JPH10270069A - Rectangular battery and its manufacture - Google Patents

Rectangular battery and its manufacture

Info

Publication number
JPH10270069A
JPH10270069A JP9075382A JP7538297A JPH10270069A JP H10270069 A JPH10270069 A JP H10270069A JP 9075382 A JP9075382 A JP 9075382A JP 7538297 A JP7538297 A JP 7538297A JP H10270069 A JPH10270069 A JP H10270069A
Authority
JP
Japan
Prior art keywords
winding
sheet
generating element
wound
power generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9075382A
Other languages
Japanese (ja)
Inventor
Keisuke Yamamoto
啓介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP9075382A priority Critical patent/JPH10270069A/en
Publication of JPH10270069A publication Critical patent/JPH10270069A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rectangular battery with a high capacity and its manufacture. SOLUTION: A battery has a generating element formed with two windings, for which a multiplex sheet A with at least two long sheets laminated is wound in the same direction or in mutually opposite directions with both longitudinal ends as winding start ends in such a manner that winding internal stress arising in winding is left. In this way the angular battery is easily formed. Still, an initial facing space between a positive electrode collector and a negative electrode collector is kept for a long time because the winding internal stress is left in the generating element, so that the battery can show stable capability and a long life.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、角型電池およびそ
の製造方法に関し、特に非水液体電解質を有する各種角
型二次電池、例えば角型リチウム二次電池用として好適
な角型電池およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prismatic battery and a method of manufacturing the same, and more particularly to a prismatic battery having a nonaqueous liquid electrolyte, for example, a prismatic battery suitable for a prismatic lithium secondary battery and a prismatic battery thereof. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】各種電気機器、特に携帯用のパソコンや
電話などは、一層の軽量化、小型化の要求があり、この
要求からそれらに使用される電池としてもコンパクトな
小収容スペースに収め得る角型電池の開発が必要となっ
ている。角型電池に使用される正負両極シートからなる
発電要素体は、普通、角型や偏平型である。
2. Description of the Related Art Various electric devices, especially portable personal computers and telephones, are required to be further reduced in weight and size, and from this requirement, batteries used for them can be accommodated in a compact small storage space. The development of prismatic batteries is needed. A power generating element composed of positive and negative bipolar sheets used in a prismatic battery is usually of a rectangular or flat type.

【0003】図9は、従来の角型リチウム二次電池に使
用されている発電要素体Eの斜視図である。図9におい
て、1は正極シート片、2は負極シート片である。該発
電要素体E、図示はしていないが正負両極シート1、2
片の間にはセパレータが介在され、正負両極シート1、
2およびセパレータの三片を一組として、且つ各組間に
も更にもう一層のセパレータを介在させて多数組積層し
た構造を有し、且つ正極シート1片と負極シー2片とが
接続線4により電気的に接続されている。リチウム二次
電池などの二次電池において、その電池容量は正極シー
トが有する正極活物質の量に比例する。したがって、正
極シートの正極活物質層の厚みを大きくすると、正極シ
ートの単位面積あたりの正極活物質の量が増大し、しか
してその場合には理論的には少ない積層組数にて必要な
電池容量を確保できる。しかし実際には、通常の正極活
物質層は電気電導性に乏しいために、厚肉とすると電気
抵抗が過大となって電池作用が逆に低下する。このため
に、止むなく正極活物質層を薄くし電極面積を大きくし
て、必要な電池容量を確保すべく積層組数を多くする方
法が採られている。しかし積層組数を多くすると、手数
を要する接続線4による電気的接続数も多くなって電池
の大量生産が困難となる。
FIG. 9 is a perspective view of a power generating element E used in a conventional prismatic lithium secondary battery. In FIG. 9, 1 is a positive electrode sheet piece, and 2 is a negative electrode sheet piece. The power generating element body E, not shown, is a positive / negative bipolar sheet 1, 2
A separator is interposed between the pieces, and the positive and negative bipolar sheets 1,
2 and three pieces of the separator as one set, and a multiplicity of sets are laminated with further separators interposed between each set, and one positive electrode sheet and two negative electrode sheets Are electrically connected to each other. In a secondary battery such as a lithium secondary battery, the battery capacity is proportional to the amount of the positive electrode active material of the positive electrode sheet. Therefore, when the thickness of the positive electrode active material layer of the positive electrode sheet is increased, the amount of the positive electrode active material per unit area of the positive electrode sheet is increased. Capacity can be secured. However, in practice, a normal positive electrode active material layer has poor electric conductivity, so that if it is thick, the electric resistance becomes excessively large, and the battery action is conversely reduced. For this reason, a method has been adopted in which the number of stacked sets is increased to ensure the required battery capacity by making the positive electrode active material layer thinner and increasing the electrode area. However, when the number of stacked sets is increased, the number of electrical connections by the connection wires 4 which requires a lot of work is increased, and mass production of batteries becomes difficult.

【0004】図10は、従来の角型リチウム二次電池に
使用されている他の発電要素体Eの斜視図であって、こ
の発電要素体Eは正極シート、負極シート、およびセパ
レータとからなる長尺の集合シートAを図11の断面図
に示すように偏平状の芯体FC上に巻回し、ついで芯体
FCを除去して得られる。この発電要素体Eでは、長尺
の集合シートAを使用して巻回数を増すことにより必要
な電極面積を、しかして電池容量を確保することができ
るので、図10に示す積層物が抱える問題はない。しか
しこの偏平状巻回体からなる発電要素体Eは、つぎに述
べる問題がある。
FIG. 10 is a perspective view of another power generating element E used for a conventional prismatic lithium secondary battery, and the power generating element E includes a positive electrode sheet, a negative electrode sheet, and a separator. As shown in the sectional view of FIG. 11, the long aggregate sheet A is wound on a flat core body FC, and then the core body FC is removed. In this power generation element body E, a necessary electrode area and a battery capacity can be secured by increasing the number of windings by using the long aggregate sheet A, so that the problem of the laminate shown in FIG. There is no. However, the power generating element E composed of the flat wound body has the following problems.

【0005】一般に発電要素体は、その中に有する正極
シートと負極シートとの対向間隔が大きくなると、正極
集電体と負極集電体との間の電気抵抗が増大して正常な
電池機能を奏し得なくなる。このために例えば円柱状の
電池に使用されている円筒状の発電要素体は、上記の長
尺の集合シートAと同様の集合シートを円柱状の芯体上
に比較的大きな張力下で巻回して、巻回後の集合シート
中の各シートには巻回時の巻き張力に基づく内部応力が
残留するようにしている。芯体除去後においても、この
残留内部応力により集合シート中の各シートは常に収縮
して締まろうとし、この結果、正極集電体と負極集電体
との対向間隔が大きくならないように維持される。とこ
ろで図11にて説明したように、長尺の集合シートAを
偏平状の芯体FC上に巻回した場合、得られた偏平状巻
回体のうちで芯体FCの両端FC1とFC2上でターン
した両端に位置する各シート部分E1、E2には、芯体
除去後においても上記のような内部応力が残留し易い
が、その中間部分E3にはかかる内部応力が残留し難
く、したがってその部分の正極集電体と負極集電体との
対向間隔が開きがちのため容量の大きな電池が得られな
い。
[0005] In general, when the distance between the positive electrode sheet and the negative electrode sheet in the power generating element body increases, the electrical resistance between the positive electrode current collector and the negative electrode current collector increases, and a normal battery function is obtained. I can't play it. For this purpose, for example, a cylindrical power generating element body used for a cylindrical battery is obtained by winding a set sheet similar to the long set sheet A under a relatively large tension on a columnar core. Thus, the internal stress based on the winding tension at the time of winding remains in each sheet in the set sheet after winding. Even after the core is removed, each sheet in the collective sheet always shrinks and tries to close due to the residual internal stress, and as a result, the facing distance between the positive electrode current collector and the negative electrode current collector is maintained so as not to be large. Is done. By the way, as described with reference to FIG. 11, when the long collective sheet A is wound on the flat core member FC, the ends of the core member FC of both ends FC1 and FC2 of the obtained flat wound member are obtained. Although the above-mentioned internal stress is likely to remain in the respective sheet portions E1 and E2 located at both ends where the turn is made, even after the removal of the core body, the internal stress applied to the intermediate portion E3 hardly remains. A large capacity battery cannot be obtained because the facing distance between the positive electrode current collector and the negative electrode current collector in the portion tends to be wide.

【0006】[0006]

【発明が解決しようとする課題】よって本発明は、高容
量を有する角型電池およびその製造方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a prismatic battery having a high capacity and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、つぎの特徴を
有する。 (1) 発電要素体を構成する少なくとも正極および負極の
長尺シートを積層してなる集合シートの長手方向の両端
を巻始め端として巻回した二巻回体からなる発電要素体
を有することを特徴とする角型電池。 (2) 二巻体が、互いに同一方向に巻回されてなる上記
(1) 記載の角型電池。 (3) 二巻体が、互いに逆方向に巻回されてなる上記(1)
記載の角型電池。 (4) 二巻体のいずれもが、円筒状または楕円筒状である
上記(1) 〜(3) のいずれかに記載の角型電池。 (5) 発電要素体を構成する少なくとも正極および負極の
長尺シートを積層してなる集合シートをその長手方向の
両端を巻始め端として巻き張力を付与しつつそれぞれ芯
体上に巻回して二巻回体を得るに際し、二巻回体間の非
巻回集合体シート部における各シート間の長さの差が小
さくなるように集合体シートの長手方向の両端における
各シートの巻始め端に差異を設けて巻回することを特徴
とする角型電池の製造方法。
The present invention has the following features. (1) A power generation element body comprising a two-turn body wound with both ends in the longitudinal direction of a collective sheet formed by laminating at least long sheets of a positive electrode and a negative electrode constituting the power generation element body as winding ends. Characteristic square battery. (2) The above two windings are wound in the same direction as each other
(1) The prismatic battery according to the above. (3) The above-mentioned (1), wherein the two winding bodies are wound in opposite directions.
The prismatic battery as described. (4) The prismatic battery according to any one of the above (1) to (3), wherein each of the two winding bodies has a cylindrical shape or an elliptical cylindrical shape. (5) At least a long sheet of the positive electrode and the negative electrode constituting the power generating element body is wound on a core body while applying a tension while winding both ends in the longitudinal direction as winding ends. In obtaining a wound body, at the winding start end of each sheet at both ends in the longitudinal direction of the aggregated sheet so that the difference in length between each sheet in the non-wound aggregated sheet portion between the two wound bodies is reduced. A method for manufacturing a prismatic battery, comprising winding the battery with a difference.

【0008】[0008]

【作用】本発明で用いられる発電要素体は、発電要素体
を構成する長尺の集合シートの長手方向の両端を巻始め
端として巻回した二巻回体からなる。よって、該二巻回
体間を結ぶ極く短い非巻回集合シート部を除く他の全部
分が巻回状態であるので、巻回時の巻き張力に基づく内
部応力が残留してこの残留内部応力により正極集電体と
負極集電体との対向間隔が大きくならないように維持さ
れる。さらに発電要素体は、長尺の集合シートの二巻回
体からなるのでその断面は偏平状に近く、しかして角型
電池の製造が可能となる。
The power generating element body used in the present invention is formed of a two-winding body which is wound with both ends in the longitudinal direction of a long collective sheet constituting the power generating element body as winding start ends. Therefore, since all parts other than the extremely short non-wound collective sheet portion connecting between the two-wound bodies are in the wound state, internal stress based on the winding tension at the time of winding remains and this residual internal The stress keeps the interval between the positive electrode current collector and the negative electrode current collector from becoming large. Further, since the power generating element body is formed of a two-turn body of a long collective sheet, its cross section is nearly flat, so that a prismatic battery can be manufactured.

【0009】[0009]

【発明の実施の形態】以下、本発明を図例により一層詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings.

【0010】図1は、本発明の実施例に用いられる発電
要素体の斜視図であり、図2は図1に示す発電要素体の
製造方法を概略説明するための上面図である。図3は、
本発明の実施例に用いられる他の発電要素体の斜視図で
あり、図4は図3に示す発電要素体の製造方法を概略説
明するための上面図である。図5〜図8は、本発明の実
施例の上面図である。
FIG. 1 is a perspective view of a power generating element used in an embodiment of the present invention, and FIG. 2 is a top view for schematically explaining a method of manufacturing the power generating element shown in FIG. FIG.
FIG. 4 is a perspective view of another power generating element used in the embodiment of the present invention, and FIG. 4 is a top view for schematically explaining a method of manufacturing the power generating element shown in FIG. 3. 5 to 8 are top views of the embodiment of the present invention.

【0011】図1に示す発電要素体Eは、図2に示すよ
うに、セパレータ、正極シート、負極シート、およびセ
パレータの4シートが順次積層してなる長尺の集合シー
トAをその長手方向の両端A1およびA1’をそれぞれ
巻始め端として芯体SおよびS’上に張力をかけつつ矢
印で示すように同じ巻き方向に巻回し、ついで各芯体
S、S’を抜き去って得られる。しかして発電要素体E
は、巻き方向が同じ二つの巻回体A2およびA2’から
なり、両巻回体A2およびA2’は集合シートAの長手
方向の略中央に位置する非巻回部Cにて連結された構造
を有する。
As shown in FIG. 2, a power generating element body E shown in FIG. 1 is composed of a long aggregate sheet A in which four sheets of a separator, a positive electrode sheet, a negative electrode sheet, and a separator are sequentially laminated. It is obtained by winding the cores S and S 'in the same winding direction while applying tension to the cores S and S' with the ends A1 and A1 'as the winding ends, respectively, and then pulling out the cores S and S'. Then, the power generation element body E
Is composed of two wound bodies A2 and A2 'having the same winding direction, and both wound bodies A2 and A2' are connected by a non-wound portion C located substantially at the center of the aggregated sheet A in the longitudinal direction. Having.

【0012】図3に示す発電要素体Eは、図4に示すよ
うに、上記と同じような長尺の集合シートAをその長手
方向の両端A1およびA1’をそれぞれ巻始め端として
芯体SおよびS’上に張力をかけつつ矢印で示すように
互いに逆の巻き方向に巻回し、ついで各芯体S、S’を
抜き去って得られる。しかして発電要素体Eは、巻き方
向が互いに逆の二つの巻回体A2およびA2’からな
り、両巻回体A2およびA2’は集合シートAの長手方
向の略中央に位置する非巻回部Cにて連結された構造を
有する。
As shown in FIG. 4, a power generating element body E shown in FIG. 3 has a core sheet S having a long sheet A similar to that described above, with its both ends A1 and A1 'in the longitudinal direction as winding ends. And S 'are wound in opposite winding directions as shown by arrows while applying tension, and then each core S, S' is pulled out. Thus, the power generating element body E is composed of two winding bodies A2 and A2 'whose winding directions are opposite to each other, and the two winding bodies A2 and A2' are non-winding members located substantially at the center of the aggregate sheet A in the longitudinal direction. It has a structure connected by a part C.

【0013】図5〜図8において、Kは電池缶であり、
Eは発電要素体である。図5の実施例では図1に示す発
電要素体Eが、一方図6の実施例では図3に示す発電要
素体Eがそれぞれ使用され、いずれも上面の断面が長方
形の電池缶K内に収納されている。図7の実施例では、
発電要素体Eとして巻き方向が互いに同じであり、且つ
楕円形の断面を有する二つの巻回体A2およびA2’か
らなるものが、一方、図8の実施例では発電要素体Eと
して巻き方向が互いに逆であり、且つ楕円形の断面を有
する二つの巻回体A2およびA2’からなるものがそれ
ぞれ用いられており、上面の断面が円弧状を呈する側壁
を有する偏平電池缶K内に収納されている。楕円形の断
面を有する二つの巻回体A2およびA2’からなる発電
要素体Eを、しかも上面の断面が円弧状を呈する側壁を
有する偏平電池缶K内に収納した図7や図8の実施例
は、一層偏平な角型電池を得る上で有効である。
5 to 8, K denotes a battery can,
E is a power generation element body. In the embodiment of FIG. 5, the power generating element body E shown in FIG. 1 is used, while in the embodiment of FIG. 6, the power generating element body E shown in FIG. 3 is used. Have been. In the embodiment of FIG.
The power generating element E has two winding bodies A2 and A2 'having the same winding direction and an elliptical cross section, whereas in the embodiment shown in FIG. Each of the two winding bodies A2 and A2 ', which are opposite to each other and have an elliptical cross section, is used. The winding bodies A2 and A2' are housed in a flat battery can K having a side wall having an arc-shaped cross section on the upper surface. ing. 7 and 8 in which a power generating element E composed of two winding bodies A2 and A2 'having an elliptical cross section is housed in a flat battery can K having a side wall having an arc-shaped cross section on the upper surface. The example is effective in obtaining a flatter prismatic battery.

【0014】図7や図8の実施例で用いられている楕円
形断面の巻回体A2、A2’を有する発電要素体Eは、
図1や図3に示す円形断面の巻回体A2、A2’を有す
る発電要素体Eの製造過程において、芯体S、S’を抜
き去った後にその両面から圧縮することにより得られ
る。あるいは芯体S、S’に代えて、断面が楕円形の芯
体を使用して楕円形に巻回することによっても得ること
ができる。
The power generating element body E having the winding bodies A2 and A2 'having an elliptical cross section used in the embodiments of FIGS.
In the manufacturing process of the power generating element body E having the winding bodies A2 and A2 'having a circular cross section shown in FIGS. 1 and 3, the cores S and S' are obtained by removing the cores S and S 'and compressing the cores S from both sides. Alternatively, it can also be obtained by winding an ellipse using a core having an elliptical cross section instead of the cores S and S ′.

【0015】楕円形断面の巻回体A2、A2’を有する
発電要素体Eの採用は、一層偏平な角型電池を得る上で
有効である反面、過度に偏平な楕円形では、図11にて
説明した従来例と同じ問題、即ち図11のE3に対応す
る部分における残留巻回内部応力が低下乃至消失しがち
となる問題、が生じるので、巻回体A2、A2’の楕円
状断面形状に関しては、その短径に対する長径の比が3
倍以下、特に2.5倍以下の範囲内である楕円形、ある
いはそれに相当する擬似楕円形とすることが好ましい。
The use of the power generating element body E having the winding bodies A2 and A2 'having an elliptical cross section is effective in obtaining a flatter rectangular battery, but in the case of an excessively flat elliptical shape, FIG. The same problem as the conventional example described above, that is, the problem that the residual winding internal stress in the portion corresponding to E3 in FIG. 11 tends to decrease or disappear, occurs, so that the elliptical cross-sectional shapes of the winding bodies A2 and A2 'are generated. The ratio of the major axis to the minor axis is 3
It is preferable that the shape be an elliptical shape within a range of 2 times or less, particularly 2.5 times or less, or a pseudo-elliptical shape corresponding thereto.

【0016】図1〜図4において、集合シートAは、少
なくとも正極シートと負極シートとを含み、それ以外に
固体電解質シートまたは液体電解質使用の場合にはセパ
レータを少なくとも一シート、通常は二シートをも含
む。したがって、これら多数の構成シートを積層してな
る集合シートAを、該構成シートの各端を揃えて図2や
図4に示すように芯体S、S’上にその両端から巻回し
て行くと、図1〜図4における点C、即ち集合シートA
の長手方向の中央またはその近傍部における二巻回体の
各巻き終わり部間、即ち非巻回部Cにおける集合シート
Aの構成シート間での長さに大なり小なり不一致が生じ
る。特に、図4のように両端逆方向に巻回すると、集合
シートAの外側に位置する構成シートと内側に位置する
構成シートとでは大きな差が生じて内側構成シートにた
るみが生じる。本発明における非巻回部Cでの一部構成
シートのたるみは発電要素体Eの発電機能に何等悪影響
はない。しかし電池製造過程での中間体としての発電要
素体Eの取扱の容易さ、あるいはその他の理由から、か
かる一部構成シートのたるみの発生を防止する必要のあ
る場合には、使用予定の集合シートAを所望の巻き方向
で巻回して非巻回部Cで生じる構成シートのたるみ長さ
を予め把握しておき、集合シートAの巻き始め端と非巻
回部Cまでの各シートの長さに各たるみ長に該当する差
を設けて巻くとよい。例えばたるみ量の多い構成シート
の上記長さを予め短くしておく。かくすると、非巻回部
Cでの構成シートのたるみの発生を防止乃至軽減するこ
とができる。
1 to 4, the aggregate sheet A includes at least a positive electrode sheet and a negative electrode sheet. In addition, in the case of using a solid electrolyte sheet or a liquid electrolyte, at least one separator, usually two sheets, is used. Including. Therefore, a collective sheet A formed by laminating a number of these constituent sheets is wound around the cores S, S 'from both ends as shown in FIGS. And the point C in FIGS.
The length between the winding ends of the two-winding body at the center in the longitudinal direction or the vicinity thereof, that is, the length of the non-rolled portion C between the constituent sheets of the collective sheet A is slightly larger or smaller. In particular, when winding is performed in opposite directions as shown in FIG. 4, there is a large difference between the constituent sheet located outside the set sheet A and the constituent sheet located inside the set sheet A, and the inside constituent sheet becomes slack. In the present invention, the slack of a part of the sheet at the non-winding portion C has no adverse effect on the power generation function of the power generation element E. However, in the case where it is necessary to prevent the occurrence of the slack of the partial component sheet due to easy handling of the power generating element body E as an intermediate in the battery manufacturing process or other reasons, the aggregate sheet to be used is A is wound in the desired winding direction and the slack length of the constituent sheet generated in the non-wound portion C is known in advance, and the length of each sheet from the winding start end of the collective sheet A to the non-wound portion C It is preferable to provide a difference corresponding to each slack length. For example, the length of the component sheet having a large amount of slack is shortened in advance. Thus, it is possible to prevent or reduce the occurrence of the slack of the constituent sheet in the non-wound portion C.

【0017】集合シートAの構成要素となり得る正極シ
ートおよびその正極活物質と正極集電体、負極シートお
よびその負極活物質と負極集電体、セパレータ、あるい
は電解質などについては、非水電解質リチウム二次電池
の分野において従来から知られているものを用いること
ができる。以下に、その代表的乃至好ましい部材の若干
例を説明する。
The positive electrode sheet and its positive electrode active material and the positive electrode current collector, which can be constituent elements of the aggregate sheet A, the negative electrode sheet and its negative electrode active material and the negative electrode current collector, the separator, and the electrolyte are the nonaqueous electrolyte lithium secondary battery. Conventionally known batteries in the field of secondary batteries can be used. Hereinafter, some examples of typical or preferable members will be described.

【0018】正極活物質は、LiCoO2 、LiNiO
2 などのLiと周期律表の新9〜10族遷移金属元素と
の複合酸化物類、LiMnO2 、LiX Mn(2-Y) Y
4(MはB、P、Alなど)などのLi−Mn系複合
酸化物類、V2 5 などである。負極活物質は、各種の
Li系合金類、天然あるいは人造の黒鉛などの炭素材料
類などである。正極活物質あるいは負極活物質の結着剤
は、ポリテトラフルオロエチレン、ポリビニリデンフル
オリド、ポリエチレン、エチレン−プロピレン−ジエン
系ポリマーなどである。正極シートおよび正極シート
は、集電体の片面または両面に活物質および結着剤から
なる混合組成物を塗布し充分に乾燥後、圧延して形成す
ることができる。セパレータは、例えば電気絶縁性の優
れたポリエチレン、ポリプロピレン、ポリブテンなどの
ポリオレフィン類、ナイロン、ポリエステル、ポリ塩化
ビニル、ポリフッ化ビニリデンなどのその他の熱可塑性
ポリマーからなる多孔性シート類などである。
The positive electrode active material is LiCoO 2 , LiNiO
Composite oxides of Li such as 2 and a transition metal element belonging to Group 9 to 10 of the periodic table, LiMnO 2 , Li X Mn (2-Y) M Y
O 4 (M is B, P, Al, etc.) Li-Mn based composite oxide such as, and the like V 2 O 5. The negative electrode active material includes various Li-based alloys and carbon materials such as natural or artificial graphite. The binder for the positive electrode active material or the negative electrode active material is polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-diene-based polymer, or the like. The positive electrode sheet and the positive electrode sheet can be formed by applying a mixed composition comprising an active material and a binder to one or both surfaces of a current collector, sufficiently drying, and rolling. Examples of the separator include porous sheets made of other thermoplastic polymers such as polyolefins such as polyethylene, polypropylene, and polybutene having excellent electrical insulation properties, nylon, polyester, polyvinyl chloride, and polyvinylidene fluoride.

【0019】[0019]

【発明の効果】本発明の角型電池は、二つの巻回体から
なり、しかして偏平状に近い断面形状を有する発電要素
体を採用するので、角型電池の形成が容易である。しか
も発電要素体内での残留内部応力により正極集電体と負
極集電体との初期の対向間隔が長期にわたって維持され
るので、電池機能が安定しており長寿命である。したが
って本発明の角型電池は、各種電気機器、特に携帯用の
パソコンや電話などの電源としてすこぶる有用である。
As described above, the prismatic battery of the present invention is composed of two wound bodies and employs a power generating element having a substantially flat cross section, so that the prismatic battery can be easily formed. In addition, since the initial facing distance between the positive electrode current collector and the negative electrode current collector is maintained for a long time due to residual internal stress in the power generating element, the battery function is stable and the life is long. Therefore, the prismatic battery of the present invention is extremely useful as a power source for various electric devices, particularly portable personal computers and telephones.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いられる発電要素体の斜視
図である。
FIG. 1 is a perspective view of a power generating element used in an embodiment of the present invention.

【図2】図1に示す発電要素体の製造方法を概略説明す
るための上面図である。
FIG. 2 is a top view for schematically explaining a method of manufacturing the power generating element body shown in FIG.

【図3】本発明の実施例に用いられる他の発電要素体の
斜視図である。
FIG. 3 is a perspective view of another power generating element used in the embodiment of the present invention.

【図4】図3に示す発電要素体の製造方法を概略説明す
るための上面図である。
FIG. 4 is a top view for schematically explaining a method of manufacturing the power generating element body shown in FIG.

【図5】本発明の実施例の上面図である。FIG. 5 is a top view of the embodiment of the present invention.

【図6】本発明の他の実施例の上面図である。FIG. 6 is a top view of another embodiment of the present invention.

【図7】本発明の他の実施例の上面図である。FIG. 7 is a top view of another embodiment of the present invention.

【図8】本発明の他の実施例の上面図である。FIG. 8 is a top view of another embodiment of the present invention.

【図9】従来の角型リチウム二次電池に使用されている
発電要素体の斜視図である。
FIG. 9 is a perspective view of a power generating element used in a conventional prismatic lithium secondary battery.

【図10】従来の角型リチウム二次電池に使用されてい
る他の発電要素体の斜視図である。
FIG. 10 is a perspective view of another power generating element used in a conventional prismatic lithium secondary battery.

【図11】図10に示す発電要素体の製造方法の説明図
である。
11 is an explanatory diagram of a method for manufacturing the power generating element body shown in FIG.

【符号の説明】[Explanation of symbols]

E 発電要素体 A 集合シート A1、A1’ 集合シートAの両端 A2、A2’ 発電要素体Eの巻回体 C 発電要素体Eの非巻回部 S、S’ 芯体 E Power generation element body A Assembly sheet A1, A1 'Both ends A2, A2' of assembly sheet A Wound body of power generation element body C Non-wound portion S, S 'core of power generation element body E

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発電要素体を構成する少なくとも正極お
よび負極の長尺シートを積層してなる集合シートの長手
方向の両端を巻始め端として巻回した二巻回体からなる
発電要素体を有することを特徴とする角型電池。
1. A power generating element body comprising a two-winding body formed by winding at least two longitudinal ends of a collective sheet formed by laminating long sheets of a positive electrode and a negative electrode constituting a power generating element body. A prismatic battery characterized by the above.
【請求項2】 二巻体が、互いに同一方向に巻回されて
なる請求項1記載の角型電池。
2. The prismatic battery according to claim 1, wherein the two windings are wound in the same direction.
【請求項3】 二巻体が、互いに逆方向に巻回されてな
る請求項1記載の角型電池。
3. The prismatic battery according to claim 1, wherein the two windings are wound in opposite directions.
【請求項4】 二巻体のいずれもが、円筒状または楕円
筒状である請求項1〜3のいずれかに記載の角型電池。
4. The prismatic battery according to claim 1, wherein each of the two winding bodies has a cylindrical shape or an elliptical cylindrical shape.
【請求項5】 発電要素体を構成する少なくとも正極お
よび負極の長尺シートを積層してなる集合シートをその
長手方向の両端を巻始め端として巻き張力を付与しつつ
それぞれ芯体上に巻回して二巻回体を得るに際し、二巻
回体間の非巻回集合体シート部における各シート間の長
さの差が小さくなるように集合体シートの長手方向の両
端における各シートの巻始め端に差異を設けて巻回する
ことを特徴とする角型電池の製造方法。
5. An assembly sheet comprising at least a long sheet of a positive electrode and a long sheet of a negative electrode constituting a power generating element body, each of which is wound on a core body while applying winding tension with both ends in the longitudinal direction as winding ends. In order to obtain a two-rolled body, the winding of each sheet at both ends in the longitudinal direction of the aggregated sheet so that the difference in length between the sheets in the non-wound aggregated sheet portion between the two-winded bodies becomes small. A method for manufacturing a prismatic battery, comprising winding a battery with a difference at an end.
JP9075382A 1997-03-27 1997-03-27 Rectangular battery and its manufacture Pending JPH10270069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9075382A JPH10270069A (en) 1997-03-27 1997-03-27 Rectangular battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9075382A JPH10270069A (en) 1997-03-27 1997-03-27 Rectangular battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH10270069A true JPH10270069A (en) 1998-10-09

Family

ID=13574597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9075382A Pending JPH10270069A (en) 1997-03-27 1997-03-27 Rectangular battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH10270069A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210729A (en) * 2007-02-28 2008-09-11 Hitachi Vehicle Energy Ltd Lithium secondary cell
WO2010087384A1 (en) * 2009-01-29 2010-08-05 株式会社Gsユアサ Battery and battery manufacturing method, and battery core fabrication method, core fabrication device, and core
JP2010267457A (en) * 2009-05-13 2010-11-25 Hitachi Vehicle Energy Ltd Spiral wound battery
WO2012117473A1 (en) * 2011-02-28 2012-09-07 パナソニック株式会社 Nonaqueous electrolyte rechargeable battery
JP2013105586A (en) * 2011-11-11 2013-05-30 Toyota Industries Corp Electrode body for secondary battery, secondary battery and vehicle
JP2013118098A (en) * 2011-12-02 2013-06-13 Toyota Industries Corp Electrode body for power storage device, power storage device, and vehicle
JP2013168253A (en) * 2012-02-14 2013-08-29 Hitachi Maxell Ltd Wound battery
US20140045014A1 (en) * 2012-08-09 2014-02-13 Asustek Computer Inc. Battery and manufacture method thereof
JP2014127408A (en) * 2012-12-27 2014-07-07 Mitsubishi Motors Corp Battery
JP2014203565A (en) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 Battery and vehicle mounting battery
KR20150045930A (en) * 2012-04-05 2015-04-29 에이일이삼 시스템즈 인코포레이티드 The lithium ion prismatic cell comprising multiple jelly rolls with additional material between jelly rolls
KR20150047548A (en) * 2012-08-21 2015-05-04 노키아 테크놀로지스 오와이 Method and apparatus for flexible battery
US20150372337A1 (en) * 2013-03-04 2015-12-24 Lg Chem, Ltd. Battery cell including stepped structure
KR101876614B1 (en) * 2015-03-26 2018-07-09 주식회사 엘지화학 Electrode Assembly of Combination Structure

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210729A (en) * 2007-02-28 2008-09-11 Hitachi Vehicle Energy Ltd Lithium secondary cell
TWI450436B (en) * 2009-01-29 2014-08-21 Gs Yuasa Int Ltd Battery and battery manufacturing method, core manufacturing method, core manufacturing device and core
WO2010087384A1 (en) * 2009-01-29 2010-08-05 株式会社Gsユアサ Battery and battery manufacturing method, and battery core fabrication method, core fabrication device, and core
CN102282714A (en) * 2009-01-29 2011-12-14 株式会社杰士汤浅国际 Battery, method for manufacturing battery, method and equipment for manufacturing battery winding core and battery winding core
US9112233B2 (en) 2009-01-29 2015-08-18 Gs Yuasa International Ltd. Cell and method for manufacturing the same, method and apparatus for manufacturing cell core, and cell core
JP5582408B2 (en) * 2009-01-29 2014-09-03 株式会社Gsユアサ Battery, battery manufacturing method, core manufacturing method, core manufacturing apparatus and core in battery
JP2010267457A (en) * 2009-05-13 2010-11-25 Hitachi Vehicle Energy Ltd Spiral wound battery
WO2012117473A1 (en) * 2011-02-28 2012-09-07 パナソニック株式会社 Nonaqueous electrolyte rechargeable battery
JP5110670B2 (en) * 2011-02-28 2012-12-26 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2013105586A (en) * 2011-11-11 2013-05-30 Toyota Industries Corp Electrode body for secondary battery, secondary battery and vehicle
JP2013118098A (en) * 2011-12-02 2013-06-13 Toyota Industries Corp Electrode body for power storage device, power storage device, and vehicle
JP2013168253A (en) * 2012-02-14 2013-08-29 Hitachi Maxell Ltd Wound battery
CN105009351A (en) * 2012-04-05 2015-10-28 A123系统公司 Lithium ion prismatic cell comprising multiple jelly rolls with additional material between jelly rolls
KR20150045930A (en) * 2012-04-05 2015-04-29 에이일이삼 시스템즈 인코포레이티드 The lithium ion prismatic cell comprising multiple jelly rolls with additional material between jelly rolls
US10147911B2 (en) 2012-04-05 2018-12-04 A 123 Systems, LLC Lithium ion prismatic cell comprising multiple jelly rolls with additional material between jelly rolls
JP2015515729A (en) * 2012-04-05 2015-05-28 エー123 システムズ, リミテッド ライアビリティ カンパニー Lithium ion prismatic cell containing multiple jelly rolls with additional material between jelly rolls
JP2018085350A (en) * 2012-04-05 2018-05-31 エー123 システムズ, リミテッド ライアビリティ カンパニー Lithium ion prismatic cell comprising multiple jelly rolls with additional material between jelly rolls
US9583782B2 (en) * 2012-08-09 2017-02-28 Asustek Computer Inc. Battery and manufacture method thereof
US20140045014A1 (en) * 2012-08-09 2014-02-13 Asustek Computer Inc. Battery and manufacture method thereof
JP2015531151A (en) * 2012-08-21 2015-10-29 ノキア コーポレイション Method and apparatus for flexible battery
US9882224B2 (en) 2012-08-21 2018-01-30 Nokia Technologies Oy Method and apparatus for flexible battery
KR20150047548A (en) * 2012-08-21 2015-05-04 노키아 테크놀로지스 오와이 Method and apparatus for flexible battery
JP2014127408A (en) * 2012-12-27 2014-07-07 Mitsubishi Motors Corp Battery
US20150372337A1 (en) * 2013-03-04 2015-12-24 Lg Chem, Ltd. Battery cell including stepped structure
US10629940B2 (en) * 2013-03-04 2020-04-21 Lg Chem, Ltd. Battery cell including stepped structure
JP2014203565A (en) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 Battery and vehicle mounting battery
KR101876614B1 (en) * 2015-03-26 2018-07-09 주식회사 엘지화학 Electrode Assembly of Combination Structure

Similar Documents

Publication Publication Date Title
KR100861705B1 (en) Electrode Assembly with Excellent Structural Stability and Wetting Properties to Electrolyte and Secondary Battery Having the Same
US6461762B1 (en) Rechargeable battery structure having a stacked structure of sequentially folded cells
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP2001176497A (en) Nonaqueous electrolyte secondary battery
JP4031635B2 (en) Electrochemical devices
JPH10270069A (en) Rectangular battery and its manufacture
JP3428452B2 (en) Battery with spiral electrode body and method of manufacturing the same
US6727021B1 (en) Lithium ion secondary battery
CA2249935C (en) Lithium secondary battery
KR101847679B1 (en) Electrode assembly for secondary battery and secondary battery comprising the same
JP2001085042A (en) Lithium secondary battery and fabrication of wound electrode
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
JP2007305477A (en) Battery
JP2006012703A (en) Secondary battery
US20030134202A1 (en) Lithium polymer battery
JPH10302828A (en) Angular battery and manufacture thereof
KR101668356B1 (en) Stack-folding typed electrode assembly and manufacturing methods thereof
JP2006302799A (en) Manufacturing device of electrode for cylindrical battery
JPH09161763A (en) Lithium ion secondary battery
JP4297711B2 (en) Electrochemical element
JP4422968B2 (en) Electrochemical element
JPH11297299A (en) Thin secondary battery
JP2004253341A (en) Electrochemical element
JP2007305383A (en) Manufacturing method of battery
JP2000311701A (en) Flat battery