KR20000032030A - Fabrication method of lithium polymer battery - Google Patents

Fabrication method of lithium polymer battery Download PDF

Info

Publication number
KR20000032030A
KR20000032030A KR1019980048351A KR19980048351A KR20000032030A KR 20000032030 A KR20000032030 A KR 20000032030A KR 1019980048351 A KR1019980048351 A KR 1019980048351A KR 19980048351 A KR19980048351 A KR 19980048351A KR 20000032030 A KR20000032030 A KR 20000032030A
Authority
KR
South Korea
Prior art keywords
electrode
battery
electrolyte
lithium
lithium polymer
Prior art date
Application number
KR1019980048351A
Other languages
Korean (ko)
Inventor
임형택
김규태
Original Assignee
조충환
한국타이어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조충환, 한국타이어 주식회사 filed Critical 조충환
Priority to KR1019980048351A priority Critical patent/KR20000032030A/en
Publication of KR20000032030A publication Critical patent/KR20000032030A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: A fabrication method of lithium polymer battery is provided to prevent the short-circuit in bent portions with sustaining the advantages of continuous process as such. CONSTITUTION: A fabrication method of lithium polymer battery comprises steps of: coating or fusing electrodes with constant gap on an aluminum mesh(1) and a copper mesh(5) which are dust collector; cutting the portions between the coated electrodes in constant size; inserting polymer electrolyte(3) between anodes(2) and cathodes(4); and bending the stacked electrode. The short-circuit between the anode(2) and the cathode(4) is prevented by the polymer electrolyte(3) between the anode(2) and the cathode(4).

Description

리튬폴리머 전지 제조방법Lithium Polymer Battery Manufacturing Method

본 발명은 리튬폴리머 전지의 제조 방법에 관한 것으로, 더욱 상세하게는 PVdF(폴리비닐리덴 플로라이드) 고분자 필름을 사용하여 리튬폴리머 전지를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a lithium polymer battery, and more particularly, to a method for producing a lithium polymer battery using PVdF (polyvinylidene fluoride) polymer film.

휴대용 소형 전자기기의 발전과 급속한 전력원의 보급으로 전력원의 대용량화 및 경량화가 가속화되고 있다. 소형전자기기 대부분이 Ni-Cd, Ni-MH, Li-이차전지 등을 사용하고 있는데, Ni-Cd, Ni-MH 전지는 부피당 에너지 밀도는 높지만 전지 자체가 무겁기 때문에 면도기, 전화기 등의 가정용 전자 기기에 많이 사용한다. 반면, 리튬이차전지는 부피나 중량 에너지 밀도가 높고, 다른 이차전지에 비해서 에너지 밀도가 높기 때문에 휴대용 전원으로 매우 유용하며 현재 대부분의 휴대용 전화에 사용되고 있다.With the development of portable small electronic devices and the rapid spread of electric power sources, the capacity and light weight of electric power sources are accelerating. Most of small electronic devices use Ni-Cd, Ni-MH, Li-rechargeable batteries. Ni-Cd, Ni-MH batteries have high energy density per volume, but because the batteries themselves are heavy, household electronic devices such as shavers and telephones I use it a lot. On the other hand, a lithium secondary battery has a high volume or weight energy density, and has a high energy density compared to other secondary batteries, which is very useful as a portable power source and is currently used in most portable telephones.

리튬이차전지는 전지 구성에 의해 리튬이온 전지와 리튬폴리머 전지로 구분된다. 리튬이온 전지는 양극 전극과 음극 전극 사이에 미세다공이 있는 고분자 필름을 삽입하여 롤케익 처럼 감아서 캔에 넣고, 전해액을 넣어 전지를 구성한다. 상기 고분자 필름속에 리튬염이 포함된 유기전해액을 넣어 전지를 제조하며, 상기 전해액은 리튬 이온을 전달하는 매개체 역할을 한다. 전지 내부에서는 리튬 이온이 양극과 음극 사이를 이동하며, 외부에서는 전류가 흐른다. 이때 리튬 이온이 양극/ 음극 사이의 이온전도 역할을 하기 때문에 리튬이온 전지라 한다.Lithium secondary batteries are classified into lithium ion batteries and lithium polymer batteries by battery configuration. Lithium-ion battery is inserted into a can of a polymer film having micropores between a positive electrode and a negative electrode, rolled like a roll cake, and put an electrolyte into a battery. An organic electrolyte solution containing lithium salt is added to the polymer film to manufacture a battery, and the electrolyte solution serves as a medium for delivering lithium ions. Inside the cell, lithium ions move between the positive and negative electrodes, while the current flows outside. At this time, since lithium ions play a role of ion conduction between the positive electrode and the negative electrode, it is called a lithium ion battery.

리튬이온 전지의 전극체는 롤케익처럼 감아서 원통형의 캔에 넣어 원통형 전지로 만들거나 감겨진 전극체를 눌러서 각형캔에 넣어 각형전지를 만든다. 전지 모양에 따라 리튬이온 전지는 각형전지와 원통형전지로 구별된다.The electrode body of a lithium ion battery is wound like a roll cake and put into a cylindrical can to make a cylindrical battery, or by pressing the wound electrode body into a square can to make a square battery. Lithium-ion batteries are classified into rectangular batteries and cylindrical batteries according to the shape of the batteries.

리튬이온 전지는 전해질로 미세다공막에 유기전해액을 함침시켜 사용하는 반면, 리튬폴리머 전지는 고분자필름이 전해질 역할을 하여 고분자 전해질 내의 이온의 매개체인 리튬염이 용해되어 이온 전도 역할을 하는 것이 차이점이다. 액체 전해액을 사용하는 리튬이온 전지는 유기전해액의 발화 위험성과 폭발성이 있고, 누액 가능성이 있어 안전성에 문제가 있지만, 고분자 전해질을 사용하는 리튬폴리머전지는 고분자내의 소량의 액체 전해질을 사용하거나 고분자 자체가 전해질 역할을 하기 때문에 안전성이 우수하고, 형상을 자유자재로 제작하는 것이 가능하다. 전지내에 사용하는 유기전해액이 적기 때문에 고분자 포장제를 사용해서 전지를 제조하는 것이 가능하다.Lithium ion batteries are used by impregnating an organic electrolyte solution in a microporous membrane as an electrolyte, whereas lithium polymer batteries have a polymer film as an electrolyte and a lithium salt, which is a medium of ions in the polymer electrolyte, dissolves in the ion conducting role. . Lithium-ion battery using liquid electrolyte has risk of ignition and explosiveness of organic electrolyte and there is possibility of leakage, so lithium polymer battery using polymer electrolyte uses small amount of liquid electrolyte in polymer or polymer itself. Since it serves as an electrolyte, it is excellent in safety and can be freely manufactured in shape. Since there are few organic electrolytes used in a battery, it is possible to manufacture a battery using a polymeric packaging agent.

리튬폴리머 전지에 있어서, 양극/전해질/음극으로 구성된 전극체를 리튬이온전지처럼 롤케익 형태로 감아서 제조하는 것이 불가능하다. 즉, 리튬폴리머 전지는 고분자 전해질이 양극과 음극에 열융착되거나 캐스팅되어 붙어있기 때문에 양극/전해질/음극으로 된 것을 감기가 곤란하고, 조밀하게 감기가 어려우며, 감은 후에 양극과 음극이 서로 닿아서 단락되는 경우도 많다.In a lithium polymer battery, it is impossible to manufacture an electrode body composed of a positive electrode / electrolyte / negative electrode in the form of a roll cake like a lithium ion battery. That is, in the lithium polymer battery, since the polymer electrolyte is thermally fused or cast to the positive electrode and the negative electrode, it is difficult to wind the positive / electrolyte / negative electrode, it is difficult to wind it tightly, and the positive electrode and the negative electrode touch each other and short-circuit after winding. In many cases.

통상적으로 리튬폴리머 전지는 도 7및 도 8과 같이 제조한다.Typically, a lithium polymer battery is prepared as shown in FIGS. 7 and 8.

도 7은 양극/전해질/음극으로 적층(stacking)되어 있는 전극체를 구부려서 여러겹 겹쳐 적층해서 리튬폴리머 전지를 제조하는 방법을 도시한 것이며, 도 8은 양극(1)/전해질(3)/음극(5)으로 구성된 전극체를 일정한 크기로 펀칭하여 여러겹 겹치는 형태로 제조된 것을 도시한 것이다.FIG. 7 illustrates a method of manufacturing a lithium polymer battery by bending an electrode body stacked in a cathode / electrolyte / cathode and stacking a plurality of layers, and FIG. 8 illustrates a cathode (1) / electrolyte (3) / cathode. It is shown that the electrode body composed of (5) to be punched to a certain size to be manufactured in a multi-ply overlapping form.

도 7의 전지는 양극 전극(2)을 집전체인 알루미늄 메쉬(mesh)(1)에 열융착시키고, 음극전극(4)은 집전체인 구리 메쉬(5)에 열융착시켜 전극을 준비한 다음 양극과 음극 사이에 PVdF 전해질(3)에 일정한 압력과 열을 가하여 붙인다. 양극(1)/전해질(2)/음극(3)의 3개층으로 된 전극을 접어서 전지를 구성한다. 도 7처럼 전극체를 접어서 여러번 겹치게 제작한 전지는 접힌 부분에서는 양극과 음극 사이에 전해질이 파열되어 단락이 발생할 가능성이 매우 높다. 또한 양극과 음극의 두께가 250 내지 300㎛정도이고, 전해질이 50 내지 70㎛ 사이이다. 열융착된 전극체의 두께는 550 내지 670㎛ 정도로 두껍기 때문에 전극을 접기가 매우 곤란하며 접힌부분의 전극에서 균열이 발생하고, 균열된 부분에서 여러 가지 전지 성능에 악영향을 미칠 부반응이 발생할 소지가 많다. 또한 양극과 음극이 접히면서 전해질을 파괴하거나 단락시킬 가능성이 다분하다.In the battery of FIG. 7, the positive electrode 2 is thermally fused to an aluminum mesh 1 as a current collector, and the negative electrode 4 is thermally fused to a copper mesh 5 as a current collector to prepare an electrode. A constant pressure and heat are applied to the PVdF electrolyte 3 between the and the cathode. An electrode composed of three layers of the positive electrode 1, the electrolyte 2, and the negative electrode 3 is folded to form a battery. In the battery fabricated by folding the electrode body several times as shown in FIG. In addition, the thickness of the positive electrode and the negative electrode is about 250 to 300㎛, the electrolyte is between 50 to 70㎛. Since the thickness of the heat-sealed electrode body is about 550 to 670 μm, it is very difficult to fold the electrode, and cracks occur in the folded electrode, and there are many side reactions that adversely affect various battery performances in the cracked portion. . In addition, there is a high possibility that the positive electrode and the negative electrode may collapse and short-circuit the electrolyte.

도 8의 전지 구성은 일정한 크기로 펀칭된 전극체를 여러겹 적층해서 제조하는 방식이다. 도 7처럼 양극과 음극을 제조한 다음 PVdF 전해질을 삽입하여 열융착시켜 전극체를 제조한다. 그러나 도 7은 도 8에 비해 생산성은 높지만 위에서 언급한 단점이 있어 도 7 및 도 8의 제작 방법에는 문제가 있다.The battery configuration of FIG. 8 is a method of manufacturing by stacking a plurality of electrode bodies punched to a constant size. After preparing the positive electrode and the negative electrode as shown in Figure 7 by inserting a PVdF electrolyte to heat fusion to prepare an electrode body. However, although FIG. 7 is more productive than FIG. 8, there are disadvantages in the manufacturing method of FIGS. 7 and 8 because of the above-mentioned disadvantages.

본 발명은 도 7처럼 연속 공정을 할 수 있는 장점을 그대로 유지하면서 접힌 부분에서 단락을 방지시킬 수 있는 리튬폴리머 전지의 제조방법을 제시하는 것을 그 목적으로 한다.It is an object of the present invention to provide a method for producing a lithium polymer battery that can prevent a short circuit in the folded portion while maintaining the advantages of the continuous process as shown in FIG.

도 1. 일정한 크기로 절단된 전극을 일정 간격으로 열융착시킨 전극이다.1 is an electrode heat-sealed at regular intervals the electrode cut to a constant size.

상(上)은 양극전극, 하(下)는 음극전극이다.The upper part is an anode electrode and the lower part is a cathode electrode.

도 2. 열융착된 양극과 음극전극의 전극이 열융착되지 않은 부분을 일정 크기로 가공하고, 양극과 음극 사이에 PVdF 고분자 전해질을 삽입한 도면이다.2 is a view in which a portion of a heat-sealed positive electrode and a negative electrode electrode is not heat-sealed to a predetermined size, and a PVdF polymer electrolyte is inserted between the positive electrode and the negative electrode.

상(上)은 양극전극, 중(中)은 전해질, 하(下)는 음극전극을 각각 나타낸다.The upper represents an anode, the middle represents an electrolyte, and the lower represents an anode.

양극과 음극의 위치는 바뀌어도 무방하다.The positions of the positive electrode and the negative electrode may be changed.

도 3. 양극/전해질/음극 전극이 융착된 셀의 평면도이다.3 is a plan view of a cell in which an anode / electrolyte / cathode electrode is fused.

도 4. 양극/전해질/음극의 열융착 전의 단면도이다.4. It is sectional drawing before the thermal welding of an anode / electrolyte / cathode.

도 5. 본 발명에 의해서 접혀서 제작된 전지로, 구부리기 전이다.5. The battery produced by folding in accordance with the present invention, before bending.

도 6. 본 발명에 의해 접혀서 제작된 전지로, 구부린 후를 나타낸다.6. The battery produced by folding by this invention is shown after bending.

도 7. 전극체를 접어서 리튬폴리머 이차전지를 제조하는 통상의 방법이다.7. It is a conventional method of manufacturing a lithium polymer secondary battery by folding an electrode body.

도 8. 일정한 크기로 절단된 전극체를 여러겹 적층하여 제조한 전지이다.8. A battery manufactured by stacking a plurality of electrode bodies cut to a constant size.

1 -------- 양극집전체(알루미늄 메시) 2 --------- 양극전극1 -------- anode collector (aluminum mesh) 2 --------- anode

3 -------- 전해질/분리기 4 --------- 음극전극3 -------- Electrolyte / Separator 4 --------- Cathode Electrode

5 -------- 음극집전체(구리 메시)5 -------- Cathode Current Collector (Copper Mesh)

전극은 도 1에서와 같이 집전체인 알루미늄 메시(1)와 구리 메시(5)위에 전극을 열융착시켜 구성한다. 전극은 띄엄띄엄 일정 간격과 크기로 열융착시키거나 전극활물질을 집전체위에 일정 크기와 간격으로 코팅하여 준비한다.As shown in FIG. 1, the electrode is formed by thermally bonding an electrode on an aluminum mesh 1 and a copper mesh 5 as current collectors. Electrodes are prepared by spacing at regular intervals and sizes, or by coating electrode active materials on a current collector at predetermined sizes and intervals.

융착되거나 코팅된 전극은 전극과 전극 사이에 집전체를 일정한 크기로 펀칭해서 잘라낸다. 도 2의 상(上)은 일정한 간격으로 열융착시킨 양극전극이고, 도 2의 중(中)은 양극과 음극 사이에 들어가는 PVdF전해질(3)이다. 도 2의 하(下)는 도 2의 상(上)과 동일하게 펀칭하여 준비한다. 그러나 양극과 음극을 적층하기 때문에 전극이 없는 부분(1 및 5)에서 단락 방지를 위해서 양극과 음극 집전체를 반대로 가공해서 잘라낸 후 서로 엇갈리게 적층한다. 고분자 전해질(3)은 양극과 음극의 크기보다 약간 크게하여 양극과 음극 사이의 끝부분의 단락을 방지한다. 양극 전극(2)과 음극 전극(4)의 적층은 전극이 붙어 있지 않은 부분을 일정 크기로 잘라내지 않고 바로 적층해서 전지를 제조해도 되며 양극과 음극 전극 사이에는 전해질(3)이 있기 때문에 단락 가능성이 없다. 도 3은 양극(1), 전해액(3), 음극(5)이 열융착된 전지셀의 평면도이며, 도 4는 열융착된 전지를 전극과 전해질을 구분해서 표현한 단면도이다. 양극 과 음극은 같은 위치에 포개지도록 놓는다. 도 5는 양극과 음극이 접힌 전극체를 보이고 있다. 적층된 전극의 굽힌 부분은 전극(2 및 4)이 없으며 양극집전체(1)와 음극집전체(5)가 서로 다른 위치로 연결되어 있다. 적층되어 있는 전지의 구성은 양극/음극:음극/양극:양극/음극 순서로 적층되어 있다. 즉 동일한 전극이 서로 닿아 있기 때문에 단락 가능성이 없다.The fused or coated electrode is cut out by punching a current collector into a predetermined size between the electrode and the electrode. The upper part of FIG. 2 is an anode electrode thermally fused at regular intervals, and the middle part of FIG. 2 is a PVdF electrolyte 3 interposed between the anode and the cathode. The lower part of FIG. 2 is prepared by punching like the upper part of FIG. However, since the positive electrode and the negative electrode are laminated, the positive electrode and the negative electrode current collector are reversely processed, cut out, and stacked alternately to prevent the short circuit in the portions 1 and 5 without the electrodes. The polymer electrolyte 3 is slightly larger than the size of the positive electrode and the negative electrode to prevent a short circuit at the end between the positive electrode and the negative electrode. In the stacking of the positive electrode 2 and the negative electrode 4, the battery may be manufactured by directly stacking the non-electrode portion without cutting it to a certain size, and there is a possibility of a short circuit because there is an electrolyte 3 between the positive electrode and the negative electrode. There is no FIG. 3 is a plan view of a battery cell in which the positive electrode 1, the electrolyte solution 3, and the negative electrode 5 are heat-sealed, and FIG. 4 is a cross-sectional view of the heat-sealed battery divided by an electrode and an electrolyte. Lay the anode and cathode in the same position. 5 shows an electrode body in which an anode and a cathode are folded. The bent portions of the stacked electrodes have no electrodes 2 and 4 and the positive electrode collector 1 and the negative electrode collector 5 are connected to different positions. The stacked batteries are stacked in the order of anode / cathode: cathode / anode: anode / cathode. That is, there is no possibility of a short circuit because the same electrodes touch each other.

본 발명에 의하면 리튬폴리머 이차 전지의 제작시 어려웠던 연속공정 부분을 쉽게 해결할 수 있다. 도 7처럼 전극이 접혔던 부분에는 균열이나 단락의 발생 소지가 많지만 본 발명에 의한 도 1 내지 도 6의 전지에서는 접힌 부분에는 전극이 붙어 있지 않기 때문에 쉽게 전극을 접을 수 있다. 따라서 전극의 단락과 균열을 방지할 수 있다. 또한 도 8처럼 여러개의 전극을 적층해서 제조했던 것처럼 시간이 많이 소요되지 않으며 연속 공정이 가능하다. 따라서 본 발명에 의하면 리튬폴리머 이차전지의 연속 공정이 리튬이온 전지처럼 가능하게 되었다. 일정 크기와 일정 위치에서 전극의 열융착은 자동화 공정을 통해서 간단히 해결할 수 있다.According to the present invention, it is possible to easily solve a continuous process part that was difficult in manufacturing a lithium polymer secondary battery. There are many occurrences of cracks and short circuits in the part where the electrode is folded as in FIG. 7, but in the battery of FIGS. 1 to 6 according to the present invention, since the electrode is not attached to the folded part, the electrode can be easily folded. Therefore, short circuit and crack of an electrode can be prevented. In addition, as in the manufacture of a plurality of electrodes laminated as shown in FIG. 8, it does not take much time and a continuous process is possible. Therefore, according to the present invention, the continuous process of the lithium polymer secondary battery can be made like a lithium ion battery. Thermal fusion of electrodes at a certain size and location can be easily solved through an automated process.

Claims (1)

리튬폴리머 전지 제조방법에 있어서, 양극과 음극의 전극을 일정 크기와 일정 간격으로 집전체인 알루미늄 메시와 구리 메시위에 열융착시킨 후 전극이 융착되지 않은 부분을 접어서 전지체를 여러번 겹쳐서 제조하는 것을 특징으로 하는 리튬폴리머 전지 제조방법.In the lithium polymer battery manufacturing method, the electrode of the positive electrode and the negative electrode at a predetermined size and a predetermined interval heat-sealed on the aluminum mesh and copper mesh of the current collector, and then the electrode body is not fused by folding the battery body several times to manufacture A lithium polymer battery manufacturing method.
KR1019980048351A 1998-11-12 1998-11-12 Fabrication method of lithium polymer battery KR20000032030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980048351A KR20000032030A (en) 1998-11-12 1998-11-12 Fabrication method of lithium polymer battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980048351A KR20000032030A (en) 1998-11-12 1998-11-12 Fabrication method of lithium polymer battery

Publications (1)

Publication Number Publication Date
KR20000032030A true KR20000032030A (en) 2000-06-05

Family

ID=19557962

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980048351A KR20000032030A (en) 1998-11-12 1998-11-12 Fabrication method of lithium polymer battery

Country Status (1)

Country Link
KR (1) KR20000032030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029487A (en) * 2000-10-13 2002-04-19 김순택 Lithium secondary battery and Eletrode plate assembly thereof
US9269984B2 (en) 2009-11-16 2016-02-23 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020029487A (en) * 2000-10-13 2002-04-19 김순택 Lithium secondary battery and Eletrode plate assembly thereof
US9269984B2 (en) 2009-11-16 2016-02-23 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery using the same

Similar Documents

Publication Publication Date Title
JP6453515B1 (en) Manufacturing method of stacked secondary battery
KR100430123B1 (en) Nonaqueous electrolyte battery and production method therefor
KR100861705B1 (en) Electrode Assembly with Excellent Structural Stability and Wetting Properties to Electrolyte and Secondary Battery Having the Same
US6461762B1 (en) Rechargeable battery structure having a stacked structure of sequentially folded cells
JP2000311719A (en) Lithium polymer battery and its manufacture
JP6788106B2 (en) How to Make Electrode Stacks for Battery Cells and Battery Cells
KR101799570B1 (en) Electrode Assembly Folded in the Bi-Direction and Lithium Secondary Battery Comprising the Same
WO2019121332A1 (en) Pouch cell and method of manufacturing same
KR101663351B1 (en) Cell for electrochemical device and preparation method thereof
US20210075065A1 (en) Method for manufacturing battery member for secondary battery, and secondary battery
KR101480740B1 (en) Manufacturing method of Stacked-Typed Electrode Assembly of Novel Strucure
KR100428971B1 (en) Lithium polymer secondary battery and method for manufacturing the same
JP2003272595A (en) Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
JPH10270069A (en) Rectangular battery and its manufacture
JP2018018663A (en) Electrochemical cell and method for manufacturing the same
JP5125438B2 (en) Lithium ion secondary battery and battery pack using the same
KR100882489B1 (en) Stack and Folding-typed Electrode Assembly Capable of Preventing Internal Short to be Caused by Thermal Shrinkage and Electrochemical Cell Containing the Same
JP4337294B2 (en) Secondary battery
US6737196B2 (en) Method of making a lithium polymer battery and battery made by the method
KR101090684B1 (en) Electrode assembly for battery and manufacturing thereof
JP7077000B2 (en) How to make an electrode stack for a battery cell, and a battery cell
KR20000032030A (en) Fabrication method of lithium polymer battery
KR102078801B1 (en) Electrode assembly and manufacturing method of electrode assembly
KR20240005703A (en) Battery assembly with protective layer and method of manufacturing same
JP2006134697A (en) Lithium-ion rechargeable battery

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid