KR20000036466A - Membrane filtration with rotating valve - Google Patents

Membrane filtration with rotating valve Download PDF

Info

Publication number
KR20000036466A
KR20000036466A KR1020000013201A KR20000013201A KR20000036466A KR 20000036466 A KR20000036466 A KR 20000036466A KR 1020000013201 A KR1020000013201 A KR 1020000013201A KR 20000013201 A KR20000013201 A KR 20000013201A KR 20000036466 A KR20000036466 A KR 20000036466A
Authority
KR
South Korea
Prior art keywords
filter
membrane
rotary valve
particles
filters
Prior art date
Application number
KR1020000013201A
Other languages
Korean (ko)
Inventor
이상호
Original Assignee
이상호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이상호 filed Critical 이상호
Priority to KR1020000013201A priority Critical patent/KR20000036466A/en
Publication of KR20000036466A publication Critical patent/KR20000036466A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/10Cross-flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: An ultrafiltration for removing particles on the surface of a membrane using a rotary valve is provided which can remove particles by generating back flushing in its inside without requiring separate facilities. CONSTITUTION: A process is characterized in that particles deposited on the surface of a membrane are continuously removed by forming back washing liquid of permeate (6) in a pipe (3) of a filter (7) using a rotary valve (20) and remaining all filters of several filters excepting one to two filters which are on a concentric circle at equal distance from the center and installed in a housing, generate permeate during raw liquid (4) flows and a part of the permeate is allowed to form back flushing at the backside of the above one to filters to remove residues deposited on the surface of a membrane.

Description

회전밸브를 이용한 한외여과{Membrane filtration with rotating valve}Ultrafiltration using a rotary valve {Membrane filtration with rotating valve}

액속의 입자를 제거하기위한 여과시스템중에 한외여과방식이 현재 급속도로 보급되고 있다. 특히 세라믹필터를 이용한 한외여과는 널리 이용되고 있으나 초기 투자비의 과다로 인하여 설비의 효율적 운영이 필요하게 되었다. 종래의 방식대로 운전한다면 막의 표면에는 입자가 계속 누적되어 원액의 한정공급압력으로 더 이상의 목적한 여과량을 얻을 수 없을 때 막을 약품등을 이용하여 세척한다. 그래서 입자의 막표면에 누적되는 현상을 지연시키면 더 오랜시간 여과를 행할 수 있어 막세척으로 인한 중단시간이 감소됨과 동시에 많은 여과액을 얻을 수가 있다.Ultrafiltration is currently rapidly spreading in filtration systems for removing particles in liquids. In particular, ultrafiltration using ceramic filters is widely used, but due to excessive initial investment, efficient operation of the facility is required. When operating in the conventional manner, when the particles continue to accumulate on the surface of the membrane and no further desired amount of filtration can be obtained due to the limited supply pressure of the stock solution, the membrane is cleaned with chemicals or the like. Therefore, if the phenomenon accumulated on the membrane surface of the particles is delayed, the filtration can be performed for a longer time, thereby reducing the down time due to the membrane washing, and at the same time, obtaining a large amount of filtrate.

여러 방법중에 몇가지 예를 들면 1) 하우징에서 여액이 빠져나가는 배출구에 역으로 필터에 주기적으로 압력을 가하여 여액의 압력이 관내부의 압력보다 높게하여 여액이 막의 후면에서 역류가 형성되게하여 막표면에 누적된 입자를 제거하는 방식은 세라믹필터인 경우 외부 충격에 의해 파손될 위험성이 높다. 2)관을 통과 시 관벽의 마찰손실에 의한 압력저하로 관배출구는 관입구측 압력보다 낮음을 이용하여 여액의 배출구를 잠그면 여액의 압력은 입구와 출구의 평균압력을 형성하기에 여액의 압력이 출구의 압력보다 높아 여액이 관의 출구측 하반부에서 역류가 형성되는 것을 이용하는 방식을 이용하는 것은 관의 출구측 하반부만 입자가 제거되기에 효과가 적고, 또한 막에서의 여과를 일시 중단하므로 인한 여과량 감소의 단점이 있다. 3)펌프로는 유속의 한계가 있어 더 이상의 난류를 형성하기 힘들기에 연뿌리모양보다는 접시형필터를 이용하여 필터표면에 고속회전원판을 설치하면 필터표면에는 강한 난류가 형성되어 입자의 누적이 힘들어지게하는 방식이 있는 데 이것은 설비의 고속회전차원에서 많은 동력이 필요로하는 단점과 세라믹으로는 접시형 필터를 제작할 수 없음이 단점이다. 4) 또한 세라믹이 아닌 유기질막인 경우 접시형필터를 사용하여 필터에 강한 진동을 발생시켜 필터표면의 입자누적를 지연하는 방식은 필터성능이 상대적으로 우수한 세라믹에는 적용하기가 어려운 단점이 있다.Some of the methods, for example, 1) periodically pressurize the filter against the outlet from which the filtrate escapes from the housing so that the filtrate pressure is higher than the pressure inside the tube so that the filtrate accumulates at the back of the membrane and accumulates on the membrane surface. In the case of removing the particles, the ceramic filter has a high risk of being damaged by an external impact. 2) When passing through the pipe, the pressure drop caused by the frictional loss of the pipe wall causes the pipe outlet to be lower than the pressure at the inlet side. When the outlet of the filtrate is locked, the pressure of the filtrate forms the average pressure of the inlet and the outlet. The use of a method in which the filtrate uses a reverse flow at the outlet bottom half of the tube because the pressure is higher than the outlet pressure is less effective at removing only particles from the outlet bottom half of the tube, and the amount of filtration due to the suspension of filtration in the membrane. There is a disadvantage of reduction. 3) The pump has a limitation of flow velocity, which makes it difficult to form more turbulence. Therefore, if a high-speed rotating disc is installed on the filter surface using a dish type filter rather than a soft root shape, strong turbulence is formed on the filter surface, making it difficult to accumulate particles. This is a disadvantage that requires a lot of power in the high-speed rotation of the installation and the disadvantage is that it is not possible to manufacture a plate-type filter with ceramic. 4) In the case of organic membranes rather than ceramics, the method of delaying the accumulation of particles on the filter surface by generating a strong vibration in the filter using a dish-type filter has a disadvantage in that it is difficult to apply to ceramics having relatively good filter performance.

본 발명은 기존의 연뿌리모양의 관형세락믹필터를 사용 시 막표면에 누적된 입자를 외부에서 강한 압력을 가하는 장치가 필요없이 자체 운전압으로 역류를 형성하는 것으로 , 만약 설비의 운전압력이 5 bar인 경우 이 압력보다 높은 압의 역류를 필터하우징 외부에서 동일 하우징내의 모든 필터에 가하는 것이 아니라 ,하우징내부의 일부분의 필터의 관내압을 하우징내의 여액압력 이하로 줄여 하우징내의 여액이 이 특정된 필터의 막에서 역류를 형성하는 것인데 , 이 것을 동일하우징내의 모든 필터에 순차적으로 적용하는 것이다.According to the present invention, when a conventional soft-root tubular ceramic filter is used, a backflow is formed at its own operating pressure without the need for a device that applies a strong pressure from outside to the particles accumulated on the membrane surface. Is not applied to all the filters in the same housing from outside the filter housing, but reduces the internal pressure of a portion of the filter in the housing to less than or equal to the filtrate pressure in the housing. To form a backflow in the membrane, which is applied sequentially to all the filters in the same housing.

도 1 은 종래의 한외여과방식에 있어서 필터의 구조도1 is a structural diagram of a filter in a conventional ultrafiltration method

도 2 는 여액으로 역류를 형성하여 막표면의 입자를 제거하는 설명(說明)도2 is an explanatory view of removing particles on the surface of a film by forming a countercurrent with a filtrate;

도 3 은 회전밸브가 장착 시의 구조도 및 액흐름 표시도3 is a structural diagram and a liquid flow indication when the rotary valve is mounted;

도 4 는 하부회전밸브의 구조도4 is a structural diagram of a lower rotary valve

도 5 는 상부회전밸브의 구조도5 is a structural diagram of the upper rotary valve

도 6 는 실제 운전 시의 설비구조 및 액흐름 설명(說明)도6 is an explanatory diagram of facility structure and liquid flow in actual operation;

도 7 은 한쪽방향으로의 액흐름시의 개략도7 is a schematic view of liquid flow in one direction;

〈도면의 주요부분에 대한 부호의 설명(說明)〉Explanation of symbols on the main parts of the drawings

1:지지층 ,2:막 ,3: 관 ,4:관투입원액,5: 관 통과 농축액 ,6:여액,7: 필터1: support layer, 2: membrane, 3: tube, 4: tube feed stock, 5: concentrate through tube, 6: filtrate, 7: filter

8:역류액,9:입자 ,10:하부경판 ,11:하부밸브하판,12:하부밸브상판,8: counter flow liquid, 9: particle, 10: lower diaphragm, 11: lower valve lower plate, 12: lower valve upper plate,

13:필터하부경판,14:연결튜브,15:필터상부경판,16:상부밸브하판,13: filter lower diameter plate, 14 connection tube, 15 filter upper diameter plate, 16: upper valve lower plate,

17:상부밸브상판,18:상부경판,20:회전밸브몸통,21:밸브회전축17: upper valve upper plate, 18: upper diaphragm, 20: rotary valve body, 21: valve rotary shaft

22:역류순환펌프,23:원액순환펌프,24:하부챔버,25:상부챔버,26 하부디스크밸브22: countercurrent circulation pump, 23: stock solution pump, 24: lower chamber, 25: upper chamber, 26 lower disk valve

본 발명의 특징은 일반적으로 중심에서 같은 거리의 동심원상의 여러필터중 1∼2개를 제한 나머지 전체 필터는 원액이 관속을 흐르면서 여액을 발생하고 그 중 일부분의 여액을 위의 1∼2개의 필터 막 후면에서 역류가 형성되게하여 막의 표층에 쌓인 찌꺼기를 제거하는 특징을 갖고 있다.A feature of the present invention is generally limited to one or two of concentric filters at the same distance from the center. The remaining total filter generates filtrate as the feed flows through the tube, and a portion of the filtrate is placed on one or two filter membranes. Backflow is formed on the back surface to remove the debris accumulated on the surface layer of the film.

도 1 에서 원액(4)가 관(3)을 통과 시 일부액은 막(2)를 통과하고 이 액은 다시 필터의 몸체인 지지층(1)를 통과하여 필터외부로 여액(6)이 빠져나간다. 그리고 관(3)을 그대로 통과한 농축액(5)은 여액(6)이 빠져나가므로 인한 입자의 농도가 높아진 채로 다음 필터로 투입된다.In FIG. 1, when the stock solution 4 passes through the tube 3, a part of the solution passes through the membrane 2, and the solution passes through the support layer 1, which is the body of the filter, and the filtrate 6 is drawn out of the filter. . Then, the concentrated solution 5 which has passed through the tube 3 as it is is introduced into the next filter while the concentration of the particles caused by the filtrate 6 is increased.

도 2 에서는 주변의 필터(7)에서 빠져나온 여액(6)의 일부가 원액의 흐름이 정지된 특정 필터의 막에서 역류로 작용하여 막표면의 입자(9)가 막표면에서 제거되어 역류액(8)으로 관 외부로 배출된다.In FIG. 2, a part of the filtrate 6 drawn out from the surrounding filter 7 acts as a backflow in the membrane of a specific filter in which the flow of the stock solution stops, so that the particles 9 on the membrane surface are removed from the membrane surface to form a countercurrent liquid ( 8) is discharged out of the tube.

도 3 에서는 전체 구조도로써 필터를 하우징에 고정시켜주는 경판(13,15)와 회전밸브 (20)의 상.하판(11,12,16,17),그리고 회전밸브(20)의 상판과하판을 연결하여 챔버(24,25)와 필터의 관을 액이 바로 통과하게 한 연결튜브(14), 회전밸브 (20)를 필터의 경판(13,15)과 함께 받쳐주는 챔버와 접하는 상부경판(18)과 하부경판(10) 등을 도시한 것이다.In FIG. 3, the upper and lower plates 11, 12, 16 and 17 of the rotary valve 20, the upper and lower plates of the rotary valve 20, and the rotary valve 20, which fix the filter to the housing, are shown in FIG. Connecting tube 14, which allows the liquid 24 to pass through the chamber 24 and 25 and the filter tube directly, and the upper plate 18 to contact the chamber supporting the rotary valve 20 together with the filter plates 13 and 15. ) And the lower plate 10 is shown.

도 4 에서는 하부 회전밸브(20)의 몸통의 상하판(11,12)과 챔버의 하부경판 (10), 필터하부경판(13)과의 관계를 도시한 것으로 필터하부경판(13)에는 구멍이 3 개 있고,회전밸브(20)의 상판(12)에는 구멍이 2 개 , 하판(11)에는 구멍이 1 개 및 연결튜브(14) 1 개 , 그리고 챔버하부경판(10)에는 구멍이 3 개가 있는 데 서로 구멍의 갯수가 차이가 나는 것이 본 발명의 핵심이다. 하부 챔버(24)에서 원액이 공급되면 챔버하부경판(10)은 구멍이 3 개이나 회전밸브의 하판(11)에는 구멍이 1 개이고 이것은 연결튜브(14)로 회전밸브 상판(12) 및 필터하부경판(13)의 구멍 1 개로만 관통되어 있어 필터 1 개로만 상향류의 원액이 공급된다.하강류인 경우 필터하부경판(13)의 구멍과 회전밸브하판(11)구멍과 일치되어지면 밸브의 내부로 들어가 이것은 하부챔버(24)로 못가고 하우징 외부로 배출된다. 이때 밸브의 상판(12)구멍은 필터하부경판(13)보다 구멍이 하나 적은 데 바로 이것이 특정필터의 액흐름을 차단하게 된다. 여기서 필터 2개를 원액이 통과하는 동안 여액이 발생하고 여액의 일부는 회전밸브(20)에 의해 관내로 원액공급이 중단된 필터의 막 후면에서 역류로 하여 필터의 지지층 및 막을 통과하여 관으로 들어가면 막표면의 입자와 함께 상부 회전밸브의 내부로 들어가 하우징 밖으로 배출된다.4 shows the relationship between the upper and lower plates 11 and 12 of the body of the lower rotary valve 20, the lower hard plate 10 of the chamber, and the lower filter plate 13 of the chamber. There are three holes in the upper plate 12 of the rotary valve 20, one hole in the lower plate 11, one connection tube 14, and three holes in the chamber lower plate 10. It is the core of the present invention that the number of holes differs from each other. When the stock solution is supplied from the lower chamber 24, the chamber lower mirror plate 10 has three holes, but the lower plate 11 of the rotary valve has one hole, which is connected to the upper valve valve 12 and the filter lower part by the connecting tube 14. Only one hole of the hard plate 13 is penetrated, so that the upstream raw liquid is supplied to only one filter. In the case of the down flow, when the hole of the filter lower diameter plate 13 coincides with the hole of the rotary valve lower plate 11, the inside of the valve Into the lower chamber 24 and out of the housing. At this time, the hole of the upper plate 12 of the valve has one hole less than the filter lower diameter plate 13, which blocks the flow of the specific filter. Here, the filtrate is generated while the two liquids pass through the two filters, and a part of the filtrate is reversed from the back of the membrane of the filter which is stopped supplying the raw liquid into the tube by the rotary valve 20. The particles on the membrane surface enter the inside of the upper rotary valve and are discharged out of the housing.

도 5 는 상부 회전밸브를 나타낸 것으로 하부밸브에 의한 액흐름이 차단된 필터의 상부경판(15)은 상부회전밸브 하판(16)의 구멍과 일치하고 이 구멍은 연결튜브가 없어 상부챔버로 액이 못가고 회전밸브 내부로 들어가 하우징외로 배출된다. 이액은 여액이 특정밸브의 후면으로 들어가서 나오는 역류의 계외 배출기능을 한다.FIG. 5 shows the upper rotary valve. The upper hard plate 15 of the filter in which the liquid flow by the lower valve is blocked coincides with the hole of the upper rotary valve lower plate 16. This hole does not have a connection tube. It does not go inside the rotary valve and out of the housing. This fluid acts as an off-system discharge of the backflow as the filtrate enters the rear of a specific valve.

도 6 은 하우징 외부의 설비와의 연관관계를 나타낸 것으로 하우징의 원액은 원액순환펌프(23)로 하여 하부챔브로 공급되고 하부밸브로해서 흡입되면서 계속 순환하여 관내에서 목적하는 유속을 형성하고 여액이 빠져나간 량만큼 외부에서 원액순환펌프(23)의 흡입측으로 액이 보충하며 또한 역류액은 별도의 작은 역류순환펌프(22)로 원액순환펌프(23)로 다시 공급하여 원액에 혼합한다. 회전밸브는 회전축 (21)를 통하여 상부회전밸브와 하부회전밸브가 똑같은 속도와 위치로 회전하면서 역류로 막의 입자가 제거되는 현상이 하우징내의 전체필터에 형성되게 한다.Figure 6 shows the relationship with the equipment outside the housing, the stock solution of the housing is supplied to the lower chamber by the feed solution circulation pump 23, and continues to circulate while being sucked by the lower valve to form the desired flow rate in the tube and the filtrate The liquid is replenished to the suction side of the stock solution circulating pump 23 from the outside as much as the amount passed out, and the countercurrent solution is supplied back to the stock solution circulating pump 23 as a separate small counter flow circulation pump 22 and mixed in the stock solution. The rotary valve allows the upper rotary valve and the lower rotary valve to rotate at the same speed and position through the rotary shaft 21 so that the particles of the membrane are removed in the reverse flow in the entire filter in the housing.

도 7 에서는 한 하우징에 상향류 또는 하강류중 하나를 형성하는 예로 데 회전밸브, 순환펌프 및 필터경판의 조합으로 궁극적으로 변함없는 것은 역류를 형성시키는 것이다.In FIG. 7, an example of forming one of the upflow and the downflow in one housing is a combination of a rotary valve, a circulation pump, and a filter mirror to ultimately form a counter flow.

일반 시스템에서는 막이 이물질누적으로 인하여 시간이 경과 시 여과량이 감소하여 여과중단 및 막의 세척이 행해진다. 동일 면적과 동일 여액량차원에서 운전시간을 연장하기위해서는 높은 압력을 낼 수 있는 펌프를 설치하여 초기에는 낮은 압으로 운전하고 시간이 경과할수록 높은 압력으로 여과하여 여액량을 조절해 나간다.In a typical system, the amount of filtration decreases over time due to the accumulation of foreign matter, which causes the filtration to stop and the membrane to be washed. In order to extend the operation time in the same area and the same amount of filtrate, high pressure pump is installed, and it operates at low pressure in the early stage and filters the filtrate with high pressure as time passes.

그러나 본 발명으로 운전될 시 높은 압력에서 운전할 필요가 없이 낮은 압력에서도 역류가 형성되어 막의 입자를 제거하여 여과량을 지속시킬뿐만 아니라 한 하우징에서 상향류와 하강류가 동시에 발생하므로 하강류의 경우 여액의 압력이 관내부의 액압력보다 높으면 이 필터의 막에도 역류가 발생하므로 전체의 막표면이 종래의 방식에 비해 상대적으로 깨끗하여 전체 여과량이 증대된다. 또한 낮은 압에서도 지속적으로 운전가능하여 막표면에 누적된 입자의 압밀화가 적게 발생하여 막의 세척 시 세척효율이 향상되고, 1 회 운전시간이 연장되며,이로 인해 막의 재생에 의한 공정중단 횟수가 감소되어 이것은 바로 산업현장에 있어서 제조원가 감소로 이어진다. 또한 장시간의 운전은 세척 시에 여과 못한 여액의 감소량을 최소화하므로 전체 필요 여과면적을 감소시켜 초기 투자비의 감소로 이어진다.However, when operating according to the present invention, there is no need to operate at a high pressure, a backflow is formed even at a low pressure to remove the particles of the membrane to maintain the filtration amount, and the upstream and the downflow simultaneously occur in one housing. If the pressure is higher than the liquid pressure in the tube, backflow also occurs in the membrane of the filter, so that the entire membrane surface is relatively clean compared to the conventional method, thereby increasing the total filtration amount. In addition, it can be operated continuously at low pressure, resulting in less condensation of particles accumulated on the surface of the membrane, which improves the cleaning efficiency when washing the membrane, and extends the operation time once, thereby reducing the number of process interruptions due to the regeneration of the membrane. This leads to a reduction in manufacturing costs in the industrial field. In addition, long-term operation minimizes the amount of filtrate that has not been filtered during washing, thus reducing the total required filter area, leading to a reduction in the initial investment.

Claims (1)

회전밸브를 이용하여 필터의 관에 여액의 역류액을 형성시켜 막표면에 누적된 입자를 연속적으로 제거하는 방법A method of continuously removing particles accumulated on the membrane surface by forming a countercurrent solution of the filtrate in the filter tube using a rotary valve.
KR1020000013201A 2000-03-13 2000-03-13 Membrane filtration with rotating valve KR20000036466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000013201A KR20000036466A (en) 2000-03-13 2000-03-13 Membrane filtration with rotating valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000013201A KR20000036466A (en) 2000-03-13 2000-03-13 Membrane filtration with rotating valve

Publications (1)

Publication Number Publication Date
KR20000036466A true KR20000036466A (en) 2000-07-05

Family

ID=19655614

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000013201A KR20000036466A (en) 2000-03-13 2000-03-13 Membrane filtration with rotating valve

Country Status (1)

Country Link
KR (1) KR20000036466A (en)

Similar Documents

Publication Publication Date Title
KR101462631B1 (en) High flow disc filter
JPH088980B2 (en) Filter cleaning
JP2006510475A (en) Filtration device
US20040134842A1 (en) Tertiary filter
CN102210951A (en) Prepumping self-cleaning filtering device
KR100328545B1 (en) A continuous washing system ofa filter that filtering liguid
US7037427B2 (en) Filter device for clarifying contaminated liquids
CN109574410A (en) A kind of Sewage Biological Treatment dynamic membrane device and application method
US7332081B2 (en) Filter device for the clarification of contaminated liquids
US20090166283A1 (en) Filter Device and Method for Purifying Polluted Liquids
KR20000036466A (en) Membrane filtration with rotating valve
CN116036868A (en) Ultrafiltration membrane assembly capable of maintaining water flux
CN215654157U (en) Small felt rotary micro-filter
CN115463464A (en) Novel pressure type large-flow high-precision rotary disc filter
JP3659833B2 (en) Operation method of multi-stage submerged membrane separator
AU2005311248B2 (en) Filtering system for water and waste water
CN211562023U (en) Heat exchanger washs circulating pump
RU2153385C1 (en) Liquid filtering apparatus
CN112742216A (en) Archimedes spiral disk ceramic membrane filtration system
CN108128886A (en) A kind of membrane filtration and aeration integrated device
CN102188852B (en) Rotating-disc type ultrasonic self-cleaning microstrainer
CN221141374U (en) Filter equipment for sewage treatment
JP2002126468A (en) Method of cleaning membrane module and membrane filter apparatus
CN2437128Y (en) Dribbling filter
CN217472875U (en) Rotary drum type micro-filter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application