KR20000067108A - Highly Selective and Anisotropic Dry Etch Method of GaN - Google Patents

Highly Selective and Anisotropic Dry Etch Method of GaN Download PDF

Info

Publication number
KR20000067108A
KR20000067108A KR1019990014637A KR19990014637A KR20000067108A KR 20000067108 A KR20000067108 A KR 20000067108A KR 1019990014637 A KR1019990014637 A KR 1019990014637A KR 19990014637 A KR19990014637 A KR 19990014637A KR 20000067108 A KR20000067108 A KR 20000067108A
Authority
KR
South Korea
Prior art keywords
gallium nitride
plasma
aluminum
oxygen
anisotropic dry
Prior art date
Application number
KR1019990014637A
Other languages
Korean (ko)
Other versions
KR100291201B1 (en
Inventor
이지면
장기명
박성주
Original Assignee
김효근
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김효근, 광주과학기술원 filed Critical 김효근
Priority to KR1019990014637A priority Critical patent/KR100291201B1/en
Publication of KR20000067108A publication Critical patent/KR20000067108A/en
Application granted granted Critical
Publication of KR100291201B1 publication Critical patent/KR100291201B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J3/00Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/062Press plates
    • B30B15/064Press plates with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/02Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE: A method for anisotropy dry etching of GaN is provided to gain a high potentiometric selectivity coefficient between AlGaN and GaN. CONSTITUTION: An AlGaN layer and a GaN layer is laminated on a substrate to make a nitride semiconductor. The nitride semiconductor is loaded into an ICP(Inductively Coupled Plasma), ECR(Electron Cyclotron Resonance), or MRIE(Magnetically enhanced Reactive Ion Etch) machine. Inside the machine, the pressure is controlled as 10 mTorr, and the temperature is fixed on 20°C. The GaN layer is etched by changing the plasma output power(0¯3000W), RF(Radio Frequency) table output power(0¯500W), and the amount of injecting oxygen (0¯8SCCM(Standard Cubic Centimeter per Minute)). After finishing the etching process, the nitride semiconductor is washed using a mixed solution to remove the oxygen. the mixed solution is composed of deionized water, ammonium fluoride and HF.

Description

질화갈륨 고(高)선택비의 이방성 건식 식각방법{Highly Selective and Anisotropic Dry Etch Method of GaN}Highly Selective and Anisotropic Dry Etch Method of GaN

본 발명은 갈륨 및 알루미늄을 포함하는 질화물 반도체의 선택적 식각방법에 관한 것으로 보다 상세하게는 고속 전자이동 트랜지스터(high electron mobility transistor, 이하 HEMT라 함), 모듈레이션 도우프 전계 효과 트랜지스터 (modulation doped field effect transistor, 이하 MODFET라 함) 및 그 밖의 전자소자 제작을 위한 질화알루미늄갈륨(AlGaN)에 대한 질화갈륨(GaN) 고(高)선택비의 이방성 건식 식각방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a selective etching method of a nitride semiconductor including gallium and aluminum, and more particularly, to a high electron mobility transistor (HEMT) and a modulation doped field effect transistor. The present invention relates to a gallium nitride (GaN) high selectivity anisotropic dry etching method with respect to aluminum gallium nitride (AlGaN) for manufacturing electronic devices.

화합물 반도체를 사용하여 전자소자 제작을 구현하기 위해서는 식각 공정을 거쳐야 하는데 질화물 반도체의 경우 화학적으로 안정하기 때문에 습식 식각방법에 의해서는 만족할만한 식각을 얻을 수 없으며, 각 재료에 대한 선택적인 식각은 이루어지고 있지 않다. 따라서, 질화물 반도체를 사용하여 전자소자를 제작하기 위해서는 질화물 반도체를 건식 식각방법에 의하여 식각 하여야 한다. 그러나, 질화물 반도체 물질 고유의 특성인 강한 결합력으로 인하여 식각해야할 물질에 대한 선택비가 낮아지게 되어, 전계 효과 트랜지스터와 같은 전자소자를 제작하기가 어려워 고품질의 소자 생산에 어려움이 있다.In order to realize electronic device fabrication using compound semiconductors, an etching process is required. However, since nitride semiconductors are chemically stable, satisfactory etching cannot be obtained by wet etching, and selective etching of each material is performed. Not. Therefore, in order to fabricate an electronic device using a nitride semiconductor, the nitride semiconductor must be etched by a dry etching method. However, due to the strong bonding force inherent in the nitride semiconductor material, the selectivity for the material to be etched is lowered, making it difficult to manufacture an electronic device such as a field effect transistor, thereby making it difficult to produce high quality devices.

질화물 반도체의 건식 식각은 주로 염소(Cl2), 브롬(Br2), 요오드(I2)와 같은 할로겐(halogen) 기체를 사용한 플라즈마를 사용하고 있다. 이 때 할로겐 기체는 질화물 반도체의 3족 물질과 결합하여 휘발성이 강한 염화갈륨(GaClx), 염화알루미늄(AlClx), 브롬화갈륨(GaBr) 또는 브롬화알루미늄(AlBr)과 같은 할로겐화 기체를 생성하고, 5족인 질소원자(N)는 질소분자(N2)를 형성하여, 질화물 반도체의 식각 공정이 이루어진다. 이 때 할로겐 기체중 염소기체를 사용할 때 아르곤 가스를 첨가하면 아르곤(Ar)은 염소의 분해를 촉진하거나, 혹은 이온의 형태로 질화물 반도체 표면에 충돌하여 식각에 의하여 형성된 염화갈륨이나 염화알루미늄의 탈착을 증진시켜, 식각율의 증가가 이루어질 수 있다. 그러나, 이러한 방법으로 질화물 반도체를 식각 할 때, 반응이 시작되기 위해서는 먼저 3족 원소와 5족 원소의 화학적 결합을 끊어야 한다. 그러므로 플라즈마 상태에 있는 이온들이 높은 이온 에너지를 갖도록 플라즈마 변수를 조절해야 하고, 각 물질에 대한 선택비는 각 물질의 화학적 결합력에 일차적으로 제한된다.Dry etching of nitride semiconductors mainly uses plasma using halogen gas such as chlorine (Cl 2 ), bromine (Br 2 ) and iodine (I 2 ). At this time, the halogen gas is combined with the Group III material of the nitride semiconductor to generate a highly volatile halogenated gas such as gallium chloride (GaCl x ), aluminum chloride (AlCl x ), gallium bromide (GaBr) or aluminum bromide (AlBr), Nitrogen atoms (N) of Group 5 form nitrogen molecules (N 2 ) to perform an etching process of the nitride semiconductor. In this case, when argon gas is added when using chlorine gas in halogen gas, argon (Ar) accelerates the decomposition of chlorine or collides with the surface of the nitride semiconductor in the form of ions to desorption of gallium chloride or aluminum chloride formed by etching. Increasingly, an increase in the etching rate can be achieved. However, when etching the nitride semiconductor in this way, the chemical bond between the Group 3 and Group 5 elements must be broken before the reaction can begin. Therefore, the plasma parameters must be adjusted so that the ions in the plasma state have high ion energy, and the selectivity ratio for each material is primarily limited to the chemical bonding force of each material.

이러한 선택적 식각방법에 관련된 선행 기술로는 Smith 외 5명(Appl. Phys. Lett. 71, 3631, 1997)의 염소/아르곤(Cl2/Ar) 플라즈마를 사용하여 알루미늄이 28% 함유된 질화알루미늄갈륨(AlGaN)에 대하여 선택비 10인 질화갈륨(GaN)의 선택 식각방법이 보고된 바 있다. 이들은 또한 알루미늄이 100% 함유된, 즉 질화알루미늄 (AlN)에 대하여 선택비 38인 질화갈륨(GaN)의 선택 식각방법을 보고하였으며, 알루미늄의 함유량이 클수록 더 높은 선택비를 얻을 수 있다고 하였다. Vartuli 외 7명 (Electrochem. Soc. Interface, 144, 2146, 1997)은 삼염화붕소/아르곤(BCl3/Ar) 플라즈마를 사용하여 알루미늄이 31% 포함된 질화알루미늄갈륨에 대하여 5 이하의 낮은 선택비를 보고하였으며, Smith등의 결과와 유사하게 갈륨의 함유량이 클수록 즉 평균 결합에너지가 작을 수록, 더 낮은 질화갈륨 선택비를 나타낸다고 보고하였다. 한편, Basak 외 6명(Jpn. J. Appl. Phys. 38, 42, 1999)은 염소/메탄/아르곤 (Cl2/CH4/Ar) 플라즈마를 이용하여 알루미늄이 15% 함유된 질화알루미늄갈륨에 대하여 4.2의 선택비를 보고하였으며 이들도 또한 결합력의 차이에 의해 선택비가 결정됨을 보고하였다.Prior arts related to this selective etching method include aluminum gallium nitride containing 28% aluminum using chlorine / argon (Cl 2 / Ar) plasma of Smith et al. (Appl. Phys. Lett. 71, 3631, 1997). A selective etching method of gallium nitride (GaN) having a selectivity of 10 with respect to (AlGaN) has been reported. They also reported a selective etching method of gallium nitride (GaN) containing 100% aluminum, that is, a selectivity of 38 with respect to aluminum nitride (AlN), and the higher the content of aluminum, the higher the selectivity. Vartuli et al. (Electrochem. Soc. Interface, 144, 2146, 1997) used a boron trichloride / argon (BCl 3 / Ar) plasma to achieve a low selectivity of less than 5 for aluminum gallium nitride containing 31% aluminum. As reported by Smith et al., It was reported that the higher the gallium content, that is, the smaller the average binding energy, the lower the gallium nitride selectivity. On the other hand, Basak et al. (Jpn. J. Appl. Phys. 38, 42, 1999) used chlorine / methane / argon (Cl 2 / CH 4 / Ar) plasma in aluminum gallium nitride containing 15% aluminum. A selection ratio of 4.2 was reported, and they also reported that the selection ratio was determined by the difference in binding force.

이상과 같이 질화알루미늄갈륨에 대한 질화갈륨의 선택적 식각 방법은 현재까지 재료의 내재적인 결합력의 차이에 의한 방법에만 의존하고 있는 실정이다.As mentioned above, the selective etching method of gallium nitride with respect to aluminum gallium nitride currently depends only on the method by the difference of the intrinsic binding force of a material.

본 발명은 할로겐 기체에 산소, 황 또는 셀레늄을 첨가하고 이들의 플라즈마를 이용하여 기존에 할로겐 기체 플라즈마만을 이용한 식각방법에 비해 재료내의 내재적인 결합력의 차이뿐만 아니라, 질화물 반도체 표면에 큰 결합력의 차이를 갖는 갈륨-산소, 알루미늄-산소와 같은 인위적인 산소 결합을 유도하여 질화갈륨 고(高)선택비의 이방성 건식 식각방법 제공하는데 그 목적이 있다.The present invention adds oxygen, sulfur, or selenium to halogen gas, and uses the plasma thereof, as well as the inherent bonding force in the material as compared to the conventional etching method using only halogen gas plasma, as well as the large bonding force difference on the nitride semiconductor surface. It is an object of the present invention to provide an anisotropic dry etching method having a high selectivity of gallium nitride by inducing artificial oxygen bonding such as gallium-oxygen and aluminum-oxygen.

도 1(a)는 질화물 반도체를 나타내는 모식도이고,1 (a) is a schematic diagram showing a nitride semiconductor,

(b)는 본 발명에 의해 질화물 반도체의 질화갈륨층 식각후를 나타내는 모식도이다.(b) is a schematic diagram which shows after the gallium nitride layer etching of a nitride semiconductor by this invention.

도 2(a)는 본 발명에 의한 질화갈륨과 질화알루미늄갈륨의 식각율을 플라즈마에 유입된 산소의 유입량에 따라 나타낸 그래프로서 -■-은 질화갈륨의 식각율, -○-은 알루미늄이 5% 함유된 질화알루미늄갈륨의 식각율, -△-은 알루미늄이 10% 함유된 질화알루미늄갈륨의 식각율이고,Figure 2 (a) is a graph showing the etching rate of gallium nitride and aluminum gallium nitride according to the present invention according to the inflow amount of oxygen introduced into the plasma---silver gallium nitride etching rate,---silver aluminum 5% Etch rate of aluminum gallium nitride contained, -Δ- is the etching rate of aluminum gallium nitride containing 10% aluminum,

(b)는 (a)에 나타낸 각각의 식각율을 질화알루미늄갈륨에 대한 질화갈륨의 상대적인 식각율, 즉 선택비(selectivity)를 나타낸 그래프로서 -■-은 알루미늄이 10% 함유된 질화알루미늄갈륨에 대한 선택비이고, -○-은 알루미늄이 10% 함유된 질화알루미늄갈륨에 대한 질화갈륨의 선택비이다.(b) is a graph showing the relative etching rate of gallium nitride with respect to aluminum gallium nitride, that is, selectivity as shown in (a), and-?-to aluminum gallium nitride containing 10% of silver aluminum. Is a selectivity ratio of gallium nitride to aluminum gallium nitride containing 10% of aluminum.

도 3은 질화알루미늄갈륨에 대한 질화갈륨의 선택비를 플라즈마 출력에 대하여 나타낸 그래프로서 -■-은 알루미늄이 10% 함유된 질화알루미늄갈륨에 대한 질화갈륨의 선택비이고, -●-은 알루미늄이 5% 함유된 질화알루미늄갈륨에 대한 질화갈륨의 선택비이다.3 is a graph showing the selectivity ratio of gallium nitride to aluminum gallium with respect to the plasma output.-■-is the selectivity ratio of gallium nitride to aluminum gallium nitride containing 10% of aluminum. % Is the selectivity ratio of gallium nitride to the contained aluminum gallium nitride.

도 4는 질화알루미늄갈륨에 대한 질화갈륨의 선택비를 알에프 테이블(RF table) 출력에 대하여 나타낸 그래프로서 -■-은 알루미늄이 10% 함유된 질화알루미늄갈륨에 대한 질화갈륨의 선택비이고, -●-은 알루미늄이 5% 함유된 질화알루미늄갈륨에 대한 질화갈륨의 선택비이다.FIG. 4 is a graph showing the selectivity of gallium nitride to aluminum gallium nitride on the RF table output,-■-is the selectivity ratio of gallium nitride to aluminum gallium nitride containing 10% of aluminum; Is the selectivity ratio of gallium nitride to aluminum gallium nitride containing 5% aluminum.

화합물 반도체를 이용한 고속 전자이동 트랜지스터(HEMT), 모듈레이션 도우프 전계 효과 트랜지스터(MODFET) 및 그 밖의 전자소자의 기본 구조는 n-형 혹은 p-형의 이원계 갈륨화합물(binary compound: GaAs, GaN 등)의 채널층(channel layer)과, 전하공급층(charge supply layer) 혹은 클래딩층(cladding layer)으로 쓰이는 알루미늄을 포함하는 삼원계 갈륨화합물(ternary compound: AlxGa1-xAs, AlxGa1-xN 등)층, 패시베이션(passivation)과 오믹 접촉(ohmic contact)을 위한 캐핑층(capping layer)으로서의 이원계 갈륨화합물층으로 이루어진다. 그러므로, 게이트(gate) 접촉을 위해서는 반드시 이원계 갈륨화합물층을 식각하여 전하공급층이 드러나도록 하여야 한다. 이때 캐핑층 및 전하공급층의 두께는 수백 옹스트롱(Å)이므로 반드시 높은 선택비로서 이원계 갈륨화합물층을 식각해야 한다.The basic structure of high-speed electron transfer transistor (HEMT), modulation doped field effect transistor (MODFET) and other electronic devices using compound semiconductor is n-type or p-type binary gallium compound (GaAs, GaN, etc.) Ternary compounds including aluminum used as a channel layer and a charge supply layer or a cladding layer of Al x Ga 1-x As, Al x Ga 1 -x N, etc.) layer, a binary gallium compound layer as a capping layer for passivation and ohmic contact. Therefore, for gate contact, the binary gallium compound layer must be etched to expose the charge supply layer. At this time, the thickness of the capping layer and the charge supply layer is hundreds of angstroms (Å), so the binary gallium compound layer must be etched at a high selectivity.

본 발명은 산소, 황 또는 셀레늄을 첨가한 플라즈마를 사용하여, 식각 되는 물질인 알루미늄-질소의 결합에너지(297.96 kJ/mol) 보다 더 큰 결합에너지(511 kJ/mol)를 갖고, 비휘발성인 알루미늄-산소 결합을 질화알루미늄갈륨 표면에 유도하여 기존의 내재적인 결합력의 차이를 이용한 선택적 식각 방법보다 낮은 알루미늄의 함유량에서도 현저히 높은 선택비를 나타낼 수 있도록 한다. 또한 식각 공정중에 플라즈마 생성조건을 조절하면 사용하는 반도체 소자의 종류에 따라 유연하게 적용할 수 있다. 본 발명의 질화물 반도체의 질화층을 선택적으로 식각 하는 방법은 다음과 같다.The present invention has a binding energy (511 kJ / mol) that is larger than the binding energy of aluminum-nitrogen (297.96 kJ / mol), which is an etched material, using a plasma added with oxygen, sulfur or selenium, and is non-volatile aluminum. -Oxygen bonds are induced on the surface of aluminum gallium nitride so that they can exhibit significantly higher selectivity even at lower aluminum content than the selective etching method using the conventional inherent difference in bonding strength. In addition, by controlling the plasma generation conditions during the etching process it can be applied flexibly according to the type of semiconductor device used. The method of selectively etching the nitride layer of the nitride semiconductor of the present invention is as follows.

기판에 질화알루미늄갈륨층과 질화갈륨층이 차례로 적층된 질화물 반도체를 유도결합 플라즈마(Inductively Coupled Plasma; 이하 ICP 이라 함), 전자공명 플라즈마(Electron Cyclotron Resonance; 이하 ECR 이라 함) 또는 자기장으로 강화된 플라즈마(Magnetically Enhanced Reactive Ion Etch; 이하 MRIE 이라 함) 반응기에 놓고 할로겐 기체와 함께 산소, 황 또는 셀레늄 기체를 유입시키고 반응기내 압력은 10 mTorr, 온도는 20℃, 플라즈마 출력을 0∼3,000 W, RF(Radio-Frequency) 테이블(table) 출력을 0∼500 W로 하고 산소 유입량을 0∼8 sccm(Standard Cubic Centimeter per Minute) 변화시키며 질화물 반도체의 질화갈륨층을 식각한다.A nitride semiconductor in which an aluminum gallium nitride layer and a gallium nitride layer are sequentially stacked on a substrate may be inductively coupled plasma (hereinafter referred to as ICP), electron resonance plasma (hereinafter referred to as ECR), or plasma enhanced by a magnetic field. (Magnetically Enhanced Reactive Ion Etch, hereinafter referred to as MRIE) Placed in a reactor with oxygen, sulfur or selenium gas with halogen gas, pressure in the reactor 10 mTorr, temperature 20 ℃, plasma output 0 ~ 3,000 W, RF ( The gallium nitride layer of the nitride semiconductor is etched by changing the radio-frequency table output from 0 to 500 W, changing the oxygen inflow from 0 to 8 sccm (Standard Cubic Centimeter per Minute).

한편 산소 플라즈마를 이용하여 질화물 반도체의 질화갈륨층을 식각하는 경우 식각공정이 끝나면 질화알루미늄갈륨 표면에 잔류하는 산소를 제거하기 위해 증류수(deionized water):암모늄플루오라이드(ammonium fluoride, NH4F):1 ~ 100%의 불산(HF)을 0∼1:0∼1:0.01∼1의 부피비로 혼합한 용매를 사용하여 1초∼300초 동안 세정한다.On the other hand, when the gallium nitride layer of the nitride semiconductor is etched using an oxygen plasma, deionized water: ammonium fluoride (NH 4 F) to remove oxygen remaining on the aluminum gallium nitride surface after the etching process is completed: 1 to 100% of hydrofluoric acid (HF) is washed for 1 to 300 seconds using a solvent mixed at a volume ratio of 0 to 1: 0 to 1: 0.01 to 1.

이하 실시예 및 시험예를 통하여 본 발명을 보다 상세히 설명한다. 그러나 이들이 본 발명의 기술적 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples. However, these do not limit the technical scope of the present invention.

< 실시예 1 ><Example 1>

박막 성장 방법은 유기금속화학증착법(metalorganic chemical vapor deposition : MOCVD)을 사용하였으며 기판은 (0001) 사파이어를 사용하였다. 트리메틸갈륨(trimethylgallium:TMGa)과 트리메틸알루미늄(trimethylaluminum:TMAl), 암모니아(NH3)를 각각 갈륨, 알루미늄, 질소 원(source)으로 사용하였다. 먼저 기판 위에 500℃에서 300Å의 질화갈륨 핵생성층을 성장시킨 후 1,020℃에서 1시간 동안 1.8㎛ 두께의 n-형 질화갈륨 에피층을 성장시켰으며 트리메틸알루미늄의 유입량을 47 μ㏖에서 78.6 μ㏖로 변화시켜 5% 및 10%의 알루미늄을 함유하고 있는 질화알루미늄갈륨 박막을 5,000 Å두께로 성장시켰다.The thin film growth method used metalorganic chemical vapor deposition (MOCVD) and the substrate (0001) sapphire was used. Trimethylgallium (TMGa), trimethylaluminum (TMAl), and ammonia (NH 3 ) were used as gallium, aluminum, and nitrogen sources, respectively. First, a gallium nitride nucleation layer of 300 500 was grown on a substrate at 500 ° C, and an n-type gallium nitride epitaxial layer having a thickness of 1.8 µm was grown at 1,020 ° C for 1 hour. The aluminum gallium nitride thin film containing 5% and 10% aluminum was grown to 5,000 mm thick.

< 실시예 2 ><Example 2>

기판 위에 성장된 질화갈륨층과 질화알루미늄갈륨 반도체를 유도결합 플라즈마(ICP) 반응기에서 염소/아르곤(Cl2/Ar) 유입량을 30/10 sccm, 압력은 10 mTorr, 온도는 20℃, ICP 출력을 1,000 W, RF(Radio-Frequency) 테이블(table) 출력을 100 W로 각각 고정하고, 산소 유입량을 0∼8 sccm 변화시키며 질화알루미늄갈륨 대한 질화갈륨의 식각율 및 선택비를 측정하여 이것을 도 2(a)(b)의 그래프로 나타내었으며 식각이 끝난 후 질화알루미늄갈륨 표면에 잔류하는 산소를 제거하기 위해 증류수:암모늄플루오라이드(NH4F):1 ~ 100%의 불산(HF)을 1:1:1의 부피비로 혼합한 용매를 사용하여 1초∼300초 동안 세정하였다.A gallium nitride layer and an aluminum gallium nitride semiconductor grown on a substrate were subjected to chlorine / argon (Cl 2 / Ar) inflow rate of 30/10 sccm, pressure 10 mTorr, temperature 20 ° C., and ICP output in an inductively coupled plasma (ICP) reactor. 1,000 W and RF (Radio-Frequency) table (table) outputs are fixed at 100 W, respectively, oxygen inflow is changed from 0 to 8 sccm, and the etching rate and selectivity of gallium nitride to aluminum gallium nitride are measured and this is shown in FIG. a) (b) shows a graph of distilled water: ammonium fluoride (NH 4 F): 1 to 100% hydrofluoric acid (HF) in order to remove oxygen remaining on the surface of aluminum gallium nitride after etching. The solvent was mixed at a volume ratio of 1 to 1 to 300 seconds.

도 2(a)는 질화갈륨, 알루미늄이 5% 함유된 질화알루미늄갈륨 및 알루미늄이 10% 함유된 질화알루미늄갈륨 식각율의 변화를 도시한 것으로 기존에 사용되는 염소/아르곤(Cl2/Ar) 플라즈마에 비해 각각의 식각율이 각기 다른 비율로 작아짐을 알 수 있다. 도 2(b)는 (a)에서 각각의 식각율을 질화알루미늄갈륨에 대한 질화갈륨의 상대적인 식각율, 즉 선택비(selectivity)를 나타낸 그래프로서 알루미늄이 5% 함유된 질화알루미늄갈륨에 대한 질화갈륨의 선택비는 3 정도이며 알루미늄이 10% 함유된 질화알루미늄갈륨에 대한 질화갈륨의 선택비는 최대 22.2로 큰 증가를 나타내었다.FIG. 2 (a) shows changes in the etch rate of gallium nitride, aluminum gallium nitride containing 5% aluminum, and aluminum gallium nitride containing 10% aluminum, and used chlorine / argon (Cl 2 / Ar) plasma. It can be seen that the etching rate of each is smaller by different ratios. FIG. 2 (b) is a graph showing the relative etching rate of gallium nitride with respect to aluminum gallium nitride, that is, selectivity in (a), and gallium nitride with respect to aluminum gallium nitride containing 5% aluminum. The selectivity of gallium nitride was about 3, and the selectivity of gallium nitride to aluminum gallium nitride containing 10% of aluminum was a maximum increase of 22.2.

< 실시예 3 ><Example 3>

실시예 1과 동일하게 성장된 질화갈륨(GaN)층과 질화알루미늄갈륨(AlGaN)층을 실시예 2에서 최적화된 2 sccm의 산소유입량 조건에서 ICP 출력을 500∼2,000W로 하는 것을 제외하고는 같은 조건하에서 식각하여 선택비를 측정하였으며 이의 결과를 도 3에 나타내었으며 식각이 끝난 후 질화알루미늄갈륨 표면에 잔류하는 산소를 제거하기 위해 불산(HF)을 사용하여 실시예 2 에서와 같은 방법으로 세정하였다.The gallium nitride (GaN) layer and the aluminum gallium nitride (AlGaN) layer grown in the same manner as in Example 1 were the same except that the ICP output was 500 to 2,000 W under the oxygen flow rate of 2 sccm optimized in Example 2. The selectivity was measured by etching under the conditions, and the results thereof are shown in FIG. 3 and washed in the same manner as in Example 2 using hydrofluoric acid (HF) to remove oxygen remaining on the aluminum gallium nitride surface after etching. .

도 3의 그래프에서 보는 것처럼 ICP 출력이 증가할수록 점차 선택비가 증가하여 5% 알루미늄 함유량을 가진 질화알루미늄갈륨에 대한 질화갈륨의 선택비는 최대 13.1 이었으며 10% 알루미늄 함유량을 가진 질화알루미늄갈륨에 대한 질화갈륨의 선택비는 최대 24.2를 나타내었다.As shown in the graph of FIG. 3, as the ICP output increases, the selectivity gradually increases, so that the selectivity of gallium nitride to aluminum gallium nitride having a 5% aluminum content is 13.1 at maximum, and gallium nitride to aluminum gallium nitride having a 10% aluminum content. The selectivity of was up to 24.2.

< 실시예 4 ><Example 4>

실시예 1과 동일하게 성장된 질화갈륨(GaN)층과 질화알루미늄갈륨(AlGaN)층을 실시예 2에서 찾은 최적화된 2 sccm의 산소유입량 조건에서 RF 테이블 출력을 100∼250 W로 하는 것을 제외하고는 실시예 2와 같은 조건에서 식각 하여 질화알루미늄갈륨에 대한 질화갈륨의 선택비를 측정하여 이 결과를 도 4에 나타내었으며 식각이 끝난 후 질화알루미늄갈륨 표면에 잔류하는 산소를 제거하기 위해 실시예 2와 같은 방법으로 불산(HF)을 사용하여 세정하였다. 도 4의 그래프에서 보는 것처럼 RF 테이블 출력이 증가할수록 점차 선택비가 감소하여 10% 알루미늄 함유량을 가진 질화알루미늄갈륨에 대한 질화갈륨의 선택비는 13으로 감소하였다. 그러나 각각의 식각율은 크게 증가하여 선택비가 13일 때 질화갈륨은 5,500 Å/min, 5% 알루미늄 함유량을 가진 질화알루미늄갈륨은 1,850 Å/min, 10% 알루미늄 함유량을 가진 질화알루미늄갈륨은 425 Å/min와 같이 높은 식각율을 나타내었으며, 테이블 출력이 증가함에 시편에 유도된 자기전압(self bias)이 증가하여 플라즈마 내에 존재하는 이온이 강하게 표면에 충돌하여 시편표면에 수직한 방향으로의 식각이 크게 발생하여 이방성이 증가하였다.Except for using the gallium nitride (GaN) and aluminum gallium nitride (AlGaN) layers grown in the same manner as in Example 1, the RF table output was 100 to 250 W under the optimized 2 sccm oxygen inflow conditions found in Example 2. Was etched under the same conditions as in Example 2 to measure the selectivity ratio of gallium nitride to aluminum gallium nitride, and the results are shown in FIG. 4, and Example 2 was used to remove oxygen remaining on the aluminum gallium nitride surface after etching. It was washed with hydrofluoric acid (HF) in the same manner. As shown in the graph of FIG. 4, as the RF table output increased, the selectivity gradually decreased, so that the selectivity of gallium nitride to aluminum gallium nitride having a 10% aluminum content was reduced to 13. However, the etch rate increased significantly, and when the selectivity was 13, gallium nitride was 5,500 Å / min, aluminum gallium nitride with 5% aluminum content was 1,850 Å / min, and aluminum gallium nitride with 10% aluminum content was 425 Å /. The high etch rate was shown as min, and as the output of the table increased, the self bias induced in the specimen increased, so that the ions present in the plasma strongly collided with the surface, resulting in large etching in the direction perpendicular to the surface of the specimen. Occurred and anisotropy increased.

본 발명에 의한 질화물 반도체에서 질화갈륨의 선택적 식각 방법은 종래의 할로겐 플라즈마를 이용한 질화갈륨의 식각방법에 비해 선택비를 10∼23 이상으로 높일 수 있어 전자소자개발 및 응용범위 증대에 크게 기여할 수 있다.Selective etching method of gallium nitride in the nitride semiconductor according to the present invention can increase the selectivity to more than 10 to 23 or more compared with the conventional gallium nitride etching method using a halogen plasma can greatly contribute to the development of electronic devices and application range .

Claims (6)

질화물 반도체를 식각 하는 방법에 있어서, 산소(O), 황(S) 또는 셀레늄(Se) 기체와 할로겐 기체를 반응기에 유입시키고 플라즈마를 사용하여 질화갈륨층을 식각 하는 것을 특징으로 하는 질화갈륨 고(高)선택비의 이방성 건식 식각방법.In the method of etching a nitride semiconductor, oxygen (O), sulfur (S) or selenium (Se) gas and halogen gas is introduced into the reactor and the gallium nitride layer characterized in that the gallium nitride layer is etched using plasma. Anisotropic dry etching method with high selectivity. 제 1항에 있어서, 산소는 전체기체의 0∼50%를 사용하여 식각 하는 것을 특징으로 하는 질화갈륨 고(高)선택비의 이방성 건식 식각방법.The gallium nitride high selectivity anisotropic dry etching method according to claim 1, wherein the oxygen is etched using 0 to 50% of the total gas. 제 1항에 있어서, 플라즈마 파워를 0∼3,000 W로 조절하는 것을 특징으로 하는 산소 플라즈마를 이용한 질화갈륨 고(高)선택비의 이방성 건식 식각방법.The method of claim 1, wherein the gallium nitride high selectivity anisotropic dry etching method using an oxygen plasma, characterized in that the plasma power is adjusted to 0 to 3,000 W. 제 1항에 있어서, 플라즈마 RF 테이블 파워를 0∼500 W로 조절하는 것을 특징으로 하는 산소 플라즈마를 이용한 질화갈륨 고(高)선택비의 이방성 건식 식각방법.The method of claim 1, wherein the plasma RF table power is adjusted to 0 to 500 W. The gallium nitride high selectivity anisotropic dry etching method using oxygen plasma. 제 1항 또는 제 3항에 있어서, 플라즈마의 생성기는 전자공명 플라즈마 (ECR), 유도결합 플라즈마(ICP), 자기장으로 강화된 플라즈마(MRIE) 중에서 선택된 어느 한 가지를 사용하는 것을 특징으로 하는 질화갈륨 고(高)선택비의 이방성 건식 식각방법.4. The gallium nitride as claimed in claim 1 or 3, wherein the plasma generator uses any one selected from electron resonance plasma (ECR), inductively coupled plasma (ICP), and magnetic field enhanced plasma (MRIE). Anisotropic dry etching method with high selectivity. 제 1항 또는 제 2항에 있어서, 산소 플라즈마를 이용하여 질화갈륨층을 식각한 후 질화알루미늄갈륨 표면에 잔류하는 산소를 제거하기 위하여 증류수 (deionized water):암모늄플루오라이드(ammonium fluoride, NH4F):1 ~ 100%의 불산(HF)을 0∼1:0∼1:0.01∼1의 부피비로 혼합한 용매를 사용하여 1초∼300초 동안 세정하는 것을 특징으로 하는 질화갈륨 고(高)선택비의 이방성 건식 식각방법.The method of claim 1 or 2, wherein the ionized water: ammonium fluoride (NH 4 F) is used to remove oxygen remaining on the aluminum gallium nitride surface after etching the gallium nitride layer using an oxygen plasma. Gallium nitride, characterized in that the cleaning is performed for 1 second to 300 seconds using a solvent mixed with 1 to 100% of hydrofluoric acid (HF) at a volume ratio of 0 to 1: 0 to 1: 0.01 to 1. Anisotropic dry etching method of selectivity.
KR1019990014637A 1999-04-23 1999-04-23 Highly Selective and Anisotropic Dry Etch Method of GaN KR100291201B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990014637A KR100291201B1 (en) 1999-04-23 1999-04-23 Highly Selective and Anisotropic Dry Etch Method of GaN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990014637A KR100291201B1 (en) 1999-04-23 1999-04-23 Highly Selective and Anisotropic Dry Etch Method of GaN

Publications (2)

Publication Number Publication Date
KR20000067108A true KR20000067108A (en) 2000-11-15
KR100291201B1 KR100291201B1 (en) 2001-05-15

Family

ID=19581909

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990014637A KR100291201B1 (en) 1999-04-23 1999-04-23 Highly Selective and Anisotropic Dry Etch Method of GaN

Country Status (1)

Country Link
KR (1) KR100291201B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180120370A (en) 2017-04-27 2018-11-06 고려대학교 산학협력단 Method for etching of gallium oxide
KR20220017771A (en) 2020-08-05 2022-02-14 고려대학교 산학협력단 METHOD FOR REMOVING DEFECT OF β-Ga2O3

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878246B2 (en) 2010-06-14 2014-11-04 Samsung Electronics Co., Ltd. High electron mobility transistors and methods of fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180120370A (en) 2017-04-27 2018-11-06 고려대학교 산학협력단 Method for etching of gallium oxide
KR20220017771A (en) 2020-08-05 2022-02-14 고려대학교 산학협력단 METHOD FOR REMOVING DEFECT OF β-Ga2O3

Also Published As

Publication number Publication date
KR100291201B1 (en) 2001-05-15

Similar Documents

Publication Publication Date Title
Pearton et al. Low bias electron cyclotron resonance plasma etching of GaN, AlN, and InN
Ping et al. Reactive ion etching of gallium nitride using hydrogen bromide plasmas
Zhang et al. Electron cyclotron resonance etching characteristics of GaN in SiCl4/Ar
US5789265A (en) Method of manufacturing blue light-emitting device by using BCL3 and CL2
Shul et al. High rate electron cyclotron resonance etching of GaN, InN, and AlN
Chen et al. Cl 2 reactive ion etching for gate recessing of AlGaN/GaN field-effect transistors
Chen et al. Vertical high quality mirrorlike facet of GaN-based device by reactive ion etching
Pearton et al. Comparison of CH4/H2/Ar reactive ion etching and electron cyclotron resonance plasma etching of In‐based III–V alloys
Lee et al. Highly selective dry etching of III nitrides using an inductively coupled Cl 2/Ar/O 2 plasma
KR100291201B1 (en) Highly Selective and Anisotropic Dry Etch Method of GaN
US11164752B2 (en) Method of etching a dielectric layer
CN109300974B (en) Nonpolar InAlN/GaN high electron mobility transistor and preparation method thereof
Khan et al. Inductively coupled plasma reactive ion etching of Al x Ga 1− x N for application in laser facet formation
US5370767A (en) Selective dry etching method for compound semiconductor and production method of semiconductor device
JP4537549B2 (en) Method for manufacturing compound semiconductor device
KR100484502B1 (en) Anisotropic Dry Etching of ZnO for Optical and Electronic Devices Using BCl3 Based Plasmas
CN106910770B (en) Gallium nitride-based phase inverter chip and forming method thereof
US20220068653A1 (en) Method for etching a iii-n material layer
CN109346519A (en) Nonpolar InAlN/GaN high electron mobility transistor and preparation method
Im et al. Cl 2-based dry etching of GaN films under inductively coupled plasma conditions
Shul High-Density ECR Etching of Group-III Nitrides
Shul et al. High‐Density Etching of Group III Nitride Ternary Films
Ren et al. Effect of BCl3 dry etching on InAlN surface properties
JP2000349067A (en) Dry etching method of semiconductor
Humphreys et al. ECR RIE-enhanced low pressure plasma etching of GaN/InGaN/AlGaN heterostructures

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121211

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20131211

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20141218

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee