납에 비해 입도는 조금 크지만 비표면적이 크고, 산흡수도가 높아 전극의 활물질로 사용 시 활물질 이용률이 바톤 산화납보다 약간 높은 편이다.Barton oxide powder produced by the commercially available powder production method is a spherical powder, which has a smaller particle size than ball mill powder, but has a small specific surface area and low acid absorption, so as to be used as an electrode active material. The utilization rate of the active material is low, and the ball mill powder is spherical flake, which has a slightly larger particle size than the lead oxide of baton, but the specific surface area is large and the acid absorption is high. to be.

이처럼 현재 사용되는 바톤 산화납과 볼밀 연분은 입자 형상 및 입도의 제한으로 인해 약간 낮은 제한된 활물질 이용률을 얻을 수 있기 때문에 축전지 전극의 활물질로 사용 시 Ni-MH 나 리튬전지에 비해 에너지 밀도가 매우 낮은 단점이 있다.As such, Baton lead oxide and ball mill powder used at present can obtain a slightly lower limited active material utilization due to particle shape and particle size limitation, and thus have a lower energy density than Ni-MH or lithium batteries when used as an active material of a battery electrode. There is this.

이러한 낮은 에너지 밀도는 여러 가지 원인이 있지만, 특히 전극의 활물질로 사용되는 연분의 비표면적이 큰 영향을 미치는데, 연분의 형태를 비표면적이 큰 판상으로 제조해야 하는 이유가 바로 여기에 있다.Although such low energy density has various causes, in particular, the specific surface area of the powder used as the active material of the electrode has a large influence, which is why the shape of the powder should be prepared in a plate shape having a large specific surface area.

본 발명의 목적은 상기와 같은 연분의 작은 비표면적으로 인한 낮은 에너지 밀도의 단점을 해결하기 위해 연분의 비표면적을 증가시켜 에너지 밀도를 향상시키기 위한 것으로 염소 이온을 함유한 산성 용액에서 순수하게 화학적으로 시멘테이션 반응에 의해 제조된 수지상의 스폰지 납을 수세한 후 산화 및 분쇄시켜 얻은 완전한 판상의 산화납 분말을 연축 전지 전극의 활물질로 사용함으로써 활물질 이용률의 증가에 의한 에너지 밀도 향상을 특징으로 하는 신규한 제조 방법으로 비표면적 및 산흡수도 등 물리적 특성이 우수한 연분을 제조하는데 있다.An object of the present invention is to improve the energy density by increasing the specific surface area of the powder to solve the shortcomings of the low energy density due to the small specific surface area of the powder, such as pure chemical in an acid solution containing chlorine ions. A novel plate-shaped lead oxide powder obtained by washing, oxidizing and pulverizing a dendritic sponge lead prepared by cementation reaction as an active material of a lead-acid battery electrode is used to improve energy density by an increase in the active material utilization. The manufacturing method is to prepare a fine powder having excellent physical properties such as specific surface area and acid absorption.

도 1은 본 발명에 의해 제조된 납축 전지용 연분의 전자 현미경 사진이다.1 is an electron micrograph of a lead powder for lead acid batteries produced according to the present invention.

도 2는 본 발명에 의해 제조된 납축 전지용 연분의 전자 현미경 단면 사진이다.Figure 2 is an electron microscope cross-sectional photograph of the lead powder for lead-acid battery produced by the present invention.

상기한 목적을 달성하기 위한 본 발명의 시멘테이션 반응을 이용한 납축 전지용 연분을 제조하는 방법은,Method for producing lead acid for lead-acid battery using the cementation reaction of the present invention for achieving the above object,

염소 이온을 함유하는 산성 용액에다 석출되는 납 이온과 활성 금속인 알루미늄 또는 마그네슘을 침지시켜 시멘테이션 원리에 의해 수지상으로 이루어진 스폰지 납을 석출하는 단계;Immersing lead ions precipitated in an acidic solution containing chlorine ions and aluminum or magnesium, which are active metals, to precipitate a sponge lead made of resin in accordance with the cementation principle;

상기 석출된 납을 증류수에 침지시켜 스폰지 납의 내부와 표면에 흡착된 염소 이온을 제거 및 수세하는 단계;Dipping the precipitated lead in distilled water to remove and wash chlorine ions adsorbed on the inside and the surface of the sponge lead;

상기 수세된 스폰지 납을 고온의 오븐에서 건조 및 산화시키는 단계; 및Drying and oxidizing the washed sponge lead in a hot oven; And

상기 건조 및 산화 처리된 스폰지 납으로부터 최종적으로 미세한 입도의 연분을 제조하기 위해 볼 밀링으로 분쇄하는 단계로 이루어지는 것을 특징으로 한다.From the dried and oxidized sponge lead is characterized in that the step consisting of grinding by ball mill to produce a fine particle size of the final fine powder.

상기한 기존의 방식으로 제조되는 연분이 구형으로 불균일한 판상의 형상을 가지는 반면에 본 발명의 제조 방법에 의하면 화학적으로 생성된 수지상의 납이 다양한 크기의 판상 결정으로 이루어져 있기 때문에 볼 밀링으로 분쇄되는 과정에서 표면적이 큰 완전한 판상 형태의 분말로 된다는 점에 특징이 있다.According to the manufacturing method of the present invention, the lead produced by the conventional method has a spherical non-uniform plate-like shape, and according to the manufacturing method of the present invention, since the chemically produced dendritic lead is composed of plate crystals of various sizes, It is characterized in that the process results in a powder in the form of a complete plate with a large surface area.

이하, 본 발명에 따른 비표면적 및 산흡수도 등 물리적 특성이 우수한 납축 전지용 연분 제조 방법에 대해 상세히 설명하기로 한다.Hereinafter, the method for preparing lead acid for lead-acid batteries having excellent physical properties such as specific surface area and acid absorbency will be described in detail.

본 발명의 방법에 따르면, 먼저 염소 이온을 함유하는 산성 용액, 예를 들면 1 내지 4 M 염화나트륨 용액 또는 0.5 내지 1%의 HCl 용액의 염소 이온을 함유하는 산성 용액에 질산납 첨가시 부산물로 생성되는 염화납의 생성을 억제하기 위하여 0.05M 이하의 질산납을 첨가하여 납 이온이 포함된 반응 용액을 제조한다.According to the process of the present invention, lead acid is first generated as a by-product upon addition of lead nitrate to an acidic solution containing chlorine ions, for example an acidic solution containing chlorine ions in a 1-4 M sodium chloride solution or a 0.5-1% HCl solution. In order to suppress the production of lead chloride, a reaction solution containing lead ions is prepared by adding lead nitrate of 0.05 M or less.

상기에서 제조된 반응 용액은 반응속도를 높이기 위하여 80내지 90℃의 고온으로 가열한 후 석출된 스폰지납이 쉽게 분리 가능한 봉상이나 막대 형태의 알루미늄 또는 마그네슘 활성금속을 침지시키게 되면 시멘테이션 반응에 의해 상기 활성 금속 상에 수지상 또는 분말상으로 이루어진 스폰지납이 생성되며 일정양의 스폰지납이 생성되면 용액보다 높은 비중 때문에 자연스럽게 활성금속으로부터 분리되어 추출된다.The reaction solution prepared above is heated to a high temperature of 80 to 90 ℃ in order to increase the reaction rate, and the precipitated sponge lead is immersed in the rod-shaped or rod-shaped aluminum or magnesium active metal to be easily separated by the cementation reaction. Sponge lead in dendritic or powdery form is produced on the active metal, and when a certain amount of sponge lead is produced, it is naturally separated from the active metal and extracted due to its specific gravity.

상기 시멘테이션 반응에 의해 석출된 수지상 및 분말상으로 이루어진 스폰지 납은 먼저 비정제수로 수회에 걸쳐 수세하여 스폰지 납의 내부와 표면에 흡착되어 있는 불순물과 같은 염소 이온을 제거한 후 최종적으로 정제수를 이용하여 세척을 한다.Sponge lead consisting of dendritic and powdery phase precipitated by the cementation reaction is first washed several times with unpurified water to remove chlorine ions such as impurities adsorbed on the inside and the surface of the sponge lead, and finally washing with purified water. do.

상기 수세된 스폰지 납을 직경 60mm, 높이 55mm의 알루미나 도가니에 채운 후 원하는 산화도에 따라 고온, 예를 들면 250 내지 400℃의 고온의 오븐에서 대기중에서 건조 및 산화를 시켜서 원하는 조성의 다양한 산화납(예를 들면, α-PbO, β-PbO, Pb3O4등)을 생성하게 된다.The washed sponge lead is filled in an alumina crucible having a diameter of 60 mm and a height of 55 mm, and then dried and oxidized in an air at a high temperature, for example, 250 to 400 ° C., according to a desired degree of oxidation, to produce various lead oxides having a desired composition ( For example, α-PbO, β-PbO, Pb 3 O 4, etc.) are generated.

상기 건조 및 산화 처리된 스폰지 납을 최종적으로 원하는 미세한 입도의 연분을 제조하기 위해 일정한 볼밀 조건(볼 : 연분의 비율 = 1 : 0.16, 볼 크기 : 직경 6mm)으로 약 1내지 2시간 동안 볼 밀링하여 분쇄하면 입도가 3 내지 5㎛로서 입자 형상이 완전한 판상으로 비표면적과 산흡수도 등의 물리적인 특성이 우수한 본 발명에 따른 연분이 얻어지게 된다.The dried and oxidized sponge lead was finally ball milled for about 1 to 2 hours at a constant ball mill condition (ball: lead ratio = 1: 0.16, ball size: diameter 6mm) to produce a fine powder of fine particle size. When pulverized, the fine powder according to the present invention can be obtained having a particle size of 3 to 5 µm and a perfect particle shape having excellent physical properties such as specific surface area and acid absorption.

이상과 같이 본 발명은 시멘테이션 원리에 의해 반응 용액 중에 존재하는 금속 이온이 적절한 온도와 산성도 및 두 금속간의 전위차 그리고 알루미늄의 치밀한 알루미나(Al2O3) 산화피막을 파괴하는 염소 이온의 작용에 의해서 알루미늄이나 마그네슘 금속 위에 석출된 납을 수세 후 건조 및 산화하여 분쇄함으로써 비표면적 및 산흡수도 등의 물리적 특성이 우수한 산화납 분말이 제조되게 되는 것이다.As described above, according to the cementation principle, the present invention is based on the action of chlorine ion in which the metal ions present in the reaction solution have appropriate temperature and acidity, the potential difference between the two metals, and the dense alumina (Al 2 O 3 ) oxide film of aluminum. The lead precipitated on aluminum or magnesium metal is washed with water, dried, oxidized and pulverized to produce lead oxide powder having excellent physical properties such as specific surface area and acid absorption.

이하 본 발명을 실시예에 의거하여 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1Example 1

4M 염화나트륨 용액에 질산납을 첨가한 후 90(±5)℃로 용액을 가열한 다음 알루미늄 금속을 용액 중에 침지시켰다. 시멘테이션 반응에 의해 수지상의 납이 충분히 석출되면 증류수로 5회 이상 수세한 후 약 200(±5)℃의 오븐에서 건조 및 산화시켜 분쇄하여 분말을 제조하였다.After adding lead nitrate to 4M sodium chloride solution, the solution was heated to 90 (± 5) ° C. and aluminum metal was immersed in the solution. When the resinous lead was sufficiently precipitated by the cementation reaction, the mixture was washed with distilled water five times or more, dried and oxidized in an oven at about 200 (± 5) ° C. to prepare a powder.

제조된 연분에 황산 및 물을 일정량의 비율(연분 : 황산 : 물의 비율= 1 : 0.15 : 0.44)로 첨가하여 페이스트를 제조한 후 25 ×21 ×2.3mm 크기의 그리드에 도포하여 전극을 제조하였다.Sulfuric acid and water were added to the prepared fuel powder in a predetermined amount (fuel: sulfuric acid: water ratio = 1: 0.15: 0.44) to prepare a paste, and then coated on a grid of 25 × 21 × 2.3 mm to prepare an electrode.

제조된 전극은 상대습도 95%, 온도 45℃에서 24시간 동안 숙성을 실시한 후 95℃에서 1시간 동안 건조시켰으며, 8중량% H2SO4에서 20 mA의 전류로 46시간 동안 화성(formation)을 실시하였다. 상기의 방법으로 제조된 전극을 40.1중량% H2SO4전해질에서 15 mA의 전류로 방전한 결과 305 mAH의 방전용량을 얻었으며, 이때 활물질의 이용률은 약 57.9%이었다.The prepared electrode was aged for 24 hours at a relative humidity of 95% and a temperature of 45 ° C. and then dried for 1 hour at 95 ° C., and formed for 46 hours at a current of 20 mA at 8 wt% H 2 SO 4 . Was carried out. The electrode prepared by the above method was discharged at a current of 15 mA in a 40.1 wt% H 2 SO 4 electrolyte to obtain a discharge capacity of 305 mAH, wherein the utilization rate of the active material was about 57.9%.

실시예 2Example 2

2 M 염화나트륨 용액을 이용해서 상기 실시예 1과 같은 방법으로 연분을 제조하였다.Using 2 M sodium chloride solution to prepare a soft powder in the same manner as in Example 1.

제조된 연분에 6 g PbO, 2 cc H2O, 1 cc H2SO4의 비율로 첨가하여 페이스트를 제조한 후 25×35×2.3mm 크기의 그리드에 도포하여 전극을 제조하였다.6 g PbO, 2 cc H 2 O, 1 cc H 2 SO 4 in the ratio of the prepared powder was added to prepare a paste and then applied to a grid of 25 × 35 × 2.3mm size to prepare an electrode.

제조된 전극은 상대습도 95%, 온도 75℃에서 30시간 동안 숙성을 실시한 후 95℃에서 1시간 동안 건조시켰으며, 9.8중량% H2SO4에서 충전 전류 20 mA, 방전 전류 30 mA로 여러 단계에 걸쳐 화성을 실시하였다. 화성이 완료된 극판을 30 mA의 전류로 방전한 결과 381 mAH의 방전용량을 얻었으며, 이때 활물질의 이용률은 약 52.5%이었다.The prepared electrode was aged at 95% relative humidity and temperature 75 ° C. for 30 hours, and then dried at 95 ° C. for 1 hour, and various steps were performed at 9.8 wt% H 2 SO 4 at 20 mA of charge current and 30 mA of discharge current. Mars was carried out over. As a result of discharging the electrode plate with the current at 30 mA, a discharge capacity of 381 mAH was obtained, and the utilization rate of the active material was about 52.5%.

실시예 3Example 3

0.5 % HCl 용액을 이용해서 상기 실시예 1과 같은 방법으로 연분을 제조하였다.The powder was prepared in the same manner as in Example 1 using 0.5% HCl solution.

제조된 연분에 8 g PbO, 2 cc H2O, 1 cc H2SO4의 비율로 첨가하여 페이스트를 제조한 후 25×35×2.3mm 크기의 그리드에 도포하여 전극을 제조하였다.8 g PbO, 2 cc H 2 O, 1 cc H 2 SO 4 in the ratio of the prepared powder was added to prepare a paste and then applied to a grid of 25 × 35 × 2.3mm size to prepare an electrode.

제조된 전극은 상대습도 95%, 온도 75℃에서 50시간 동안 숙성을 실시한 후 95℃에서 1시간 동안 건조시켰으며, 숙성 극판은 9.8중량% H2SO4에 30분 동안 침지한 후 30 mA의 일정 전류로 50시간 동안 화성을 실시하였다. 화성이 완료된 극판을 9.8중량% H2SO4전해액에서 30 mA의 전류로 방전한 결과 최대 740 mAH의 방전용량을 얻었으며, 이때 활물질의 이용률은 약 68.0%이었다.The prepared electrode was aged at 95% relative humidity and temperature 75 ° C. for 50 hours and then dried at 95 ° C. for 1 hour. The aged plate was immersed in 9.8 wt% H 2 SO 4 for 30 minutes and then 30 mA. Mars was carried out for 50 hours at a constant current. As a result of discharging the electrode plate having been converted to 9.8 wt% H 2 SO 4 electrolyte at a current of 30 mA, a maximum discharge capacity of 740 mAH was obtained, and the utilization rate of the active material was about 68.0%.

실시예 4Example 4

1.5 % HCl 용액을 이용해서 상기 실시예 1과 같은 방법으로 연분을 제조하였다.By using a 1.5% HCl solution, the powder was prepared in the same manner as in Example 1.

제조된 연분에 12 g PbO, 3 cc H2O, 2 cc H2SO4의 비율로 첨가하여 페이스트를 제조한 후 25×35×2.3mm 크기의 그리드에 도포하여 전극을 제조하였다.12 g PbO, 3 cc H 2 O, 2 cc H 2 SO 4 in the ratio of the prepared powder was added to prepare a paste and then applied to a grid of 25 × 35 × 2.3mm size to prepare an electrode.

제조된 전극은 상대습도 95%, 온도 75℃에서 40시간 동안 숙성을 실시한 후 95℃에서 1시간 동안 건조시켰으며, 숙성 극판은 9.8중량% H2SO4에 30분 동안 침지한 후 20 mA 및 30 mA의 일정 전류로 120시간 동안 화성을 실시하였다. 화성이 완료된 극판을 9.8중량% H2SO4전해액에서 30 mA의 전류로 방전한 결과 최대 668.8 mAH의 방전용량을 얻었으며, 이때 활물질의 이용률은 약 73.0%이었다.The prepared electrode was aged 40 hours at a relative humidity of 95% and a temperature of 75 ° C., and then dried at 95 ° C. for 1 hour, and the aged plate was immersed in 9.8 wt% H 2 SO 4 for 30 minutes and then 20 mA and Mars was conducted for 120 hours at a constant current of 30 mA. As a result of discharging the electrode plate having a chemical conversion at a current of 30 mA in a 9.8 wt% H 2 SO 4 electrolyte solution, a maximum discharge capacity of 668.8 mAH was obtained, and the utilization rate of the active material was about 73.0%.

상기 실시예를 통해 확인할 수 있듯이 염소이온을 함유한 용액에서 화학적으로 제조된 수지상의 스폰지납을 산화시켜 얻은 완전한 판상의 산화납 분말로 제조된 전극의 방전 특성 및 활물질 이용률이 매우 우수함을 알 수 있었다.As can be seen from the above examples, it was found that the discharge characteristics and the utilization rate of the active material of the electrode made of the fully plated lead oxide powder obtained by oxidizing the chemically prepared dendritic sponge lead in the solution containing chlorine ion were found to be excellent. .

상기한 바와 같이 시멘테이션 반응에 의해 화학적으로 석출된 납의 산화 및 분쇄로 제조된 연분의 형태를 확인하기 위해 전자 현미경으로 500 배 및 1000배의 배율로 확대시켜 본 결과 도 1 및 도 2와 같은 입자 형상을 확인할 수 있었다.As described above, in order to confirm the form of the lead powder prepared by oxidation and pulverization of lead chemically precipitated by the cementation reaction, the particles as shown in FIGS. 1 and 2 were magnified at a magnification of 500 times and 1000 times. The shape could be confirmed.

도 1에 나타난 전자 현미경 사진에서 확인할 수 있듯이 본 발명에 의해 제조된 연분은 완전한 판상의 입자가 균일하게 분포하게 되어 있으며 일부 입자가 서로 엉겨 있는 부분도 충분한 반응 표면을 얻을 수 있었다.As can be seen from the electron micrograph shown in Figure 1, the powder produced by the present invention is a uniform distribution of the complete plate-like particles, and even a part where some particles are entangled with each other was able to obtain a sufficient reaction surface.

도 2는 도 1에 나타난 연분에 대한 단면 사진으로 막대형상은 판상의 연분이 수직 또는 비스듬히 세워져 있는 상태이며, 둥근 형상은 판상의 연분이 편평하게 놓여져 있는 상태이다.FIG. 2 is a cross-sectional photograph of the soft powder shown in FIG. 1, in which the rod shape is in a state where the plate shape is vertically or obliquely erected, and in the round shape, the plate shape is laid flat.

따라서, 본 발명의 방법에 의하면 종전의 연분 보다 방전 성능 및 활물질 이용률이 매우 우수한 연분을 제조할 수 있다.Therefore, according to the method of the present invention, it is possible to produce lead powder which is much more excellent in discharge performance and active material utilization than conventional lead powder.

Claims (4)

염소 이온을 함유하는 산성 용액에다 석출되는 납 이온과 활성 금속인 알루미늄 또는 마그네슘을 침지시켜 시멘테이션 원리에 의해 수지상 또는 분말상으로 이루어진 스폰지 납을 석출하는 단계;Immersing lead ions precipitated in an acidic solution containing chlorine ions and aluminum or magnesium, which is an active metal, to precipitate sponge lead made of resinous or powdery form by cementation principle; 상기 석출된 납을 증류수에 침지시켜 스폰지납의 내부와 표면에 흡착된 염소 이온을 제거 및 수세하는 단계;Dipping the precipitated lead in distilled water to remove and wash chlorine ions adsorbed on the inside and the surface of the sponge lead; 상기 수세된 스폰지납을 고온의 오븐에서 건조 및 산화시키는 단계; 및Drying and oxidizing the washed sponge lead in a hot oven; And 상기 건조 및 산화처리된 스폰지납으로 부터 최종적으로 미세한 입도의 연분을 제조하기 위해 볼밀링으로 분쇄하는 단계로 이루어지는 것을 특징으로 하는 시멘테이션 반응을 이용한 납축 전지용 연분의 제조 방법.Method for producing lead-acid battery for lead-acid battery using the cementation reaction, characterized in that the step of grinding by milling in order to finally produce a fine particle size powdered powder from the dried and oxidized sponge lead. 제 1항에 있어서, 상기 염소 이온을 함유하는 산성 용액은 염화나트륨 또는 염산 용액을 사용하여서 되는 시멘테이션 반응을 이용한 납축 전지용 연분의 제조 방법.The method for producing lead acid for lead acid batteries according to claim 1, wherein the acidic solution containing chlorine ions is made by using a sodium chloride or hydrochloric acid solution. 제 1항에 있어서, 상기 스폰지 납은 납 이온을 함유하는 염소 이온을 함유하는 반응 용액을 80 내지 90℃로 가열한 후 활성 금속을 침지시켜서 되는 시멘테이션 반응을 이용한 납축 전지용 연분의 제조 방법.The method according to claim 1, wherein the sponge lead is heated by heating a reaction solution containing chlorine ions containing lead ions to 80 to 90 ° C and then immersing the active metal. 제 1항에 있어서, 상기 건조 및 산화는 250 내지 400℃의 오븐에서 실시하여서 되는 시멘테이션 반응을 이용한 납축 전지용 연분의 제조 방법.The method for producing lead acid for lead acid batteries according to claim 1, wherein the drying and oxidation are performed in an oven at 250 to 400 ° C.
KR1019990019956A 1999-06-01 1999-06-01 Process of the preparation of lead powder for use in a lead storage battery by cementation reaction KR100337807B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990019956A KR100337807B1 (en) 1999-06-01 1999-06-01 Process of the preparation of lead powder for use in a lead storage battery by cementation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990019956A KR100337807B1 (en) 1999-06-01 1999-06-01 Process of the preparation of lead powder for use in a lead storage battery by cementation reaction

Publications (2)

Publication Number Publication Date
KR20010001006A true KR20010001006A (en) 2001-01-05
KR100337807B1 KR100337807B1 (en) 2002-05-23

Family

ID=19589060

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990019956A KR100337807B1 (en) 1999-06-01 1999-06-01 Process of the preparation of lead powder for use in a lead storage battery by cementation reaction

Country Status (1)

Country Link
KR (1) KR100337807B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012583A1 (en) * 2003-07-30 2005-02-10 Cam, S.R.L. Utilization of lead shavings in abrasion mills for the production of lead oxide
KR100840218B1 (en) * 2007-02-09 2008-06-23 한국기계연구원 Fabrication and using method of oxide powders with high specific surface area by coating with nacl or salt and ball milling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668085A (en) * 1968-08-24 1972-06-06 Isomura Sangyo Kaisha Ltd Method of electrolytically coating lead dioxide on the surface of various materials
JPS5662989A (en) * 1979-10-26 1981-05-29 Kenjiro Yanagase Method for electrodeposition of lead dioxide onto anode plate surface incorporated in electrolytic bath
JPS59101773A (en) * 1982-12-01 1984-06-12 Hitachi Maxell Ltd Manufacture of lead dioxide for divalent silver oxide battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012583A1 (en) * 2003-07-30 2005-02-10 Cam, S.R.L. Utilization of lead shavings in abrasion mills for the production of lead oxide
KR100840218B1 (en) * 2007-02-09 2008-06-23 한국기계연구원 Fabrication and using method of oxide powders with high specific surface area by coating with nacl or salt and ball milling

Also Published As

Publication number Publication date
KR100337807B1 (en) 2002-05-23

Similar Documents

Publication Publication Date Title
JP7352727B2 (en) Nickel lithium manganate composite material, manufacturing method thereof and lithium ion battery
RU2670920C9 (en) Method for obtaining a sulfide solid electrolyte
JP6493853B2 (en) Lithium nickel cobalt aluminum oxide composite positive electrode material, method for producing the same, and lithium ion secondary battery
TW200818569A (en) Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery
CN111793824B (en) Surface-modified high-nickel cathode material and preparation method and application thereof
KR20140095869A (en) Method for fabricating the iron (iii) oxide nanoparticles
JP3361194B2 (en) Cobalt / cobalt oxide powder, method for its production and its use
CN114975964A (en) Polypyrrole-coated tin dioxide/nano carbon sphere negative electrode material, preparation method thereof and sodium ion battery
KR100753921B1 (en) Fabrication method of nano-sized active materials containing copper phase with improved cycle-ability for anode of lithium secondary battery
CN112018394A (en) Lithium-copper composite electrode and preparation method and application thereof
JPS62237667A (en) Nickel positive electrode for alkaline storage battery
CN113745504A (en) Niobium-tungsten-titanium oxide negative electrode material and preparation method and application thereof
CN110980698B (en) H1.07Ti1.73O4Preparation method of/rGO compound sodium ion battery anode material
KR100337807B1 (en) Process of the preparation of lead powder for use in a lead storage battery by cementation reaction
CN112186187A (en) Preparation method and application of three-dimensional net-shaped coated ternary material
CN113745491B (en) SnO with double-wall hollow ball structure 2 @ C material and preparation method thereof
KR20170059535A (en) Porous Silicon Or Silicon Alloy Anode With Coating For Intercalation/ De-intercalation Of Lithium Ions And Manufacturing Methods Thereof
JP2000223119A (en) Positive electrode active material for alkaline storage battery, its manufacture, and manufacture of positive electrode for alkaline storage battery using positive electrode active material
CN110649243B (en) Preparation method and application of superfine phosphorus-doped porous silicon nano material
JPH11195413A (en) Battery electrode and battery having carbon particle containing inclusion of nano-size, and their manufacture and electrolysis
JPS62234867A (en) Nickel electrode for alkaline cell
CN115231611B (en) Li with porous structure 2 ZnTi 3 O 8 Lithium ion battery anode material, preparation method and application thereof
KR101517839B1 (en) The germanium carbon composite cathode for lithium ion batteries and methode of it
JP2000331672A (en) Electrode for battery comprising carbon particles containing nano-size mixed substances and battery, and manufacture and electrolysis thereof
CN114725374B (en) Lithium iron phosphate material, preparation method thereof and battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090430

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20100511

Year of fee payment: 18

EXPY Expiration of term