KR100840218B1 - Fabrication and using method of oxide powders with high specific surface area by coating with nacl or salt and ball milling - Google Patents

Fabrication and using method of oxide powders with high specific surface area by coating with nacl or salt and ball milling Download PDF

Info

Publication number
KR100840218B1
KR100840218B1 KR1020070014021A KR20070014021A KR100840218B1 KR 100840218 B1 KR100840218 B1 KR 100840218B1 KR 1020070014021 A KR1020070014021 A KR 1020070014021A KR 20070014021 A KR20070014021 A KR 20070014021A KR 100840218 B1 KR100840218 B1 KR 100840218B1
Authority
KR
South Korea
Prior art keywords
oxide
salt
surface area
specific surface
nacl
Prior art date
Application number
KR1020070014021A
Other languages
Korean (ko)
Inventor
홍성현
배종수
나영상
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020070014021A priority Critical patent/KR100840218B1/en
Application granted granted Critical
Publication of KR100840218B1 publication Critical patent/KR100840218B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/02Oxides or hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A method for preparing oxides is provided to produce economically the oxides having a high specific surface area by a simple production process. A method for preparing oxides having a specific surface area of 13.9 m^2/g includes the steps of: adding any one, or two or more oxides selected from the group comprising niobium oxide, vanadium oxide, aluminum oxide, magnesium oxide, chrome oxide, iron oxide, and manganese oxide to a brine, and drying the admixture in order to coat the surface of the oxide with salt evenly; and adding water to the milled oxide powder to dissolve salt in water, removing the brine to obtain oxide powder, and drying the oxide powder.

Description

NaCl이나 소금으로 코팅된 산화물을 볼밀링하여 13.9 ㎡/g 이상의 비표면적을 갖는 산화물의 제조방법 및 그 사용방법{Fabrication and Using Method of Oxide Powders with High Specific Surface Area by Coating with NaCl or Salt and Ball Milling}Fabrication and Using Method of Oxide Powders with High Specific Surface Area by Coating with NaCl or Salt and Ball Milling by Ball Milling Oxygen or Salt-Coated Oxide }

본 발명은 저가의 산화물을 볼밀링하여 나노산화물을 제조하는 방법에 관한 것으로서, 더욱 상세하게는 NaCl이나 소금을 물에 녹여서 산화물에 첨가하고 건조하여 산화물 표면에 NaCl이나 소금을 균일하게 코팅하는 단계, NaCl이나 소금이 코팅된 산화물을 볼과 함께 밀링용기에 장입하여 볼밀링하는 단계, 밀링된 분말에 물을 첨가하여 NaCl이나 소금 성분을 물에 녹인 후 물을 제거하고 건조하여 산화물을 얻는 단계로 구성된 비표면적이 큰 산화물을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing nanooxides by ball milling a low-cost oxide, more specifically, NaCl or salt is dissolved in water and added to the oxide and dried to uniformly coat NaCl or salt on the oxide surface, Ball milling the NaCl or salt-coated oxide with a ball into a milling container, adding water to the milled powder to dissolve NaCl or salt in water, removing water and drying to obtain an oxide. The present invention relates to a method for producing an oxide having a large specific surface area.

또한, 본 발명은 상기 방법으로 제조된 비표면적이 큰 산화물을 마그네슘계 수소저장용 분말에 첨가하여 사용하는 것에 관한 것이다.In addition, the present invention relates to the use of the oxide having a large specific surface area prepared by the above method added to the magnesium-based hydrogen storage powder.

산화물 분말은 구조재료 소결용 원료, 용사(溶射)용 분말, 전자재료용 분말합성의 원료, 마그네슘계 수소저장분말에 수소흡장(吸藏)속도를 증가시키는 촉매제 등 광범위하게 응용되고 있다. 특히, 산화물 분말은 그 크기가 작을수록 비표면적이 커서 소결성이 증가하고 입자가 미세화되어 재료의 특성이 좋아지며, 용사용의 경우 용사된 부품의 내마모성을 증가시킨다. 특히, 니오븀산화물, 바나듐산화물, 알루미늄산화물, 마그네슘산화물, 크롬산화물, 철산화물, 망간산화물 등이 첨가된 마그네슘계 수소저장분말의 경우, 산화물이 첨가되지 않은 경우에 비하여 마그네슘계 분말 표면 위에서 수소 분자의 분해를 촉진시키는 촉매역할을 하여 수소흡장속도를 크게 높이는 중요한 역할을 한다. 첨가되는 산화물의 비표면적이 클수록 마그네슘계 분말의 수소흡장속도가 증가하므로 큰 비표면적을 갖는 산화물을 개발하는 것은 매우 중요하다. Oxide powders have been widely applied to raw materials for sintering structural materials, powders for thermal spraying, raw materials for powder synthesis for electronic materials, and catalysts for increasing hydrogen storage rate in magnesium-based hydrogen storage powders. In particular, the smaller the oxide powder, the larger the specific surface area, the greater the sintering property, the finer the particles, the better the properties of the material, and the higher the wear resistance of the sprayed parts. In particular, in the case of magnesium-based hydrogen storage powder containing niobium oxide, vanadium oxide, aluminum oxide, magnesium oxide, chromium oxide, iron oxide, manganese oxide, etc. It plays an important role in greatly increasing the hydrogen storage rate by acting as a catalyst to promote decomposition. As the specific surface area of the added oxide increases, the hydrogen absorption rate of the magnesium powder increases, so it is very important to develop an oxide having a large specific surface area.

이러한 산화물 분말은 화학적 방법, 물리적 방법과 기계적 방법 등으로 제조될 수 있다. 화학적 제조방법으로는 각종 금속염에 침전제를 첨가하여 침전 반응에 의하여 나노산화물을 제조하는 방법, 금속염 수용액을 분무건조한 후 산화 열처리를 하는 방법, 금속 전구용액을 초기 원료로 사용하는 졸겔 방법 등이 있다. 이러한 방법들은 초기 원료를 금속염이나 금속 알콕사이드와 같은 전구체 용액으로 하므로 초기 원료가 비싸고 공정 중 유해한 성분이 방출되는 단점이 있다. 물리적 방법으로는 금속을 가열하여 증발시키면서 산화시키는 방법으로 고온의 열처리로가 필요하고 초기 금속 가격이 비싸고 응축시 분말사이에 응집이 잘 되는 경향이 있다. 기계적 방법으로는 수 마이크론 내지 수백 마이크론급 산화물 분말을 밀링용기에 볼과 함께 장입하여 볼밀링하여 나노 분말을 제조하는 방법이 있으나 분말끼리 응집 및 압접으로 인해 비표면적이 큰 나노 분말을 제조하기가 용이하지 않다. 또한, 금속염화물, 금속탄산염, 금속수산화물(하이드로옥사이드), 금속옥시클로라이드, 금속황산화물 등과 NaCl, NaOH 등과 함께 볼밀링하고 수세한 후 약 400℃ 이상의 온도에서 하소 열처리하여 나노 금속산화물을 제조하는 방법이 알려져 있다. 그러나, 상기의 원료들은 산화물 분말보다 고가이거나 각종 염화물염 등이 유독하거나 장비의 부식을 촉진하며 수세 후 열처리로에서 이루어지는 열처리 공정 등 복잡한 공정을 거쳐야 비로소 안정한 금속산화물로 되는 단점이 있다. 또한 열처리 온도가 높으면 금속산화물이 성장하여 비표면적이 큰 산화물 분말을 얻을 수 없는 경우도 생긴다.Such oxide powder may be prepared by chemical methods, physical methods and mechanical methods. Chemical preparation methods include a method of preparing nanooxides by adding a precipitating agent to various metal salts, a method of spray-drying an aqueous metal salt solution, followed by oxidative heat treatment, and a sol-gel method using a metal precursor solution as an initial raw material. These methods have the disadvantage that the initial raw material is expensive and harmful components are released during the process because the initial raw material is a precursor solution such as metal salt or metal alkoxide. As a physical method, a high temperature heat treatment furnace is required as a method of oxidizing a metal by heating and evaporating it, and the initial metal price is high and tends to aggregate well between powders during condensation. As a mechanical method, there are methods for manufacturing nanopowders by inserting a few micron to hundreds of micron oxide powder with a ball into a milling vessel and ball milling, but it is easy to manufacture nanopowders having a large specific surface area due to coagulation and pressure welding. Not. In addition, a method of producing nano metal oxides by ball milling and washing with metal chlorides, metal carbonates, metal hydroxides (hydrooxides), metal oxychlorides, metal sulphates, etc. together with NaCl, NaOH and the like, followed by calcination heat treatment at a temperature of about 400 ° C. or more. This is known. However, the above raw materials have a disadvantage that they are more stable than oxide powders, are toxic to various chloride salts, or the like, and promote the corrosion of equipment and have to undergo a complicated process such as a heat treatment process performed in a heat treatment furnace after washing with water to become a stable metal oxide. In addition, when the heat treatment temperature is high, a metal oxide may grow and an oxide powder having a large specific surface area may not be obtained.

본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 저가의 NaCl이나 소금을 물에 녹여서 저가의 산화물에 첨가하고 건조하여 산화물 표면에 NaCl이나 소금을 균일하게 코팅한 후 볼과 함께 밀링용기에 장입하여 볼밀링하고 밀링된 분말에 물을 첨가하여 NaCl이나 소금 성분을 물에 녹인 후 물을 제거하고 건조하여 비표면적이 큰 산화물을 경제적으로 얻는 방법을 제공하는 데 그 목적이 있다.The present invention has been made to solve the above problems, inexpensive NaCl or salt is dissolved in water and added to a low-cost oxide and dried to uniformly coat NaCl or salt on the oxide surface and then charged into a milling vessel with a ball It is an object of the present invention to provide a method of economically obtaining an oxide having a large specific surface area by adding water to ball milling and milling powder to dissolve NaCl or salt in water, and then removing and drying water.

상기한 목적 달성을 위하여 안출된 본 발명에 따른 비표면적이 큰 산화물 분말 제조방법은, NaCl이나 소금을 물에 녹여서 산화물에 첨가하고 건조하여 산화물 표면에 NaCl이나 소금을 균일하게 코팅하는 단계; NaCl이나 소금이 코팅된 산화물을 볼과 함께 밀링용기에 장입하여 볼밀링하는 단계; 밀링된 분말에 물을 첨가하여 NaCl이나 소금 성분을 물에 녹인 후 물을 제거하고 건조하여 비표면적이 큰 산화물을 얻는 단계;를 포함하여 구성되는 것을 특징으로 한다.Oxide powder manufacturing method having a large specific surface area according to the present invention devised to achieve the above object, the step of dissolving NaCl or salt in water and adding to the oxide and dried to uniformly coat NaCl or salt on the oxide surface; Ball milling the NaCl or salt-coated oxide with a ball into a milling vessel; Adding water to the milled powder to dissolve NaCl or a salt component in water, and then removing water and drying to obtain an oxide having a large specific surface area.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

초기원료로는 반드시 산화물 분말 및 NaCl이나 소금을 사용하여야 한다. 본 발명에 있어서 초기원료로서 사용하는 산화물 분말은 일반적으로 상용되는 저가 산화물인 니오븀산화물(Nb2O5), 바나듐산화물(V2O5), 알루미늄산화물(Al2O3), 마그네슘산화물(MgO), 크롬산화물(Cr2O3), 철산화물(Fe2O3), 망간산화물(MnO) 등을 말한다. 이러한 산화물의 평균크기는 약 1μm에서 약 100μm이므로 본 발명의 초기원료로서 이러한 크기의 산화물을 사용하는 것이 바람직하다. Oxide powder and NaCl or salt must be used as initial raw materials. In the present invention, the oxide powder used as the initial raw material is niobium oxide (Nb 2 O 5 ), vanadium oxide (V 2 O 5 ), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO) which are commonly used low-cost oxides. ), Chromium oxide (Cr 2 O 3 ), iron oxide (Fe 2 O 3 ), manganese oxide (MnO) and the like. Since the average size of these oxides is about 1 μm to about 100 μm, it is preferable to use oxides of this size as the initial raw material of the present invention.

금속염화물, 금속탄산염, 금속수산화물(하이드로옥사이드), 금속옥시클로라이드, 금속 황산화물 등도 초기 원료로 검토가 가능하나, 산화물 분말보다 비싸고 유독하거나 장비의 부식을 촉진하며 수세 후 열처리로에서 열처리 공정 등 복잡한 공정을 거쳐야 안정한 금속산화물로 되는 단점이 있고 열처리 온도가 높으면 금속산화물이 성장하여 비표면적이 큰 산화물 분말을 얻을 수 없기 때문에 초기 원료로 전술한 산화물 분말을 사용하는 것이 바람직하다. Metal chlorides, metal carbonates, metal hydroxides (hydrooxides), metal oxychlorides, and metal sulfur oxides can also be considered as initial raw materials. It is preferable to use the above-described oxide powder as an initial raw material because there is a disadvantage in that it becomes stable metal oxide only through a process, and an oxide powder having a high specific surface area cannot be obtained when the metal oxide grows at a high heat treatment temperature.

또한, NaCl이나 소금은 값이 싸고 물에 용해되므로 산화물 분말에 첨가하여 산화물 표면을 균일하게 코팅하기가 용이하고 산화물의 볼밀링시 분말 사이의 압접에 의한 응집을 방지하는 역할을 하므로 첨가되어야 한다. NaCl이나 소금을 물에 녹인 후 이를 산화분말에 첨가하고 건조하여 수분을 증발시켜 분말표면 위에 미세 한 NaCl입자 또는 소금입자들이 균일하게 석출되게 하는 것이 바람직하다. NaCl이나 소금분말을 물에 용해하지 않고 산화물에 직접 첨가하여 밀링하면, 균일하게 NaCl이나 소금이 첨가될 수 없고 NaCl이나 소금입자가 매우 미세하게 분쇄되기가 어려워 효과적으로 분말압접을 방지할 수 없다. In addition, since NaCl or salt is inexpensive and soluble in water, it should be added to the oxide powder so that it is easy to uniformly coat the oxide surface and prevents agglomeration by pressure welding between the powders during ball milling of the oxide. It is preferable to dissolve NaCl or salt in water, add it to an oxidized powder, and dry it to evaporate moisture so that fine NaCl particles or salt particles are uniformly deposited on the powder surface. If NaCl or salt powder is added directly to the oxide without dissolving in water, milling can not be uniformly added to NaCl or salt, and it is difficult to pulverize the NaCl or salt particles very finely, effectively preventing powder welding.

산화물에 첨가하는 NaCl이나 소금의 첨가량은 산화물에 대한 중량대비로 10중량% 내지 90중량% 사이로 하는 것이 바람직하다. NaCl이나 소금의 첨가량이 10중량% 미만이면 효과적으로 산화물 분말의 압접에 의한 응집을 방지할 수 없고 90중량%를 초과하면 밀링후 회수되는 산화물 분말의 양이 작아 비경제적이다. The amount of NaCl or salt added to the oxide is preferably between 10% by weight and 90% by weight relative to the weight of the oxide. If the added amount of NaCl or salt is less than 10% by weight, it is not possible to effectively prevent the aggregation by the oxide powder by crimping, and when it exceeds 90% by weight, the amount of the oxide powder recovered after milling is uneconomical.

다음으로, NaCl이나 소금이 코팅된 산화물을 볼과 함께 밀링용기에 장입하여 볼밀링하는 단계가 필요하다. 볼밀링 장치는 일반적으로 수평식 볼밀, 유성볼밀(planetary ball mill), 어트리션(attrition)볼밀, 스펙스(SPEX)볼밀 등이 사용될 수 있다. 볼밀링시 운동하는 볼 사이에 있는 원료 분말들이나 볼과 밀링용기 사이에 있는 분말들이 더 작게 분쇄되고 NaCl이나 소금입자들이 분말의 응집을 방지하는 역할을 하게 된다. 일반적으로 밀링시간이 길수록 비표면적이 큰 미세한 입자가 얻어지므로 원하는 비표면적을 얻도록 밀링시간을 조절할 수 있다. Next, a step of ball milling NaCl or salt-coated oxide is charged with a ball into a milling vessel. The ball milling apparatus may generally be a horizontal ball mill, a planetary ball mill, an attrition ball mill, a SPEX ball mill, or the like. During ball milling, the raw powders between the moving balls or the powders between the balls and the milling vessel are crushed smaller and NaCl or salt particles act to prevent the agglomeration of the powder. In general, the longer the milling time is obtained, the finer particles having a larger specific surface area can be obtained so that the milling time can be adjusted to obtain a desired specific surface area.

다음으로, 밀링된 분말에 물을 첨가하여 NaCl이나 소금 성분을 물에 녹인 후 물을 제거하고 건조하여 산화물을 얻는 단계가 필요하다. 이 과정에서 밀링된 분말에 NaCl이나 소금이 용해될 만큼 충분한 물을 첨가하여 교반하거나 초음파를 가하면 NaCl이나 소금을 물에 더 잘 녹일 수 있다. 그 후 분말을 가라앉히거나(침강) 원심분리하여 NaCl이나 소금이 용해된 물로부터 침강된 또는 원심분리된 산화물 분말을 분리할 수 있다. 상황에 따라서 위와 같은 고액(固液) 분리작업을 수회 반복함으로써 NaCl이나 소금을 완전히 제거할 수 있다.Next, it is necessary to add water to the milled powder to dissolve NaCl or salt components in water, remove water, and dry to obtain an oxide. In this process, enough water to dissolve NaCl or salt is added to the milled powder and stirred or sonicated to better dissolve NaCl or salt in water. The powder may then be allowed to settle (settle) or centrifuged to separate the precipitated or centrifuged oxide powder from the water in which NaCl or salt is dissolved. Depending on the situation, NaCl or salt can be completely removed by repeating the above solid-liquid separation several times.

회수된 분말에 대해서는 이를 건조하여 잔존하는 수분을 제거하는 것이 필요하다. 이를 위해 자연 건조하거나 건조로에서 열을 가하여 건조할 수도 있다. 이렇게 제조된 산화물 분말은 NaCl이나 소금을 첨가하지 않고 밀링한 산화물보다 비표면적이 훨씬 큰 장점을 보유하고 있다.For the recovered powder, it is necessary to dry it to remove residual water. To this end, it may be dried naturally or by heating in a drying furnace. The oxide powder thus prepared has a much larger specific surface area than oxide milled without adding NaCl or salt.

이하, 본 발명을 실시예를 통하여 더 구체적으로 설명한다. 그러나 아래의 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 아래의 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only intended to illustrate the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not limited to the following examples in accordance with the gist of the present invention.

실시예Example 1 One

니오븀산화물(Nb2O5) 50중량%, 상용 소금 50중량%가 되도록 니오븀산화물 15g, 소금 15g을 정량(定量)한 후, 이 소금을 물에 녹인 수용액을 니오븀산화물 15g에 첨가하여 잘 교반한 다음 건조함으로써 니오븀산화물의 표면을 소금으로 코팅하였다. 건조된 분말을 유성볼밀 용기에 직경 9.6mm인 강구(steel ball) 680g과 함께 장입한 후 250rpm의 회전속도로 72시간 동안 볼밀링하였다. 볼밀링 후 체질하여 분말과 볼을 분리하였고 체질된 분말에 물 1000cc를 첨가하여 초음파 교반후 침강방식에 의해 물을 버리고, 다시 물 1000cc를 첨가하여 초음파 교반후 침강방식에 의해 물을 버리고, 또 다시 물 1000cc를 첨가하여 초음파 교반후 침강방식에 의해 물을 버림으로써 소금성분이 완전히 분리된 니오븀산화물 분말을 얻었고, 이러한 니오븀산화물 분말에 대하여 상온에서 수분을 건조한 후 다시 100℃의 열판에서 충분히 수분을 건조하여 니오븀산화물 분말을 얻었다. After weighing 15 g of niobium oxide and 15 g of salt so that 50% by weight of niobium oxide (Nb 2 O 5 ) and 50% by weight of commercial salt were added, an aqueous solution of this salt dissolved in water was added to 15g of niobium oxide, followed by stirring well. The surface of niobium oxide was then coated with salt by drying. The dried powder was charged into a planetary ball mill container with 680 g of steel balls having a diameter of 9.6 mm, and ball milled for 72 hours at a rotation speed of 250 rpm. After ball milling, the powder and the ball were separated by sieving, and 1000cc of water was added to the sieved powder, and the water was discarded by the sedimentation method after ultrasonic stirring. After adding 1000 cc of water, the niobium oxide powder was completely separated from the salt by dropping the water by sedimentation, and then dried. The niobium oxide powder was obtained.

이렇게 건조된 니오븀산화물 분말을 비표면적 측정기(Micromeritics ASAP 2000)를 이용하여 그 비표면적을 계측한 결과 22.40 m2/g을 얻었다. 이는 후술하는 비교예를 통해 알 수 있듯이 비교예에 비하여 매우 큰 비표면적 값을 보여주는 것이다.The dried niobium oxide powder was measured using a specific surface area measuring instrument (Micromeritics ASAP 2000) and the specific surface area thereof was measured to obtain 22.40 m 2 / g. This shows a very large specific surface area value as compared with the comparative example as can be seen through the comparative example described below.

실시예Example 2 2

니오븀산화물(Nb2O5) 50중량%, NaCl시약 50중량%가 되도록 니오븀산화물 15g, NaCl 15g을 정량한 후, 이 NaCl 시약을 물에 녹인 수용액을 니오븀산화물에 첨가하였고 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 니오븀산화물 분말의 비표면적은 21.01 m2/g으로 매우 큰 값을 나타내었다. After weighing 15 g of niobium oxide and 15 g of NaCl to 50 wt% of niobium oxide (Nb 2 O 5 ) and 50 wt% of NaCl reagent, an aqueous solution of this NaCl reagent dissolved in water was added to niobium oxide, and other conditions were performed. It carried out similarly to Example 1. The specific surface area of the milled niobium oxide powder was very large at 21.01 m 2 / g.

실시예Example 3 3

알루미늄산화물을 초기 원료로 사용하였으며, 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 알루미늄산화물 분말의 비표면적은 20.53 m2/g으로 매우 큰 값을 나타내었다.Aluminum oxide was used as an initial raw material, and other conditions were the same as in Example 1. The specific surface area of the milled aluminum oxide powder was very large at 20.53 m 2 / g.

실시예Example 4 4

마그네슘산화물을 초기 원료로 사용하였으며, 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 마그네슘산화물 분말의 비표면적은 17.19 m2/g으로 매우 큰 값을 나타내었다.Magnesium oxide was used as an initial raw material, and other conditions were the same as in Example 1. The specific surface area of the milled magnesium oxide powder was 17.19 m 2 / g, which was very large.

실시예 5Example 5

크롬산화물을 초기 원료로 사용하였으며, 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 크롬산화물 분말의 비표면적은 23.58 m2/g으로 매우 큰 값을 나타내었다.Chromium oxide was used as an initial raw material, and other conditions were the same as in Example 1. The specific surface area of the milled chromium oxide powder was very large at 23.58 m 2 / g.

실시예Example 6 6

바나듐산화물을 초기 원료로 사용하였으며 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 바나듐산화물 분말의 비표면적은 27.73 m2/g으로 매우 큰 값을 나타내었다.Vanadium oxide was used as an initial raw material and the other conditions were the same as in Example 1. The specific surface area of the milled vanadium oxide powder was very large at 27.73 m 2 / g.

실시예 7Example 7

망간산화물을 초기 원료로 사용하였으며, 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 망간산화물 분말의 비표면적은 30.36 m2/g으로 매우 큰 값을 나타내었다.Manganese oxide was used as an initial raw material, and other conditions were the same as in Example 1. The specific surface area of the milled manganese oxide powder was very large at 30.36 m 2 / g.

실시예Example 8 8

니오븀산화물(Nb2O5) 90중량%, 소금 10중량%가 되도록 소금을 물에 녹인 후 그 소금물을 니오븀산화물에 첨가하였으며, 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 니오븀산화물 분말의 비표면적은 13.9 m2/g으로 큰 값을 나타내었다.The salt was dissolved in water to 90 wt% niobium oxide (Nb 2 O 5 ), 10 wt% salt, and the brine was added to niobium oxide, and the other conditions were the same as in Example 1. The specific surface area of the milled niobium oxide powder showed a large value of 13.9 m 2 / g.

실시예Example 9 9

니오븀산화물(Nb2O5) 10중량%, 소금 90중량%가 되도록 소금을 물에 녹인 후 그 소금물을 니오븀산화물에 첨가하였으며, 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 니오븀산화물 분말의 비표면적은 30.18 m2/g으로 매우 큰 값을 나타내었다.Salt was dissolved in water to 10 wt% niobium oxide (Nb 2 O 5 ), 90 wt% salt, and the brine was added to niobium oxide, and the other conditions were the same as in Example 1. The specific surface area of the milled niobium oxide powder was very large at 30.18 m 2 / g.

실시예Example 10 10

지르코늄산화물을 초기 원료로 사용하였으며, 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 지르코늄산화물 분말의 비표면적은 19.12 m2/g으로 매우 큰 값을 나타내었다.Zirconium oxide was used as an initial raw material, and other conditions were the same as in Example 1. The specific surface area of the milled zirconium oxide powder was very large at 19.12 m 2 / g.

비교예Comparative example 1 One

실시예 1과 같이 니오븀산화물(Nb2O5) 100%인 15g만을 유성볼밀 용기에 강구 680g과 함께 장입한 후 72시간 동안 볼밀링하였다. 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 니오븀산화물 분말의 비표면적은 2.89 m2/g으로 작은 값을 나타내었다.As in Example 1, only 15 g of niobium oxide (Nb 2 O 5 ) 100% was charged to a planetary ball mill with 680 g of steel balls and ball milled for 72 hours. Other conditions were the same as in Example 1. The specific surface area of the milled niobium oxide powder showed a small value of 2.89 m 2 / g.

비교예Comparative example 2 2

니오븀산화물(Nb2O5) 100%인 3.1g만을 스펙스볼밀 용기에 강구 93g와 함께 장입한 후 4시간 동안 볼밀링하였다. 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 니오븀산화물 분말의 비표면적은 3.05 m2/g으로 작은 값을 나타내었다.Only 3.1 g of 100% niobium oxide (Nb 2 O 5 ) was charged into a specs ball mill container with 93 g of steel balls and ball milled for 4 hours. Other conditions were the same as in Example 1. The specific surface area of the milled niobium oxide powder showed a small value of 3.05 m 2 / g.

비교예Comparative example 3 3

니오븀산화물(Nb2O5) 100%인 3.1g만을 스펙스볼밀 용기에 강구 93g와 함께 장입한 후 12시간 동안 볼밀링하였다. 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 니오븀산화물 분말의 비표면적은 3.10 m2/g으로 작은 값을 나타내었다.Only 3.1 g of 100% niobium oxide (Nb 2 O 5 ) was charged to a specs ball mill container with 93 g of steel balls and ball milled for 12 hours. Other conditions were the same as in Example 1. The specific surface area of the milled niobium oxide powder showed a small value of 3.10 m 2 / g.

비교예Comparative example 4 4

니오븀산화물(Nb2O5) 97중량%, 소금 3중량%가 되도록 소금을 물에 녹인 후 이 소금물을 니오븀산화물에 첨가하였으며, 그 외 다른 조건은 실시예 1과 동일하게 하였다. 밀링된 니오븀산화물 분말의 비표면적은 5.01 m2/g으로 작은 값을 나타내었다.The salt was dissolved in water so as to be 97% by weight of niobium oxide (Nb 2 O 5 ) and 3% by weight of salt, and the brine was added to niobium oxide, and the other conditions were the same as in Example 1. The specific surface area of the milled niobium oxide powder was small at 5.01 m 2 / g.

상기 실시예 1~10과 비교예 1~4에서 확인할 수 있듯이, 전술한 본 발명에 따른 제법에 의해 얻어진 산화물 분말들의 비표면적이 높다는 것을 알 수 있다. 산화물의 비표면적이 높으면 소결성이 좋고 소결체나 용사체의 내마모성이 좋은 이점이 있으며, 이러한 비표면적이 큰 산화물 분말은 특히 마그네슘계 수소저장분말의 수소흡수속도증가를 위한 첨가제용으로 유용한 이점이 있다.As can be seen in Examples 1 to 10 and Comparative Examples 1 to 4, it can be seen that the specific surface area of the oxide powders obtained by the method according to the present invention described above is high. The high specific surface area of the oxide has the advantage of good sintering properties and good abrasion resistance of the sintered body or the sprayed body. The oxide powder having such a large specific surface area is particularly useful as an additive for increasing the hydrogen absorption rate of the magnesium-based hydrogen storage powder.

이상에서는 본 발명의 바람직한 실시예를 설명하였으나, 본 발명의 범위는 이 같은 특정 실시예의 조건들로 한정되지 않으며, 해당분야에서 통상의 지식을 가진 자라면 본 발명의 특허청구범위 내에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.In the above description of the preferred embodiment of the present invention, the scope of the present invention is not limited to the conditions of the specific embodiment, and those skilled in the art within the scope of the claims of the present invention Changes may be made as appropriate.

이상에서 설명한 바와 같이 본 발명에 의하면 저가의 산화물에 NaCl 수용액이나 소금 수용액을 첨가하여 건조한 후 볼밀링하고 세척하는 간단한 제조 공정에 의해 비표면적이 큰 산화물을 경제적으로 얻을 수 있으며, 본 발명에 따른 제법에 의해 얻어진 비표면적이 큰 산화물은 특히 마그네슘계 수소저장용 분말에 첨가제로서 유용하게 사용될 수 있다.As described above, according to the present invention, an oxide having a large specific surface area can be economically obtained by a simple manufacturing process in which an aqueous solution of NaCl or an aqueous salt solution is added to a low-cost oxide, followed by ball milling and washing. An oxide having a large specific surface area obtained by the above may be particularly useful as an additive to magnesium-based hydrogen storage powders.

Claims (4)

NaCl 또는 소금을 물에 녹인 수용액을, 니오븀산화물, 바나듐산화물, 알루미늄산화물, 마그네슘산화물, 크롬산화물, 철산화물 및 망간산화물로 이루어지는 그룹에서 선택되는 어느 하나 또는 둘 이상의 산화물에 첨가하고 건조하여 산화물 표면에 소금을 균일하게 코팅하는 단계와, An aqueous solution of NaCl or salt dissolved in water is added to any one or two or more oxides selected from the group consisting of niobium oxide, vanadium oxide, aluminum oxide, magnesium oxide, chromium oxide, iron oxide and manganese oxide and dried on the oxide surface. Coating the salt uniformly, 밀링된 산화물 분말에 물을 첨가하여 NaCl이나 소금 성분을 물에 녹인 다음 그 NaCl 수용액 또는 소금 수용액을 제거함으로써 남게 되는 산화물 분말을 건조하는 단계Adding water to the milled oxide powder to dissolve NaCl or salt in water, and then drying the remaining oxide powder by removing the aqueous NaCl solution or salt solution 를 포함하여 이루어지는 것을 특징으로 하는 13.9 m2/g 이상의 비표면적을 갖는 산화물의 제조방법.Method for producing an oxide having a specific surface area of 13.9 m 2 / g or more comprising a. 제1항에 있어서,The method of claim 1, 상기 산화물에 첨가하는 NaCl이나 소금의 첨가량이 산화물에 대한 중량대비로 10중량% 내지 90중량% 사이인 것을 특징으로 하는 13.9 m2/g 이상의 비표면적을 갖는 산화물의 제조방법.Method of producing an oxide having a specific surface area of 13.9 m 2 / g or more, characterized in that the amount of NaCl or salt added to the oxide is between 10% by weight to 90% by weight relative to the weight of the oxide. 삭제delete 제1항 또는 제2항의 제조방법에 의해 제조된 산화물을, Mg계 수소저장용 합금분말의 수소반응속도를 증가시키기 위하여 Mg계 수소저장용 합금분말에 첨가하여 사용하는 것을 특징으로 하는 13.9 m2/g 이상의 비표면적을 갖는 산화물의 사용방법.The 13.9 m 2 which is characterized by using in addition to the Mg-based alloy powder for hydrogen storage in order to increase the hydrogen rate of reaction of the alloy powder for the prepared oxide, Mg-based hydrogen storage by 1 or claim 2 of the production process Method of using an oxide having a specific surface area of / g or more.
KR1020070014021A 2007-02-09 2007-02-09 Fabrication and using method of oxide powders with high specific surface area by coating with nacl or salt and ball milling KR100840218B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070014021A KR100840218B1 (en) 2007-02-09 2007-02-09 Fabrication and using method of oxide powders with high specific surface area by coating with nacl or salt and ball milling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070014021A KR100840218B1 (en) 2007-02-09 2007-02-09 Fabrication and using method of oxide powders with high specific surface area by coating with nacl or salt and ball milling

Publications (1)

Publication Number Publication Date
KR100840218B1 true KR100840218B1 (en) 2008-06-23

Family

ID=39772076

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070014021A KR100840218B1 (en) 2007-02-09 2007-02-09 Fabrication and using method of oxide powders with high specific surface area by coating with nacl or salt and ball milling

Country Status (1)

Country Link
KR (1) KR100840218B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160006381A (en) * 2014-07-09 2016-01-19 이주완 Parsol 1789/silica composite powder, method for manufacturing same and cosmetic composition comprising same
CN105271329A (en) * 2015-10-14 2016-01-27 东南大学 Method for regulating aperture of Al2O3 aerogel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010001006A (en) * 1999-06-01 2001-01-05 박준일 Process of the preparation of lead powder for use in a lead storage battery by cementation reaction
KR20010073279A (en) * 2000-01-13 2001-08-01 윤덕용 Preparing Method for Anode Electrode for High Volt Electrolytic Capacitor
KR20030094078A (en) * 2002-06-05 2003-12-11 삼성코닝 주식회사 Metal oxide powder for high precision polishing and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010001006A (en) * 1999-06-01 2001-01-05 박준일 Process of the preparation of lead powder for use in a lead storage battery by cementation reaction
KR20010073279A (en) * 2000-01-13 2001-08-01 윤덕용 Preparing Method for Anode Electrode for High Volt Electrolytic Capacitor
KR20030094078A (en) * 2002-06-05 2003-12-11 삼성코닝 주식회사 Metal oxide powder for high precision polishing and preparation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160006381A (en) * 2014-07-09 2016-01-19 이주완 Parsol 1789/silica composite powder, method for manufacturing same and cosmetic composition comprising same
KR101638014B1 (en) * 2014-07-09 2016-07-11 이주완 Avobenzone/silica composite powder, method for manufacturing same and cosmetic composition comprising same
CN105271329A (en) * 2015-10-14 2016-01-27 东南大学 Method for regulating aperture of Al2O3 aerogel

Similar Documents

Publication Publication Date Title
Yu et al. Fabrication of hollow inorganic microspheres by chemically induced self‐transformation
TWI259169B (en) Inorganic fine particles, inorganic raw material powder, and method for production thereof
JP2008105921A (en) Method of producing iron-arsenic compound excellent in crystallinity
TW201111276A (en) Process for the preparation of LiFePO4-carbon composites
HUE035407T2 (en) Process of preparing alkali metal titanates
EP1971434A1 (en) Method for manufacturing high surface area nano-porous catalyst and catalyst support structures
KR100840218B1 (en) Fabrication and using method of oxide powders with high specific surface area by coating with nacl or salt and ball milling
JP2006131458A (en) Titanium oxide particle powder and photocatalyst
JP2008156146A (en) alpha-ALUMINA SLURRY
Ebin et al. Simple preperation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP)
JP7240809B2 (en) Method for producing anisotropic zinc phosphate particles and anisotropic zinc metal mixed phosphate particles, and use thereof
Cai et al. Spherically aggregated Cu 2 O–Ta hybrid sub-microparticles with modulated size and improved chemical stability
JP2024051133A (en) Base metal plating
JP2007055880A (en) Method for producing metal oxide particulate powder
KR102347578B1 (en) Manufacturing method of light absorbing single crystal alumina powders having hexagonal plate type structure
JP7383327B1 (en) Acicular alumina particle aggregate and its manufacturing method
JP5494231B2 (en) Titanium dioxide particles and method for producing the same
WO2019235525A1 (en) Zinc oxide powder for producing zinc oxide sintered body, zinc oxide sintered body, and method of producing these
JP2009091206A (en) Fine particle titanium monoxide composition and method of manufacturing the same
WO2015037312A1 (en) Method for producing catalyst particles for hydrogenation, and catalyst particles for hydrogenation
Kim et al. Nanoparticle packaging
WO2019155212A1 (en) Processes of making alumina@layered double hydroxide core@shell particles
JP5354855B2 (en) Valve metal oxide powder and method for producing the same
JP5285725B2 (en) Conductive powder
JPS63266003A (en) Flaked platinum powder and production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120529

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 6