KR20000046964A - Method for forming barrier oxide of capacitor - Google Patents

Method for forming barrier oxide of capacitor Download PDF

Info

Publication number
KR20000046964A
KR20000046964A KR1019980063705A KR19980063705A KR20000046964A KR 20000046964 A KR20000046964 A KR 20000046964A KR 1019980063705 A KR1019980063705 A KR 1019980063705A KR 19980063705 A KR19980063705 A KR 19980063705A KR 20000046964 A KR20000046964 A KR 20000046964A
Authority
KR
South Korea
Prior art keywords
gas
silicon nitride
oxidation step
capacitor
oxygen gas
Prior art date
Application number
KR1019980063705A
Other languages
Korean (ko)
Other versions
KR100574476B1 (en
Inventor
오원상
이태혁
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019980063705A priority Critical patent/KR100574476B1/en
Publication of KR20000046964A publication Critical patent/KR20000046964A/en
Application granted granted Critical
Publication of KR100574476B1 publication Critical patent/KR100574476B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Abstract

PURPOSE: A method for forming a barrier oxide of a capacitor is provided to prevent a silicon nitride layer from being destroyed as well as to improve leakage current. CONSTITUTION: A method for forming a barrier oxide of a capacitor according to the present invention includes following steps. At the first step, a lower charge storage electrode(15) as well as a silicon nitride layer(20) are formed on a semiconductor substrate. At the second step, hydrogen gas and oxygen gas are supplied on the silicon nitride layer to oxidate the surface of the silicon nitride layer. At the third step, the silicon nitride layer is oxidated in an oxygen gas atmosphere to form a barrier oxide(25) layer on the silicon nitride layer. The oxidation process is perform in the temperature range of 600 to 850°C.

Description

커패시터의 장벽산화층 형성방법Method of forming barrier oxide layer of capacitor

본 발명은 커패시터 형성방법에 관한 것으로서, 특히, 수증기가스와 미반응의 산소가스분위기에서 실리콘나이트라이드막을 표면산화시킨 후에 산소가스분위기에서 상기 실리콘나이트라이드막을 적층하는 공정등을 다단계를 거치면서 실리콘나이트라이드막을 표면산화시켜 누설차단용 장벽산화층을 형성하므로 실리콘나이트라이드막의 파손을 방지하고 커패시터의 누설전류를 개선하여 소자의 특성을 향상시키도록 하는 커패시터의 장벽산화층 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a capacitor, and in particular, after the surface oxidation of a silicon nitride film in an atmosphere of oxygen gas and unreacted oxygen gas, the silicon nitride film is subjected to a multi-step process of laminating the silicon nitride film in an oxygen gas atmosphere. Since a barrier oxide layer for surface leakage is formed by surface oxidation of a ride film, a method for forming a barrier oxide layer of a capacitor which prevents breakage of a silicon nitride film and improves leakage characteristics of a capacitor to improve device characteristics.

일반적으로, 반도체소자의 고집적화가 이루어짐에 따라 커패시터 역시 소형화될 것을 요구 되어지고 있으나 전하를 저장하는 데 한계에 부딪히게 되어 커패시터는 셀의 크기에 비하여 고집적화시키는 데 어려움이 표출되었으며, 이러한 점을 감안하여 각 업체에서 커패시터의 전하를 저장하기 위한 구조를 다양하게 변화하기에 이르렀다. 커패시터의 전하를 증가시키는 방법에는 유전상수가 큰 물질을 사용하는 방법, 유전물질의 두께를 낮추는 방법 및 커패시터의 표면적을 늘리는 방법등이 있으며, 최근에는 커패시터의 표면적을 증대시키는 방법이 주로 이용되고 있다.In general, as semiconductor devices have been highly integrated, capacitors have also been required to be miniaturized. However, due to the limitations in storing charges, it is difficult for capacitors to be highly integrated with cell sizes. Each company has changed the structure to store the charge of the capacitor. The method of increasing the charge of a capacitor includes a method using a material having a large dielectric constant, a method of decreasing the thickness of a dielectric material, and a method of increasing the surface area of a capacitor. Recently, a method of increasing the surface area of a capacitor has been mainly used. .

즉, 커패시터의 전하저장전극의 구조를 보면, 크게 전하를 저장하는 전극은 좁은 평면적 위에 여러층을 쌓아서 넓은 커패시터의 면적을 얻고자 하는 적층구조(Stacked Structure)와, 반도체기판에 일정한 깊이의 홈을 형성한 후에 그 부위에 커패시터를 형성하여 전하를 저장하도록 하는 홈 구조(Trench Structure)등으로 크게 대별되어지고 있다.That is, in the structure of the charge storage electrode of the capacitor, the electrode that stores the charge largely has a stacked structure to obtain a large capacitor area by stacking several layers on a narrow plane and a groove having a constant depth in the semiconductor substrate. After the formation, it is largely classified into a trench structure for forming a capacitor at the site and storing charge.

특히, 상기 적층구조(Stacked Structure)는 핀 형상으로 형성된 핀(Fin)타입과, 실린더와 같이 원통형상으로 형성되는 실린더(Cylinder)타입 및 캐비티(Cavity)타입에 변형을 가미한 HSG(Hemispherical Shaped Grains) 및 벨로즈(Bellows) 등과 같은 변형 커패시터구조등으로 구성되어 커패시터의 충전용량을 증가시키는 노력이 이루어지고 있다.In particular, the stacked structure has a finned type formed in a pin shape, and a HSG (Hemispherical Shaped Grains) in which a deformation is applied to a cylinder type and a cavity type formed in a cylindrical shape such as a cylinder. And a modified capacitor structure such as bellows, etc., have been made to increase the charging capacity of the capacitor.

상기한 구조중에서 캐비티를 갖는 MPS타입은 커패시터의 전하저장전극에 전하저장홀을 형성하고, 그 전하저장홀의 주변에 실리콘을 원형의 돌기형상으로 형성하여 전하를 저장하기 위한 전극의 면적을 증가시키는 구조로서, 하부저장전극을 형성하기 위하여 폴리실리콘층의 상부면을 포토에칭공정으로 식각한 후 그 상부면에 입자의 성장 핵역할을 하는 씨드(Seed)를 형성한다. 그 후 어닐링공정으로 비정질폴리실리콘층의 실리콘을 표면으로 이동하도록 하여 실린더 형상의 전하저장홀의 벽면에 작은 돌기를 형성하여 전하저장전극의 표면적을 증대시켰다.Among the above structures, the MPS type having a cavity has a structure in which a charge storage hole is formed in the charge storage electrode of the capacitor, and silicon is formed in a circular protrusion shape around the charge storage hole to increase the area of the electrode for storing charge. For example, in order to form a lower storage electrode, an upper surface of the polysilicon layer is etched by a photoetching process, and a seed, which serves as a growth nucleus of particles, is formed on the upper surface. Then, the silicon of the amorphous polysilicon layer was moved to the surface by an annealing process to form small protrusions on the wall of the cylindrical charge storage hole to increase the surface area of the charge storage electrode.

이와 같이, 종래의 커패시터의 구성을 개략적으로 살펴 보도록 하면, 하부전하저장전극을 형성한 후 그 위에 유전체막 역할을 하는 실리콘나이트라이드막을 적층하도록 한다. 그리고, 이 실리콘나이트라이드막 상에 누설전류가 흐르는 것을 차단하기 위한 장벽역할을 하는 누설차단용 장벽산화층을 실리콘나이트라이드막상에 산화시켜서 형성하게 된다. 그런 후 최종적으로 장벽산화층 상에 상부전극을 형성하게 되는 것이다.As described above, a configuration of a conventional capacitor is schematically described. After forming a lower charge storage electrode, a silicon nitride film serving as a dielectric film is stacked thereon. A leakage blocking barrier oxide layer, which serves as a barrier for preventing leakage current from flowing on the silicon nitride film, is oxidized on the silicon nitride film. After that, the upper electrode is finally formed on the barrier oxide layer.

이때, 종래에는 장벽산화층을 형성하는 공정은 H2/O2의 유량비가 3∼1 정도로 열반응시켜 O2보다 생성속도가 빠른 H2O가스를 이용하여 700∼800℃정도의 온도에서 실리콘나이트라이드막의 표면을 산화시키는 습식산화(Wet Oxidation)공정으로 생성하도록 하였다. 이 습식산화공정은 O2를 이용하는 건식산화(Dry Oxidation)공정 보다 실리콘나이트라이드막을 산화시키는 시간이 작게 들고 웨이퍼의 웰(Well)에 도핑된 도핑물질이 파손되어 소자가 작동되지 않는 것을 방지하기 위하여 이용되는 방식이다.In this case, conventionally, the process of forming the barrier oxide layer is performed by H 2 / O 2 flow rate ratio of about 3 to 1 by thermal reaction of silicon nitride at a temperature of about 700 ~ 800 ℃ using H 2 O gas which is faster than O 2 It was produced by a wet oxidation process to oxidize the surface of the ride film. This wet oxidation process takes less time to oxidize the silicon nitride film than the dry oxidation process using O 2 and prevents the dopant doped in the well of the wafer from being broken and thus preventing the device from operating. This is the way it is used.

그런데, 상기한 바와 같이, 종래에는 충전용량의 확보를 위하여 하부전하저장전극의 상부면을 반구형상으로 형성하는 방식은 커패시터의 표면적을 증대시킬 수 있는 반면에 굴곡진 형상으로 인하여 국부적인 전계집중이 발생하고, 하부전하저장전극과 나이트라이드막의 계면이 평탄하지 못하므로 누설전류가 증가하여 절연파괴전압이 낮아져 소자의 수율 및 신뢰성이 저하되는 문제를 지니고 있었다.However, as described above, in the conventional method of forming the top surface of the lower charge storage electrode in a hemispherical shape to secure the charging capacity, the surface area of the capacitor can be increased, whereas the local electric field concentration is caused by the curved shape. In addition, since the interface between the lower charge storage electrode and the nitride film is not flat, the leakage current increases and the insulation breakdown voltage is lowered, thereby lowering the yield and reliability of the device.

따라서, 상기 실리콘나이트라이드막의 누설전류를 낮추고 절연파괴전압을 높이려면 누설전류의 장벽역할을 하는 누설차단용장벽산화층의 두께가 두껍고, 결함밀도가 매우 낮아야 하는 데 종래의 습식산화공정에서 50∼60Å정도의 얇은 실리콘나이트라이드막이 산화되어 커패시터가 작동되지 못하는 단점을 지니고 있었다.Therefore, in order to reduce the leakage current of the silicon nitride film and to increase the dielectric breakdown voltage, the thickness of the leakage barrier barrier layer, which serves as a barrier of the leakage current, must be thick and the defect density must be very low. The thin silicon nitride film was oxidized and had a disadvantage in that the capacitor could not be operated.

본 발명의 목적은 반도체기판 상에 커패시터를 형성할 때 실리콘나이트라이드막 상에 수증기가스와 미반응의 산소가스분위기에서 실리콘나이트라이드막을 표면산화시킨 후에 산소가스분위기에서 재차 표면산화시키는 공정을 다단계를 거치면서 실리콘나이트라이드막상에 누설차단용 장벽산화층을 형성하므로 실리콘나이트라이드막의 파손을 방지하고 커패시터의 누설전류를 개선하여 소자의 특성을 향상시키도록 하는 것이 목적이다.SUMMARY OF THE INVENTION An object of the present invention is to multistep a process of surface oxidation of a silicon nitride film in an oxygen gas atmosphere after surface oxidation of a vapor gas and an unreacted oxygen gas atmosphere on a silicon nitride film when forming a capacitor on a semiconductor substrate. Since the barrier oxide layer for blocking leakage is formed on the silicon nitride film during the process, the purpose of the present invention is to prevent breakage of the silicon nitride film and improve leakage characteristics of the capacitor to improve device characteristics.

도 1은 일반적인 커패시터의 구성을 개략적으로 보인 도면이다.1 is a view schematically showing a configuration of a general capacitor.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

A : 커패시터 10 : 반도체기판A: Capacitor 10: Semiconductor Substrate

15 : 하부전극 20 : 실리콘나이트라이드막15: lower electrode 20: silicon nitride film

25 : 장벽산화층 30 : 상부전극25: barrier oxide layer 30: upper electrode

이러한 목적은 반도체기판상에 하부전하저장전극을 형성하는 단계와; 상기 하부전하저장전극상에 유전체 역할을 하는 실리콘나이트라이드막을 형성하는 단계와; 상기 실리콘나이트라이드막을 수증기가스 분위기로 표면산화시키는 습식산화단계와; 상기 단계 후에 상기 실리콘나이트라이드막을 수증기가스 및 산소가스분위기로 표면산화시키는 라이틀리 습식산화단계와; 상기 단계 후에 상기 실리콘나이트라이드막을 산소가스분위기에서 표면산화시켜 누설차단용 장벽산화층을 형성하는 건식산화단계와; 상기 장벽산화층 상에 커패시터의 상부전극을 형성하는 단계로 이루어진 커패시터의 장벽산화층 형성방법을 제공함으로써 달성된다.The object is to form a lower charge storage electrode on the semiconductor substrate; Forming a silicon nitride film serving as a dielectric on the lower charge storage electrode; A wet oxidation step of surface oxidizing the silicon nitride film to a vapor gas atmosphere; After the step, the wettight oxidation step of surface-oxidizing the silicon nitride film with a water vapor gas and an oxygen gas atmosphere; A dry oxidation step of surface oxidation of the silicon nitride film in an oxygen gas atmosphere to form a leakage barrier barrier oxide layer after the step; It is achieved by providing a method for forming a barrier oxide layer of a capacitor comprising the step of forming an upper electrode of the capacitor on the barrier oxide layer.

그리고, 상기 하부전하저장전극상에 실리콘나이트라이드막을 증착하기 전에 반도체기판 상의 불순물을 제거하는 단계를 더 포함 하고, 상기 습식산화단계와 제라이틀리 습식산화단계 사이에 산소분위기에서 나이트라이드막을 산화시키는 건식산화단계를 더 포함하도록 하며, 상기 습식산화단계는 수소가스와 산소가스를 외부연소장치에서 반응시켜 수증기가스를 생성한 후, 생성된 수증기가스를 퍼니스(Furnace)로 인입하여 수소가스/산소가스 유량비 1 내지 3이고, 온도범위는 600 ∼ 850℃에서 진행하는 것이 바람직하다.The method may further include removing impurities on the semiconductor substrate before depositing the silicon nitride film on the lower charge storage electrode, and dry-oxidize the nitride film in an oxygen atmosphere between the wet oxidation step and the zeitley wet oxidation step. An oxidation step is further included. The wet oxidation step generates hydrogen gas by reacting hydrogen gas and oxygen gas in an external combustion device, and then introduces the generated steam gas into a furnace to provide a hydrogen gas / oxygen gas flow rate ratio. It is 1-3, and it is preferable to advance in a temperature range 600-850 degreeC.

또한, 상기 라이틀리 습식산화단계는 수소가스와 산소가스를 외부연소장치에서 반응시켜 수증기가스를 생성한 후, 생성된 수증기가스와 미반응된 산소가스를 퍼니스로 인입하여 수소가스/산소가스 유량비 0.01 내지 0.5이고, 온도범위는 600 ∼ 850℃에서 진행할 수 있으며, 상기 건식산화단계는 600 ∼ 850℃에서 진행할 수 있다.In addition, the Ritley wet oxidation step generates hydrogen gas by reacting hydrogen gas and oxygen gas in an external combustion device, and then introduces the generated steam gas and unreacted oxygen gas into the furnace to carry out a hydrogen gas / oxygen gas flow ratio of 0.01 to 100. 0.5, the temperature range may proceed at 600 ~ 850 ℃, the dry oxidation step may proceed at 600 ~ 850 ℃.

한편, 상기 습식 및 라이틀리 습식산화단계는 수소가스와 산소가스외에 일산화질소, 이산화질소 및 오존등의 산화가스와 C2H2Cl2가스 혹은 C2H3Cl3가스등을 선택적으로 첨가하여 진행할 수 있다.On the other hand, the wet and Wrightley wet oxidation step may be carried out by selectively adding an oxidizing gas such as nitrogen monoxide, nitrogen dioxide and ozone and a C 2 H 2 Cl 2 gas or C 2 H 3 Cl 3 gas in addition to hydrogen gas and oxygen gas. .

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 일실시예에 대해 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

도 1은 일반적인 커패시터의 구성을 개략적으로 보인 도면이다.1 is a view schematically showing a configuration of a general capacitor.

본 발명에 따른 커패시터(A)에서 반도체기판(10)상에 HSG타입의 하부전하저장전극(15)을 형성하고, 웨이퍼 상의 불순물을 제거하도록 한 후 이 하부전하저장전극(15)상에 유전체 역할을 하는 실리콘나이트라이드막(20)을 형성하도록 한다.In the capacitor A according to the present invention, the lower charge storage electrode 15 of the HSG type is formed on the semiconductor substrate 10, and impurities are removed from the wafer, thereby acting as a dielectric on the lower charge storage electrode 15. A silicon nitride film 20 is formed.

한편, 상기 실리콘나이트라이드막(20)상에 누설차단용 장벽산화층(25)을 형성하기 위하여 산소와 수소가스의 유량이 적은 습식산화단계를 진행하도록 하고, 이 습식산화단계는 수소가스와 산소가스를 외부연소장치에서 반응시켜 수증기가스를 생성한 후, 생성된 수증기가스를 퍼니스(Furnace)로 인입하여 수소가스/산소가스 유량비 1 내지 3이고, 온도범위는 600 ∼ 850℃에서 공정을 진행하도록 한다.Meanwhile, in order to form the leakage barriering barrier oxide layer 25 on the silicon nitride film 20, a wet oxidation step having a low flow rate of oxygen and hydrogen gas is performed, and the wet oxidation step includes hydrogen gas and oxygen gas. After reacting with an external combustion device to generate steam gas, the generated steam gas is introduced into a furnace to furnish a hydrogen gas / oxygen gas flow ratio of 1 to 3 and a temperature range of 600 to 850 ° C. .

그리고, 상기 단계 후에 상기 실리콘나이트라이드막(20)을 수증기가스 및 산소가스분위기로 표면산화시키는 라이틀리 습식산화단계를 진행하도록 하고, 이 라이틀리 습식산화단계는 수소가스와 산소가스의 유량을 많게 하여 외부연소장치에서 반응시켜 수증기가스를 생성한 후, 생성된 수증기가스와 미반응된 산소가스를 퍼니스(Furnace)로 인입하여 수소가스/산소가스 유량비 0.01 내지 0.5이고, 온도범위는 600 ∼ 850℃에서 공정을 진행하도록 한다.Then, after the step, the lytley wet oxidation step of surface oxidizing the silicon nitride film 20 with steam gas and oxygen gas atmosphere is performed, and this lytley wet oxidation step increases the flow rate of hydrogen gas and oxygen gas to the outside. After reacting in the combustion apparatus to produce steam gas, the generated steam gas and unreacted oxygen gas are introduced into a furnace to produce a hydrogen gas / oxygen gas flow ratio of 0.01 to 0.5, and a temperature range of 600 to 850 ° C. Let's proceed.

이때, 상기 습식 및 라이틀리 습식산화단계는 수소가스와 산소가스외에 일산화질소, 이산화질소 및 오존등의 산화가스와 C2H2Cl2가스 혹은 C2H3Cl3가스등을 선택적으로 첨가하여 진행할 수도 있다.In this case, the wet and the rightly wet oxidation step may be performed by selectively adding an oxidizing gas such as nitrogen monoxide, nitrogen dioxide and ozone and a C 2 H 2 Cl 2 gas or a C 2 H 3 Cl 3 gas in addition to hydrogen gas and oxygen gas. .

상기 단계 후에 상기 실리콘나이트라이드막(20)을 산소가스분위기에서 600 ∼ 850℃의 온도범위로 표면산화시키는 건식산화단계를 진행하여 최종적으로 누설차단용 장벽산화층(25)을 형성하도록 한다.After the step, a dry oxidation step of surface oxidation of the silicon nitride film 20 in a temperature range of 600 to 850 ° C. in an oxygen gas atmosphere is performed to finally form a barrier oxide layer 25 for leakage blocking.

즉, 상기 실리콘나이트라이드막(20)상에 누설차단용장벽산화층(25)을 형성하기 위하여 수증기가스의 분위기에서 진행하는 습식산화공정(제1습식산화단계) + 수증기가스 및 미반응의 산소가스분위기에서 진행하는 라이틀리 습식산화공정(제2습식산화단계) + 산소가스분위기에서 진행하는 건식산화공정(Dry Oxidation)을 거쳐서 형성하게 되는 것이다.That is, a wet oxidation process (first wet oxidation step) + water vapor gas and an unreacted oxygen gas that proceed in an atmosphere of steam gas to form a leakage barrier barrier oxide layer 25 on the silicon nitride film 20. It is formed through a dry oxidation process (Dry Oxidation) in the atmosphere of the Ritley wet oxidation process (second wet oxidation step) + oxygen gas atmosphere.

이때, 상기 습식산화단계와 라이틀리 습식산화단계 사이에 산소분위기에서 나이트라이드막을 산화시키는 건식산화단계를 더 포함할수 도 있고, 상기 습식산화단계는 필요에 따라 생략할 수도 있다.In this case, the method may further include a dry oxidation step of oxidizing the nitride film in an oxygen atmosphere between the wet oxidation step and the Rightley wet oxidation step, and the wet oxidation step may be omitted as necessary.

이와 같이, 여러 단계를 거쳐 특히, 산소소가스 및 수소가스의 유량이 적도록 하는 라이틀리 습식산화공정을 진행하게 되면, 수소가스/산소가스 유량비가 낮아지게 되고, 수소(H2)가스의 사용량이 감소되어 커패시터의 누설전류를 감소시키게 되고, 더욱이 건식산화단계를 거치면서 수소농도를 더욱 더 낮출수 있는 것이다.As such, when the Ritley wet oxidation process is performed to reduce the flow rate of oxygen gas and hydrogen gas through several steps, the hydrogen gas / oxygen gas flow rate ratio is lowered, and the amount of hydrogen (H 2 ) gas used is increased. This reduces the leakage current of the capacitor and further reduces the hydrogen concentration through the dry oxidation step.

한편, 다음 페이지에서 도시된 표 1은 본 발명에 따른 공정을 이용하여 제조된 커패시터의 전기적인 특성을 습식산화 단계, 라이틀리습식산화단계 및, 습식산화단계 + 라이틀리 습식산화단계로 분리하여 전기적인 특성을 비교한 도표이다.On the other hand, Table 1 shown in the following page is the electrical characteristics of the electrical characteristics of the capacitor prepared by using the process according to the present invention by separating the wet oxidation step, the Wrightley wet oxidation step, and the wet oxidation step + Rightley wet oxidation step This is a chart comparing.

ONO3 (150Å)ONO3 (150Å) TT LL CC RR BB WET OX.WET OX. POSITIVEPOSITIVE L.C.(㎂/㎠)L.C. (㎂ / ㎠) 3.083.08 3.003.00 3.103.10 3.083.08 3.353.35 B.V(MV/㎝)B.V (MV / cm) 6.596.59 6.576.57 6.576.57 6.656.65 6.496.49 NEGATIVENEGATIVE L.C.(㎂/㎠)L.C. (㎂ / ㎠) -1.51-1.51 -1.61-1.61 -1.56-1.56 -1.59-1.59 -1.65-1.65 B.V(MV/㎝)B.V (MV / cm) -6.76-6.76 -6.65-6.65 -6.65-6.65 -6.70-6.70 -6.68-6.68 LIGHTLY WET OX.LIGHTLY WET OX. POSITIVEPOSITIVE L.C.(㎂/㎠)L.C. (㎂ / ㎠) 1.261.26 1.431.43 1.401.40 1.301.30 1.411.41 B.V(MV/㎝)B.V (MV / cm) 7.387.38 7.227.22 7.307.30 7.357.35 7.307.30 NEGATIVENEGATIVE L.C.(㎂/㎠)L.C. (㎂ / ㎠) -0.518-0.518 -0.750-0.750 -0.808-0.808 -0.598-0.598 -0.718-0.718 B.V(MV/㎝)B.V (MV / cm) -7.51-7.51 -7.14-7.14 -7.14-7.14 -7.41-7.41 -7.24-7.24 WET OX. + LIGHTLY WETOX.WET OX. + LIGHTLY WETOX. POSITIVEPOSITIVE L.C.(㎂/㎠)L.C. (㎂ / ㎠) 2.042.04 2.232.23 2.162.16 2.092.09 2.212.21 B.V(MV/㎝)B.V (MV / cm) 6.956.95 6.866.86 6.896.89 6.926.92 6.866.86 NEGATIVENEGATIVE L.C.(㎂/㎠)L.C. (㎂ / ㎠) -0.898-0.898 -1.16-1.16 -1.15-1.15 -0.985-0.985 -1.15-1.15 B.V(MV/㎝)B.V (MV / cm) -7.11-7.11 -6.89-6.89 -6.86-6.86 -7.03-7.03 -6.86-6.86

도표에서 나타낸 바와 같이, 습식산화 단계만을 진행한 경우, 라이틀리 습식산화 단계만을 진행한 경우, 습식산화 단계 + 라이틀리습식산화 단계를 진행하는 경우의 포지티브(Positive) 및 네거티브(Negative)의 L.C 및 B.V의 수치값을 나타내고 있다.As shown in the diagram, when only the wet oxidation step is performed, when only the Ritley wet oxidation step is performed, when the positive and negative LC and BV of the wet oxidation step and the Ritley wet oxidation step are performed, The numerical value is shown.

상기한 바와 같이, 본 발명에 따른 커패시터의 장벽산화층 형성방법을 이용하게 되면, 반도체기판 상에 커패시터를 형성할 때, 실리콘나이트라이드막 상에 유량이 적도록 하여 수증기가스와 미반응의 산소가스분위기에서 실리콘나이트라이드막을 표면산화시킨 후에 산소가스분위기에서 상기 실리콘나이트라이드막을 적층하는 공정을 다단계를 거치면서 실리콘나이트라이드막을 표면 산화시켜 누설차단용 장벽산화층을 형성하므로 수소가스로 인한 누설전류도 감소하여 전기적인 특성이 개선되고, 산화제(Oxidant)의 활성도도 작아져서 하부전극의 산화로 인한 파괴현상도 감소한다.As described above, when the method for forming the barrier oxide layer of the capacitor according to the present invention is used, when the capacitor is formed on the semiconductor substrate, the flow rate is reduced on the silicon nitride film so that the water vapor gas and the unreacted oxygen gas atmosphere are reduced. After surface oxidation of the silicon nitride film in the process of laminating the silicon nitride film in an oxygen gas atmosphere, the silicon nitride film is surface oxidized to form a barrier oxide layer for preventing leakage, thereby reducing leakage current due to hydrogen gas. The electrical characteristics are improved, and the activity of the oxidant (Oxidant) is also reduced, thereby reducing the breakdown phenomenon due to the oxidation of the lower electrode.

따라서, 커패시터의 누설전류 및 절연파괴특성을 개선되어 소자의 신뢰성이 높아지고 소자의 수율을 향상시키도록 하는 매우 유용하고 효과적인 발명이다.Therefore, it is a very useful and effective invention to improve the leakage current and dielectric breakdown characteristics of the capacitor to increase the reliability of the device and improve the yield of the device.

Claims (7)

반도체기판상에 하부전하저장전극 및 실리콘나이트라이드막을 형성한 후 수소가스와 산소가스를 상기 실리콘나이트라이드막에 공급하여 표면산화시키는 라이틀리 습식산화단계와;Forming a lower charge storage electrode and a silicon nitride film on a semiconductor substrate and then supplying hydrogen gas and oxygen gas to the silicon nitride film to oxidize the surface; 상기 단계 후에 상기 실리콘나이트라이드막을 산소가스분위기에서 표면산화시켜 누설차단용 장벽산화층을 형성하는 건식산화단계를 포함하여 이루어진 것을 특징으로 하는 커패시터의 장벽산화층 형성방법.And a dry oxidation step of surface oxidation of the silicon nitride film after the step in an oxygen gas atmosphere to form a barrier oxidation barrier layer for leakage prevention. 제 1 항에 있어서, 상기 라이틀리 습식산화단계 전에 이 라이틀리 습식산화단계보다 유량이 많도록 하여 산소가스와 수소가스를 공급하여 실리콘나이트라이드막을 습식산화시키는 단계를 더 포함하는 것을 특징으로 하는 커패시터의 장벽산화층 형성방법.The method of claim 1, further comprising the step of wet oxidation of the silicon nitride film by supplying oxygen gas and hydrogen gas so as to have a flow rate higher than that of the Rietley wet oxidation step before the Rietley wet oxidation step. Oxide layer formation method. 제 1 항 또는 제 2 항에 있어서, 상기 산소가스와 수소가스의 유량이 많도록 하는 습식산화단계와, 산소가스와 수소가스의 유량이 적도록 하는 상기 라이틀리 습식산화단계 사이에 산소분위기에서 실리콘나이트라이드막을 산화시키는 건식산화단계를 더 포함하는 것을 특징으로 하는 커패시터의 장벽산화층 형성방법.3. The silicon nitrate in an oxygen atmosphere according to claim 1, wherein the wet oxidation step is performed such that the flow rate of the oxygen gas and the hydrogen gas is high, and the retley wet oxidation step is formed so that the flow rate of the oxygen gas and the hydrogen gas is low. A method of forming a barrier oxide layer of a capacitor, characterized by further comprising a dry oxidation step of oxidizing a ride film. 제 1 항에 있어서, 상기 라이틀리 습식산화단계는 수소가스와 산소가스를 외부연소장치에서 반응시켜 수증기가스를 생성한 후, 생성된 수증기가스와 미반응된 산소가스를 퍼니스로 인입하여 수소가스/산소가스 유량비 0.01 내지 0.5 및 온도범위는 600 ∼ 850℃에서 진행하는 것을 특징으로 하는 커패시터의 장벽산화층 형성방법.The method of claim 1, wherein the Retley wet oxidation step is the reaction of hydrogen gas and oxygen gas in an external combustion device to produce a steam gas, and then introduced the generated steam gas and unreacted oxygen gas into the furnace hydrogen gas / oxygen Method for forming a barrier oxide layer of a capacitor, characterized in that the gas flow rate ratio 0.01 to 0.5 and the temperature range proceeds from 600 to 850 ℃. 제 2 항에 있어서, 상기 수소가스와 산소가스의 유량이 많도록 하는 습식산화단계는 수소가스와 산소가스를 외부연소장치에서 반응시켜 수증기가스를 생성한 후, 생성된 수증기가스를 퍼니스로 인입하여 수소가스/산소가스 유량비 1 내지 3, 온도범위는 600 ∼ 850℃에서 진행하는 것을 특징으로 하는 커패시터의 장벽산화층 형성방법.The wet oxidation step of increasing the flow rate of hydrogen gas and oxygen gas in accordance with claim 2 generates hydrogen gas by reacting hydrogen gas and oxygen gas in an external combustion device, and then introduces the generated steam gas into the furnace. A method for forming a barrier oxide layer of a capacitor, wherein the hydrogen gas / oxygen gas flow rate ratio 1 to 3 and the temperature range are performed at 600 to 850 ° C. 제 1 항에 있어서, 상기 건식산화단계는 600 ∼ 850℃에서 진행하는 것을 특징으로 하는 커패시터의 장벽산화층 형성방법.The method of claim 1, wherein the dry oxidation step is performed at 600 to 850 ° C. 제 1 항 또는 제 2 항에 있어서, 상기 라이틀리 습식산화단계는 수소가스와 산소가스외에 일산화질소, 이산화질소 및 오존등의 산화가스와 C2H2Cl2가스 혹은 C2H3Cl3가스등을 선택적으로 첨가하여 진행하는 것을 특징으로 하는 커패시터의 장벽산화층 형성방법.The method of claim 1 or 2, wherein the Ritley wet oxidation step is selected from the oxidation gas such as nitrogen monoxide, nitrogen dioxide and ozone, C 2 H 2 Cl 2 gas or C 2 H 3 Cl 3 gas, in addition to hydrogen gas and oxygen gas Method for forming a barrier oxide layer of a capacitor, characterized in that the addition proceeds.
KR1019980063705A 1998-12-31 1998-12-31 Method of forming barrier oxide layer of capacitor KR100574476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980063705A KR100574476B1 (en) 1998-12-31 1998-12-31 Method of forming barrier oxide layer of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980063705A KR100574476B1 (en) 1998-12-31 1998-12-31 Method of forming barrier oxide layer of capacitor

Publications (2)

Publication Number Publication Date
KR20000046964A true KR20000046964A (en) 2000-07-25
KR100574476B1 KR100574476B1 (en) 2006-08-23

Family

ID=19570267

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980063705A KR100574476B1 (en) 1998-12-31 1998-12-31 Method of forming barrier oxide layer of capacitor

Country Status (1)

Country Link
KR (1) KR100574476B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809685B1 (en) * 2005-09-13 2008-03-06 삼성전자주식회사 Dielectric film, Method of manufacturing the dielectric film and method of manufacturing capacitor using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766369A (en) * 1993-08-26 1995-03-10 Nec Corp Manufacture of semiconductor device
KR100189979B1 (en) * 1995-11-20 1999-06-01 윤종용 Method for manufacturing capacitor of semiconductor device
KR0185636B1 (en) * 1996-10-08 1999-03-20 김광호 Manufacturing method of capacitor improved characteristic of step difference in semiconductor memory device
JPH10242421A (en) * 1997-02-28 1998-09-11 Mitsubishi Electric Corp Semiconductor device and its manufacture
US6300187B2 (en) * 1998-11-24 2001-10-09 Micron Technology, Inc. Capacitor and method of forming a capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809685B1 (en) * 2005-09-13 2008-03-06 삼성전자주식회사 Dielectric film, Method of manufacturing the dielectric film and method of manufacturing capacitor using the same

Also Published As

Publication number Publication date
KR100574476B1 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US5142438A (en) Dram cell having a stacked capacitor with a tantalum lower plate, a tantalum oxide dielectric layer, and a silicide buried contact
KR100665429B1 (en) Rutile dielectric material for semiconductor devices
US7170125B2 (en) Capacitor with electrodes made of ruthenium and method for patterning layers made of ruthenium or ruthenium
US6451662B1 (en) Method of forming low-leakage on-chip capacitor
GB2375229A (en) A capacitor with metastable polysilicon lower electrode and TaON dielectric
US20050020018A1 (en) Method of manufacturing a semiconductor integrated circuit device
KR0144932B1 (en) Capacitor of semiconductor device and manufacturing method thereof
US6057189A (en) Method of fabricating capacitor utilizing an ion implantation method
US6781180B1 (en) Trench capacitor and method for fabricating the same
US7880212B2 (en) Method for producing a dielectric interlayer and storage capacitor with such a dielectric interlayer
US7259061B2 (en) Method for forming a capacitor for an integrated circuit and integrated circuit
US7030441B2 (en) Capacitor dielectric structure of a DRAM cell and method for forming thereof
KR20010059285A (en) Manufacturing method for capacitor of semiconductor device
KR19990030230A (en) Integrated circuit structure and manufacturing method
KR100574476B1 (en) Method of forming barrier oxide layer of capacitor
US7153739B2 (en) Method for manufacturing a capacitor of a semiconductor device
JP2007165733A (en) Semiconductor device and its manufacturing method
KR100379331B1 (en) Bottom electrode of capacitor and fabricating method thereof
US20040023456A1 (en) Method for fabricating capacitor in semiconductor device
KR100395903B1 (en) Method for forming the capacitor line bottom plug of semiconductor device
KR100219518B1 (en) Method of fabricating a capacitor of semiconductor device
JP2007318147A (en) Method of forming interlayer dielectric film and method of forming storage capacitor having interlayer dielectric film
KR930010677B1 (en) Dram cell having a stacked trench capacitor and vertical transistor
KR940004597B1 (en) Method of fabricating dielectric layer for a capacitor
KR100463245B1 (en) Capacitor Manufacturing Method of Memory Device_

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110325

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee