KR20000044806A - Actuator of thin film micromirror array-actuated device - Google Patents

Actuator of thin film micromirror array-actuated device Download PDF

Info

Publication number
KR20000044806A
KR20000044806A KR1019980061306A KR19980061306A KR20000044806A KR 20000044806 A KR20000044806 A KR 20000044806A KR 1019980061306 A KR1019980061306 A KR 1019980061306A KR 19980061306 A KR19980061306 A KR 19980061306A KR 20000044806 A KR20000044806 A KR 20000044806A
Authority
KR
South Korea
Prior art keywords
layer
actuator
thin film
driving
pnzt
Prior art date
Application number
KR1019980061306A
Other languages
Korean (ko)
Inventor
민동훈
Original Assignee
전주범
대우전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전주범, 대우전자 주식회사 filed Critical 전주범
Priority to KR1019980061306A priority Critical patent/KR20000044806A/en
Publication of KR20000044806A publication Critical patent/KR20000044806A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE: An actuator TMA device is provided to prevent the weakness of the electroplasive itself and to maximize the driving of the actuator by the electric signal by forming the electroplasive with PNZT layer or PbTiO3 layer. CONSTITUTION: A device comprises a driving substrate(5), a membrane(30), a lower electrode layer(35), an electrodisplasive(40), an upper electrode(45), a driving mirror(60), and an actuator(65). A plurality of transistors are installed inside the driving substrate and the protection layer is located on the upper part of the driving substrate in order to prevent the transistor from being destroyed. The driving mirror is supported by the post(75) which is formed at the end central part of the membrane. An image signal voltage is applied on the lower electrode and the bias voltage is applied on the upper electrode which is common electrode. A manufacturing method comprises a step of forming an PbTiO3 layer with a thickness of 500-1000 angstrom which has good combining characteristic with Pb even under high temperature on the electroplasive.

Description

박막형 광로조절장치의 액츄에이터Actuator of thin film type optical path controller

본 발명은 박막형 광로조절장치(Thinfilm Micromirror Array-actuated)의 액츄에이터에 관한 것으로서, 더욱 상세하게는 변형층을 결정화하기 위한 고온공정으로 변형층의 특성이 저하되는 것을 방지할 수 있는 박막형 광로조절장치의 액츄에이터에 관한 것이다.The present invention relates to an actuator of a thin film micromirror array-actuated, and more particularly, to a thin film type optical path control device capable of preventing a deterioration of a property of a strain layer by a high temperature process for crystallizing the strain layer. It relates to an actuator.

일반적으로, 광속을 조절하여 화상을 형성할 수 있는 표시장치는 크게 광원으로부터 입사되는 광속을 스크린에 투영하는 방법에 따라서 CRT(Cathod Ray Tube) 등의 직시형 화상표시장치와 투사형 화상표시장치로서 액정 표시장치(Liquid Crystal Display), DMD(Deformable Mirror Device), 또는 TMA(Thinfilm Micromirror Array-actuated)등이 있다.In general, a display device capable of forming an image by adjusting a light flux has a direct view type image display device such as a CRT (Cathod Ray Tube) or a projection type image display device according to a method of projecting a light beam incident from a light source on a screen. And a liquid crystal display (DMD), a deformable mirror device (DMD), and a thin film micromirror array-actuated (TMA).

CRT 장치는 화상의 질은 우수하지만 화면의 대형화에 따라 장치의 중량과 용적이 증가하며 그 제조비용이 상승하는 문제가 있으며, 이에 비하여 액정 표시장치(LCD)는 평판으로 형성할 수 있으나 입사되는 광속의 편광으로 인하여 1∼2%의 낮은 광효율을 가지며, 그 내부의 액정 물질의 응답 속도가 느린 단점이 있었다.Although CRT devices have excellent image quality, as the screen size increases, the weight and volume of the device increase, and the manufacturing cost thereof increases. In contrast, a liquid crystal display (LCD) can be formed of a flat plate, but the incident light flux Due to the polarization of the light having a low light efficiency of 1 to 2%, there was a disadvantage that the response speed of the liquid crystal material therein is slow.

이와 같은 LCD의 문제점들을 해결하기 위하여 DMD, 또는 TMA 등의 표시장치가 개발되었다. 현재, DMD가 약 5% 정도의 광효율을 가지는 것에 비하여 TMA는 10% 이상의 광효율을 얻을 수 있다. 또한, TMA는 입사되는 광속의 극성에 의해 영향을 받지 않을 뿐만아니라 광속의 극성에 영향을 끼치지 않는다.In order to solve the problems of the LCD, a display device such as a DMD or a TMA has been developed. At present, TMA can achieve a light efficiency of 10% or more, compared to a DMD having a light efficiency of about 5%. In addition, the TMA is not only affected by the polarity of the incident light beam, but also does not affect the polarity of the light beam.

통상적으로, TMA 내부에 형성된 각각의 액츄에이터들은 인가되는 화상 신호 및 바이어스 전압에 의하여 발생되는 전계에 따라 변형을 일으킨다. 이 액츄에이터가 변형을 일으킬 때, 상기 액츄에이터의 상부에 장착된 각각의 거울들은 전계의 크기에 비례하여 경사지게 된다.Typically, each of the actuators formed inside the TMA causes deformation depending on the electric field generated by the applied image signal and bias voltage. When this actuator causes deformation, each of the mirrors mounted on top of the actuator is inclined in proportion to the magnitude of the electric field.

따라서, 경사진 거울들은 광원으로부터 입사된 빛을 소정의 각도로 반사시킬 수 있게 된다.Thus, the inclined mirrors can reflect light incident from the light source at a predetermined angle.

도 1은 종래의 박막형 광로조절장치의 일예를 도시한 단면도이며, 도 2는 도 1의 A-A선 단면도이다.1 is a cross-sectional view showing an example of a conventional thin film type optical path control device, Figure 2 is a cross-sectional view taken along the line A-A of FIG.

도시된 바와 같이, 종래의 박막형 광로조절장치는 구동기판(5)과 그 상부에 형성된 액츄에이터(65) 및 액츄에이터(65) 상부에 형성되는 구동거울(60)로 이루어진다.As shown in the drawing, the conventional thin film type optical path control device includes a driving substrate 5, an actuator 65 formed on the upper portion thereof, and a driving mirror 60 formed on the actuator 65.

전술한 액츄에이터(65)는 멤브레인(30), 하부전극(35), 변형층(40), 상부전극(45)을 포함하며, 예컨대, 액츄에이터(65)를 구성하는 물질들은 질화실리콘(Si3N4)층 위에 TaO/Pt/PNZT(Nb1%)/LSCO/Pt로 구성되어 있다. 질화실리콘층은 멤브레인(30)역할을 하며, 하부전극(35) 및 상부전극(45)은 백금(Pt)재질로 이루어지며, 변형층(40)은 (Pb(ZrTi)O3)에 니오븀(Nb)이 소량 첨가된 PNZT 재질로 이루어지며, 멤브레인(30)과 하부전극(35) 사이에는 접착력을 증대시키기 위한 산화탄탈륨(TaO)이 개재되며, 변형층(40)의 결정화에 도움을 주는 LSCO(LaSrCoO3)가 변형층(40)과 상부전극(45) 사이에 개재되어 있다.The actuator 65 described above includes a membrane 30, a lower electrode 35, a strained layer 40, and an upper electrode 45. For example, the materials constituting the actuator 65 may be formed of silicon nitride (Si 3 N). 4 ) TaO / Pt / PNZT (Nb1%) / LSCO / Pt on the layer. The silicon nitride layer serves as a membrane 30, and the lower electrode 35 and the upper electrode 45 are made of platinum (Pt) material, and the strained layer 40 is formed of niobium (Pb (ZrTi) O 3 ). Nb) is made of a PNZT material is added a small amount, between the membrane 30 and the lower electrode 35 is interposed tantalum oxide (TaO) to increase the adhesion, LSCO to help the crystallization of the strained layer 40 LaSrCoO 3 is interposed between the strained layer 40 and the upper electrode 45.

또한, 액츄에이터(65)는 구동기판(5)의 드레인 패드(미도시됨)와 하부전극(35)을 전기적으로 연결하는 비아컨택(55)을 포함한다.In addition, the actuator 65 includes a via contact 55 electrically connecting the drain pad (not shown) of the driving substrate 5 to the lower electrode 35.

구동거울(60)은 멤브레인(30)의 끝단부 중앙에 형성된 포스트(75)에 의해 그 중심부가 지지되어 있다.The driving mirror 60 is supported by the center of the post 75 formed in the center of the end of the membrane 30.

이와같은 종래의 박막형 광로조절장치는 신호전극인 하부전극(35)에 화상 신호 전압이 인가되며, 공통전극인 상부전극(45)에 바이어스 전압이 인가되면 상부전극(45)과 하부전극(35) 사이에 전계가 발생하게 된다. 이 전계에 의하여 상부전극(45)과 하부전극(35) 사이의 변형층(40)이 변형을 일으키게 되며, 상기 변형층(40)은 전계와 수직한 방향으로 수축하게 된다. 이에 따라 변형층(40)을 포함하는 액츄에이터(65)가 소정의 각도로 휘어지고, 액츄에이터(65)의 구동 선단부에 장착된 구동거울(60)은 휘어진 멤브레인(30)에 의해 경사지게 되어 광원으로부터 입사되는 광속을 반사한다. 상기 구동거울(60)에 의해 반사된 광속은 TMA 광학계의 슬릿을 통하여 스크린에 투영된다. 이와 같은 박막형 광로조절장치가 단위 픽셀(pixel)을 이루어 매트릭스 구조로 M×N(M, N은 정수)개로 배열된 TMA 모듈(moudule)을 형성하여 화상을 구현하게 된다.In the conventional thin film type optical path control apparatus, an image signal voltage is applied to the lower electrode 35, which is a signal electrode, and when a bias voltage is applied to the upper electrode 45, which is a common electrode, the upper electrode 45 and the lower electrode 35. An electric field is generated between them. The deformed layer 40 between the upper electrode 45 and the lower electrode 35 causes deformation by the electric field, and the deformed layer 40 contracts in a direction perpendicular to the electric field. Accordingly, the actuator 65 including the deformable layer 40 is bent at a predetermined angle, and the driving mirror 60 mounted on the driving tip of the actuator 65 is inclined by the bent membrane 30 to be incident from the light source. Reflect the light beam. The light beam reflected by the driving mirror 60 is projected onto the screen through the slit of the TMA optical system. Such a thin film type optical path control device forms a unit pixel to form an image by forming a TMA module arranged in an M × N (M, N is an integer) matrix structure.

특히, 종래의 박막형 광로조절장치에서 PNZT재질의 변형층(40)은 수차례에 거쳐 졸-겔 코팅(sol-gel coating)을 하고 각 코팅마다 건조(drying)하여 전체적으로 4000Å의 PNZT를 증착한 다음, 최종적으로 RTA 열처리를 650℃에서 100초동안 실시해 PNZT를 결정화(crystalization) 시킨다.In particular, in the conventional thin film type optical path control device, the deformable layer 40 of the PNZT material is subjected to sol-gel coating several times and dried for each coating to deposit 4000 NZ of PNZT as a whole. Finally, RTA heat treatment was performed at 650 ° C. for 100 seconds to crystallize PNZT.

그런데 종래의 박막형 광로조절장치의 변형층(40)은 다음과 같은 문제점이 있다.However, the deformation layer 40 of the conventional thin film type optical path control device has the following problems.

LSCO를 증착하기 전에 PNZT층이 650℃로 열처리될 때 PNZT 내부에서 납(Pb)성분이 산화반응을 일으켜 산화납(PbO)이 발생되고, 이와 같은 산화납은 PNZT의 표면에서 빠져나가게 되어 PNZT층의 표면에 빈공간(voids)이 형성된다.When the PNZT layer is heat-treated at 650 ° C before depositing the LSCO, lead (Pb) component oxidizes inside the PNZT, and lead oxide (PbO) is generated. Such lead oxide is released from the surface of the PNZT layer. Voids are formed on the surface of the substrate.

즉 PNZT 내부에서의 Pb-Zr의 안정성이 적으므로 졸-겔 코팅방법으로 증착된 PNZT의 표면에서는 Pb-Zr 의 결합이 끊어져 많은 양의 Pb가 표면을 통해 빠져나가게 된다.That is, since the stability of Pb-Zr inside the PNZT is low, the Pb-Zr bond is broken on the surface of the PNZT deposited by the sol-gel coating method, so that a large amount of Pb escapes through the surface.

그리고 PNZT 내부에서는 일부의 PbO가 X-선 회절에 의해 감지되기도 한다. 이러한 현상은 표면쪽에서의 빠른 Pb 손실에 의해 박막 전체로 확산되고 가속화 된다.And inside PNZT, some PbO is detected by X-ray diffraction. This phenomenon is diffused and accelerated throughout the thin film by fast Pb loss on the surface.

이로 인해 변형층(40) 내부의 밀도의 불균일(fructuation) 및 조성의 불균일이 발생하게 된다. 이러한 현상은 액츄에이터(65)의 구동 특성에 좋지 못한 영향을 주는 문제를 야기한다.As a result, a variation in density and a variation in composition occur in the strained layer 40. This phenomenon causes a problem that adversely affects the driving characteristics of the actuator 65.

따라서 본 발명은 이와같은 종래의 문제점을 해결하기 위한 것으로, 변형층이 RTA 열처리될 때 변형층을 이루는 성분이 산화반응을 일으켜 생성된 산화물이 변형층의 표면에서 빠져나가 빈공간이 발생되는 것을 억제할 수 있는 박막형 광로조절장치의 액츄에이터를 제공하는데 그 목적이 있다.Accordingly, the present invention is to solve such a conventional problem, and when the strained layer is RTA heat-treated, the components constituting the strained layer cause an oxidation reaction, thereby suppressing the generation of empty spaces from the surface of the strained layer. It is an object of the present invention to provide an actuator of a thin film type optical path control device capable of doing so.

이와 같은 목적을 실현하기 위한 본 발명은 구동기판과, 상기 구동기판 위에 제 1 희생층, 멤브레인, 하부전극, 변형층 및 상부전극으로 구성된 액츄에이터 및 액츄에이터의 끝단에 지지되는 구동거울을 구비한 박막형 광로조절장치에 있어서, 상기 변형층 위에 고온에서도 납(Pb)과의 결합력이 강한 티탄산납(PbTiO3)층이 500∼1000Å 두께로 형성되는 것을 포함하는 박막형 광로조절장치의 액츄에이터를 제공한다.In order to achieve the above object, the present invention provides a thin film type optical path having a driving substrate, an actuator including a first sacrificial layer, a membrane, a lower electrode, a deformation layer, and an upper electrode on the driving substrate, and a driving mirror supported at the end of the actuator. In the regulating device, the actuator of the thin film type optical path control device comprising a lead titanate (PbTiO 3 ) layer having a strong bonding force with lead (Pb) at a high temperature on the strained layer is formed to a thickness of 500 ~ 1000Å.

본 발명의 상기 목적과 여러 가지 장점은 이 기술 분야에 숙련된 사람들에 의해 첨부된 도면을 참조하여 아래에 기술되는 발명의 바람직한 실시예로부터 더욱 명확하게 될 것이다.The above objects and various advantages of the present invention will become more apparent from the preferred embodiments of the invention described below with reference to the accompanying drawings by those skilled in the art.

도 1은 종래의 박막형 광로조절장치의 평면도,1 is a plan view of a conventional thin film type optical path control device,

도 2는 도 1의 A-A'선 단면도,FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1;

도 3은 본 발명에 따른 박막형 광로조절장치의 단면도.3 is a cross-sectional view of a thin film type optical path control apparatus according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

5 ; 구동기판 30 ; 멤브레인5; Drive substrate 30; Membrane

35 ; 하부전극 40 ; 변형층35; Lower electrode 40; Strained layer

41 ; PNZT(Nb1%) 42 ; 티탄산납(PbTiO3)층41; PNZT (Nb 1%) 42; Lead titanate (PbTiO 3 ) layer

45 ; 상부전극 55 ; 비아컨택45; Upper electrode 55; Via Contact

60 ; 구동거울 65 ; 액츄에이터60; Driving mirror 65; Actuator

이하, 첨부된 도면을 참조하여 본 발명에 따른 박막형 광로조절장치 제조방법을 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a manufacturing method of a thin film type optical path control apparatus according to the present invention.

도 3은 본 발명에 따른 박막형 광로조절장치를 도시한 단면도이다.3 is a cross-sectional view showing a thin film type optical path control apparatus according to the present invention.

도시된 바와 같이, 본 발명에 따른 박막형 광로조절장치는 구동기판(5)과 그 상부에 형성된 액츄에이터(65) 및 액츄에이터(65) 상부에 형성되는 구동거울(60)로 이루어진다.As shown, the thin film type optical path control device according to the present invention is composed of a driving substrate 5, an actuator 65 formed on the upper portion and a driving mirror 60 formed on the actuator 65.

구동기판(5) 내부에는 도면상 미도시되어 있으나, M×N개의 트랜지스터가 내장되어 있으며, 구동기판(5) 상부에는 구동기판(5)에 내장된 트랜지스터가 손상되는 것을 방지하기 위한 인 실리케이트 유리(PSG) 재질의 보호층(15)을 구비한다.Although not shown in the drawing inside the driving substrate 5, M × N transistors are built-in, and an silicate glass is formed on the driving substrate 5 to prevent damage to the transistors embedded in the driving substrate 5. A protective layer 15 made of (PSG) material is provided.

액츄에이터(65)는 질화실리콘(Si3N4)재질의 멤브레인(30) 위에 TaO/Pt/PNZT (Nb1%)/PbTiO3/LSCO/Pt로 구성되어 있다. 하부전극(35) 및 상부전극(45)는 백금(Pt)재질로 이루어지며, 변형층(40)은 (Pb(ZrTi)O3)에 니오븀(Nb)이 소량 첨가된 PNZT 재질 위에 티탄산납(PbTiO3)이 형성된 PNZT(Nb1%)/PbTiO3의 2층구조로 이루어지며, 멤브레인(30)과 하부전극(35) 사이에는 접착력을 증대시키기 위한 산화탄탈륨(TaO; 31)이 개재되며, 변형층(40)의 결정화에 도움을 주는 LSCO(LaSrCoO3)가 변형층(40)과 상부전극(45) 사이에 개재되어 있다.The actuator 65 is composed of TaO / Pt / PNZT (Nb1%) / PbTiO 3 / LSCO / Pt on the membrane 30 of silicon nitride (Si 3 N 4 ) material. The lower electrode 35 and the upper electrode 45 are made of platinum (Pt), and the strained layer 40 is formed of lead titanate (Pb) on a PNZT material in which niobium (Nb) is added to (Pb (ZrTi) O 3 ). PbTiO 3 ) PNZT (Nb 1%) / PbTiO 3 is formed of a two-layer structure, between the membrane 30 and the lower electrode 35 is interposed tantalum oxide (TaO; 31) to increase the adhesive force, deformation LSCO (LaSrCoO 3 ), which assists in crystallization of the layer 40, is interposed between the strained layer 40 and the upper electrode 45.

특히, 변형층(40)을 구성하는 PNZT층(41)은 수차례에 거쳐 졸-겔 코팅(sol-gel coating)을 하고 각 코팅마다 건조(drying)하여 전체적으로 4000Å의 두께로 증착한다.In particular, the PNZT layer 41 constituting the strained layer 40 is subjected to sol-gel coating several times, dried for each coating, and deposited as a total thickness of 4000 kPa.

또한, 본 발명의 특징적인 구성에 따른 티탄산납(PbTiO3)층(42)은 고온에서도 납(Pb)과의 결합력이 강해 PNZT층(41)을 도포한 후 RTA 열처리하더라도 납(Pb)의 증발을 억제할 수 있는 특성을 가진 것으로, 이와 같은 티탄산납(PbTiO3)층(42)은 PNZT층(41) 위에 500∼1000Å 두께로 형성되는 것이 바람직하다.In addition, the lead titanate (PbTiO 3 ) layer 42 according to the characteristic configuration of the present invention has a strong bonding force with lead (Pb) even at high temperature, and even after RNZ heat treatment after applying the PNZT layer 41, the evaporation of lead (Pb) The lead titanate (PbTiO 3 ) layer 42 is preferably formed on the PNZT layer 41 to a thickness of 500 to 1000 GPa.

즉 PNZT층(41) 내부에서의 Pb-Zr의 안정성이 적더라도 티탄산납(PbTiO3)층(42) 내부의 Pb-Ti의 안정성이 높아 티탄산납(PbTiO3)층(42)의 표면에서는 많은 양의 납(Pb)이 표면을 통해 빠져나가지 못하게 된다.That is PNZT layer 41, even if the stability of a Pb-Zr on the inner lead titanate (PbTiO 3), layer 42 increases the stability of the inside of the Pb-Ti on the surface of lead titanate (PbTiO 3) layer 42 is much Positive lead (Pb) will not escape through the surface.

이처럼 티탄산납층(42)을 증착한 다음 RTA 열처리를 통해 PNZT층(41)을 결정화(crystalization)하더라도 PNZT층(41) 내부의 납(Pb)성분은 빠져나가지 못하므로 PNZT층(41)에 빈공간(voids)이 형성되는 것이 현격히 줄어들거나 억제된다.In this way, even after the lead titanate layer 42 is deposited and the PNZT layer 41 is crystallized by RTA heat treatment, the lead (Pb) component inside the PNZT layer 41 does not escape, so that the empty space is in the PNZT layer 41. The formation of voids is greatly reduced or suppressed.

이로 인해 변형층(40) 내부의 밀도의 안정성 및 조성의 균일성이 높아져 변형층(40)의 특성이 향상된다.As a result, the stability of the density and the uniformity of the composition inside the strained layer 40 are increased, thereby improving the characteristics of the strained layer 40.

또한, 액츄에이터(65)는 구동기판(5)의 드레인 패드(미도시됨)와 하부전극(35)을 전기적으로 연결하는 비아컨택(55)을 포함한다.In addition, the actuator 65 includes a via contact 55 electrically connecting the drain pad (not shown) of the driving substrate 5 to the lower electrode 35.

또한, 구동거울(60)은 멤브레인(30)의 끝단부 중앙에 형성된 포스트(75)에 의해 그 중심부가 지지되어 있다.In addition, the central portion of the driving mirror 60 is supported by a post 75 formed in the center of the end of the membrane 30.

이와같은 막형 광로조절장치는 신호전극인 하부전극(35)에 화상 신호 전압이 인가되며, 공통전극인 상부전극(45)에 바이어스 전압이 인가되면 상부전극(45)과 하부전극(35) 사이에 전계가 발생하게 된다. 이 전계에 의하여 상부전극(45)과 하부전극(35) 사이의 변형층(40)이 변형을 일으키게 되며, 상기 변형층(40)은 전계와 수직한 방향으로 수축하게 된다. 이에 따라 변형층(40)을 포함하는 액츄에이터(65)가 소정의 각도로 휘어지고, 액츄에이터(65)의 구동 선단부에 장착된 구동거울(60)은 휘어진 멤브레인(30)에 의해 경사지게 되어 광원으로부터 입사되는 광속을 반사한다. 상기 구동거울(60)에 의해 반사된 광속은 TMA 광학계의 슬릿을 통하여 스크린에 투영된다. 이와 같은 박막형 광로조절장치가 단위 픽셀(pixel)을 이루어 매트릭스 구조로 M×N(M, N은 정수)개로 배열된 TMA 모듈(moudule)을 형성하여 화상을 구현하게 된다.In the film type optical path control device as described above, an image signal voltage is applied to the lower electrode 35, which is a signal electrode, and a bias voltage is applied to the upper electrode 45, which is a common electrode, between the upper electrode 45 and the lower electrode 35. An electric field will be generated. The deformed layer 40 between the upper electrode 45 and the lower electrode 35 causes deformation by the electric field, and the deformed layer 40 contracts in a direction perpendicular to the electric field. Accordingly, the actuator 65 including the deformable layer 40 is bent at a predetermined angle, and the driving mirror 60 mounted on the driving tip of the actuator 65 is inclined by the bent membrane 30 to be incident from the light source. Reflect the light beam. The light beam reflected by the driving mirror 60 is projected onto the screen through the slit of the TMA optical system. Such a thin film type optical path control device forms a unit pixel to form an image by forming a TMA module arranged in an M × N (M, N is an integer) matrix structure.

이상, 상기 내용은 본 발명의 바람직한 일실시예를 단지 예시한 것으로 본 발명의 당업자는 본 발명의 요지를 변경시킴없이 본 발명에 대한 수정 및 변경을 가할 수 있음을 인지해야 한다.In the above description, it should be understood that those skilled in the art can make modifications and changes to the present invention without changing the gist of the present invention as merely illustrative of a preferred embodiment of the present invention.

상술한 바와 같이 본 발명에 따르면, 변형층을 PNZT층 및 티탄산납(PbTiO3)층으로 구성함으로써 PNZT층을 결정화하기 위한 고온공정에 의해 압전물질의 압전계수(piezoelectric coefficient) 값의 하락이 적어 전기적 신호에 의한 액츄에이터의 구동을 극대화할 수 있으며, 잦은 구동에 의한 변형층 자체의 약화현상을 막을 수 있다.As described above, according to the present invention, since the strained layer is composed of a PNZT layer and a lead titanate (PbTiO 3 ) layer, the piezoelectric coefficient value of the piezoelectric material is less decreased by a high temperature process for crystallizing the PNZT layer. It is possible to maximize the drive of the actuator by the signal, and to prevent the weakening of the deformation layer itself due to frequent driving.

Claims (1)

구동기판과, 상기 구동기판 위에 제 1 희생층, 멤브레인, 하부전극, 변형층 및 상부전극으로 구성된 액츄에이터 및 액츄에이터의 끝단에 지지되는 구동거울을 구비한 박막형 광로조절장치에 있어서,In the thin film type optical path control apparatus having a driving substrate, an actuator comprising a first sacrificial layer, a membrane, a lower electrode, a deformation layer and an upper electrode on the driving substrate and a driving mirror supported at the end of the actuator, 상기 변형층 위에 고온에서도 납(Pb)과의 결합력이 강한 티탄산납(PbTiO3) 층이 500∼1000Å 두께로 형성되는 것을 포함하는 박막형 광로조절장치의 액츄에이터.Actuator of the thin film type optical path control device comprising a lead titanate (PbTiO 3 ) layer having a strong bonding force with lead (Pb) at a high temperature on the strained layer is formed to a thickness of 500 ~ 1000Å.
KR1019980061306A 1998-12-30 1998-12-30 Actuator of thin film micromirror array-actuated device KR20000044806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980061306A KR20000044806A (en) 1998-12-30 1998-12-30 Actuator of thin film micromirror array-actuated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980061306A KR20000044806A (en) 1998-12-30 1998-12-30 Actuator of thin film micromirror array-actuated device

Publications (1)

Publication Number Publication Date
KR20000044806A true KR20000044806A (en) 2000-07-15

Family

ID=19568061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980061306A KR20000044806A (en) 1998-12-30 1998-12-30 Actuator of thin film micromirror array-actuated device

Country Status (1)

Country Link
KR (1) KR20000044806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400742B1 (en) * 2001-04-19 2003-10-08 엘지전자 주식회사 piezoelectric type micro mirror and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400742B1 (en) * 2001-04-19 2003-10-08 엘지전자 주식회사 piezoelectric type micro mirror and method for fabricating the same

Similar Documents

Publication Publication Date Title
KR20000044806A (en) Actuator of thin film micromirror array-actuated device
KR20000044805A (en) Manufacturing method for electrodisplasive of thin film micromirror array-actuated device
KR0159387B1 (en) Optical projection system
KR0178235B1 (en) Manufacturing method of optical path regulation apparatus
KR20000044804A (en) Manufacturing method for electrodisplasive of thin film micromirror array-actuated device
KR100255749B1 (en) Tma using ain and manufacturing method thereof
KR0154928B1 (en) Optical path control apparatus
KR100251102B1 (en) Manufacturing method of thin film actuated mirror array
KR0154925B1 (en) Method for manufacturing optical path control apparatus
KR0178220B1 (en) Manufacturing method of optical path regulation apparatus
KR0178217B1 (en) Manufacturing method of optical path regulation apparatus
KR100235608B1 (en) Fabrication method of actuated mirror array having enhanced etching resistance at low temperature
KR100209403B1 (en) Lightpath modulation device
KR0159415B1 (en) Method for fabricating optical projection system
KR19990019666A (en) Manufacturing method of thin film type optical path control device
KR19990035332A (en) Manufacturing method of thin film type optical path control device
KR19990018835A (en) Manufacturing method of thin film type optical path control device
KR20000044807A (en) Method for forming lsco electrode of thin film micromirror array-actuated device
KR19980054836A (en) Manufacturing method of thin film type optical path control device
KR20000044831A (en) Manufacturing method for thin film micromirror array-actuated device
KR19990035313A (en) Manufacturing method of thin film type optical path control device
KR19990035329A (en) Manufacturing method of thin film type optical path control device
KR19990058708A (en) Manufacturing method of thin film type optical path control device
KR19990035321A (en) Manufacturing method of thin film type optical path control device
KR19990019077A (en) Manufacturing method of thin film type optical path control device

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid