KR20000016037A - High voltage ac apparatus - Google Patents

High voltage ac apparatus Download PDF

Info

Publication number
KR20000016037A
KR20000016037A KR1019980709600A KR19980709600A KR20000016037A KR 20000016037 A KR20000016037 A KR 20000016037A KR 1019980709600 A KR1019980709600 A KR 1019980709600A KR 19980709600 A KR19980709600 A KR 19980709600A KR 20000016037 A KR20000016037 A KR 20000016037A
Authority
KR
South Korea
Prior art keywords
ground
winding
grounding means
neutral point
means comprises
Prior art date
Application number
KR1019980709600A
Other languages
Korean (ko)
Inventor
마츠 라이온
베르틸 베르크그렌
라스 게르트마
얀-안더스 나이그렌
에어란트 죄렌젠
Original Assignee
에이비비 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE9602078A external-priority patent/SE510192C2/en
Priority claimed from SE9602079A external-priority patent/SE9602079D0/en
Priority claimed from SE9700335A external-priority patent/SE508556C2/en
Priority claimed from SE9700347A external-priority patent/SE510631C2/en
Application filed by 에이비비 에이비 filed Critical 에이비비 에이비
Publication of KR20000016037A publication Critical patent/KR20000016037A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/288Shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/025Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • H02K3/14Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots with transposed conductors, e.g. twisted conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F2027/329Insulation with semiconducting layer, e.g. to reduce corona effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/15Machines characterised by cable windings, e.g. high-voltage cables, ribbon cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/19High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a dynamo-electric machine
    • Y10S174/20Stator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/26High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system
    • Y10S174/27High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system including a semiconductive layer
    • Y10S174/28Plural semiconductive layers

Abstract

PURPOSE: A high voltage AC apparatus is appropriate to connect directly to an electric power supply or electric power transmission network and prevents the defect and the cracking generated due to the thermal movement at a winding. CONSTITUTION: The high voltage AC apparatus to be connected directly to a electric power supply or electric power transmission network(16) includes at least more than one winding. The above winding includes at least one current carrying conductor, a first layer having the semiconductor characteristics provided on the whole circumference of the conductor, a solid insulator provided on the circumference of the first layer and a second layer having the semiconductor characteristics provided on the circumference of the insulator. And also, grounding means(18, 24, 26, 28) are provided to connect to the ground at least at one point of the winding.

Description

고전압 AC 장치High Voltage AC Device

36 kv까지의 정격 전압을 가지는 발전기는 1932년 10월 15일 파울 알. 시들러(Paul R. Siedler)에 의한 "36 kV Generators Arise from Insulation Research", Electrical World 524-527쪽에 기술된다. 이들 발전기는 중간 전압 절연 전도체로 형성된 권선을 포함하고 절연부는 다른 유전 상수의 다수의 층으로 분할된다. 사용된 절연 재료는 마이커폴륨-마이커(micafolium-mica), 바니시(varnish) 및 종이의 3개 성분의 다양한 결합으로 형성된다.A generator with a rated voltage of up to 36 kv fouled October 15, 1932. "36 kV Generators Arise from Insulation Research" by Paul R. Siedler, pp. 524-527. These generators include windings formed of medium voltage insulated conductors and the insulation is divided into multiple layers of different dielectric constants. The insulating material used is formed from various combinations of three components: micafolium-mica, varnish and paper.

1984년 4월 Power Research Institute EPRI, EL-3391에 의한 공개에서 발전기 개념은 발전기가 어떤 중간 변압기 없이 전력 네트워크에 직접 연결될 수 있도록 높은 전압을 제공하는 것이 제안되었다. 상기 발전기는 초전도 회전자를 포함하도록 가정된다. 초전도 필드의 자화 용량은 전기력을 견디기에 충분한 두께의 공기 갭 권선을 사용하도록 한다. 그러나 제안된 회전자는 상기 장치의 크기를 매우 증가시키는 매우 두꺼운 절연을 가진 복잡한 구조이다. 게다가 특정한 방법이 코일 단부 섹션을 절연 및 냉각하기 위하여 취해져야 한다.In the April 1984 publication by the Power Research Institute EPRI, EL-3391, the generator concept proposed that the generator provide a high voltage so that it could be directly connected to the power network without any intermediate transformers. The generator is assumed to include a superconducting rotor. The magnetization capacity of the superconducting field allows the use of air gap windings of sufficient thickness to withstand electrical forces. The proposed rotor, however, is a complex structure with very thick insulation which greatly increases the size of the device. In addition, specific methods must be taken to insulate and cool the coil end sections.

고저압 AC 장치는 본 발명에 따라, 전력 생산을 위한 발전소의 발전기같은 회전 전기 장치, 이중 급전형 장치, 외부 극 장치, 동기화 장치, 비동기화 컨버터 캐스케이드, 및 전력 변압기를 의미한다. 상기 장치를 변압기를 생략하고 일반적으로 전력 네트워크라 불리는 배전 및 송전 네트워크에 접속하기 위하여, 변압기는 네트워크 레벨까지, 즉 130∼400 kV의 범위로 전압을 변압할 필요가 있었다.By high voltage AC device is meant, according to the invention, a rotary electric device, such as a generator of a power plant for power generation, a dual feeder device, an external pole device, a synchronization device, an asynchronous converter cascade, and a power transformer. In order to omit the transformer and connect it to a distribution and transmission network, commonly referred to as a power network, the transformer needed to transform the voltage up to the network level, ie in the range of 130 to 400 kV.

전력 전송을 위하여 사용된 케이블과 유사한 구조의 고체 절연부를 가지는 절연된 고전압 전도체로 이루어진 이들 장치의 권선을 제조함으로써 상기 장치가 중간 변압기없이 어떤 전력 네트워크에 직접 연결될 수 있는 레벨로 상기 장치의 전압이 증가될 수 있다. 그래서 상기 변압기는 생략될 수 있다. 이들 장치의 통상적인 작동 범위는 30-800 kV이다.By manufacturing the windings of these devices consisting of insulated high voltage conductors with solid insulation with a structure similar to the cables used for power transmission, the voltage of the device increases to a level such that the device can be directly connected to any power network without an intermediate transformer. Can be. Thus the transformer can be omitted. Typical operating range for these devices is 30-800 kV.

이런 종류의 장치에서는 접지 문제에 대해 특별한 주의가 필요하다.This type of device requires special attention to grounding problems.

발전기 시스템 및 다른 유사한 전기 시스템의 접지는 전기 시스템을 접지 전위에 접속하기 위하여 계획된 방법을 사용한다. 소위 시스템의 중성점이 이용될 때, 상기 중성점은 직접 또는 적당한 임피던스를 통하여 접지에 종종 접속된다. 또한 상기 시스템의 다른 포인트가 접지에 접속된다. 만약 시스템의 한 포인트가 접지되면, 전체 시스템은 갈바니 접속이 연장되는한 접지된다.Grounding of the generator system and other similar electrical systems uses a planned method for connecting the electrical system to ground potential. When the so-called neutral point of the system is used, the neutral point is often connected to ground directly or through a suitable impedance. The other point of the system is also connected to ground. If one point of the system is grounded, the entire system is grounded as long as the galvanic connection is extended.

사용되는 접지 원리는 시스템의 설계에 의해 결정된다. 발전기 전압에서 Δ 권선을 가진 Y-Δ 접속 점증 변압기에 직접적으로 접속된 발전기를 포함하는 시스템에 대하여 다음 접지 방법은 가장 일반적이다.The grounding principle used is determined by the design of the system. The following grounding method is most common for systems that include a generator connected directly to a Y-Δ connected incremental transformer with a Δ winding at the generator voltage.

- 높은 저항 접지High resistance ground

- 접지 없음-No grounding

- 공진 접지Resonant ground

높은 저항 접지는 발전기 중성점으로부터 접지에 접속된 배전 변압기의 일차 권선과 배전 변압기의 이차측에서의 낮은 오움의 레지스터를 접속함으로써 실현된다. 상기 종래 기술 접지는 Y-Δ 접속 점증 변압기(3)에 의해 네트워크(9)에 접속된 발전기(2)를 도시하는 도 1에 도시된다. 배전 변압기의 일차측(11)은 발전기(2)의 중성점 및 접지 사이에 접속된다. 변압기의 이차측(10)에 레지스터(12)가 접속된다.High resistance grounding is realized by connecting the primary winding of the distribution transformer connected from the generator neutral point to ground and the low ohm resistor at the secondary side of the distribution transformer. This prior art ground is shown in FIG. 1, which shows a generator 2 connected to the network 9 by a Y-Δ connected incremental transformer 3. The primary side 11 of the distribution transformer is connected between the neutral point of the generator 2 and the ground. The resistor 12 is connected to the secondary side 10 of the transformer.

동일한 종류의 접지는 발전기 중성점 및 접지 사이에 직접적으로 높은 오움 레지스터를 설치함으로써 얻어질 수 있다.The same kind of ground can be obtained by installing a high ohmic resistor directly between the generator neutral and ground.

접지되지 않은 전기 시스템은 접지에 대한 어떤 계획된 접속이 없다. 그래서 접지되지 않은 발전기는 다른 릴레이 및 기구에 제공하기 위하여 전압 변압기를 제외하고 중성점 및 접지 사이에 접속이 없다.An ungrounded electrical system has no planned connection to ground. So an ungrounded generator has no connection between the neutral and ground except the voltage transformer to provide to other relays and appliances.

공진 접지는 리액터(12a)에 의해 대체되는 레지스터(12)를 가지는 도 1에 도시된 바와같이 실현된다. 리액터의 리액턴스는 라인 대 접지 결함 동안 용량성 전류가 리액터(12a)에 의해 제공된 유도 전류의 동일 성분에 의해 중화되도록 선택된다.Resonant ground is realized as shown in FIG. 1 with a resistor 12 replaced by reactor 12a. The reactance of the reactor is chosen such that during line-to-ground faults the capacitive current is neutralized by the same component of the induced current provided by reactor 12a.

상기 시스템의 작은 저항 또는 작은 임피던스 접지 및 효과적인 접지는 가능하다. 작은 저항 또는 작은 임피던스 접지는 과도 과전압을 보다 작게하지만 장치에 내부 손상을 유발할 수 있는 접지 결함 전류를 보다 높게한다.Small resistance or small impedance grounding and effective grounding of the system are possible. Small resistance or small impedance grounding results in smaller transient overvoltages but higher ground fault currents that can cause internal damage to the device.

작은 저항 접지는 발전기 중성점 및 접지 사이에 저항을 계획적으로 삽입함으로써 달성된다. 저항은 접속시 직접적으로 접지에 삽입하거나 일차측이 예를들면 도 1의 발전기 중성점 및 접지 사이에 접속되는 변압기의 이차측에 간접적으로 삽입될 수 있다.Small resistance grounding is achieved by deliberately inserting a resistor between the generator neutral and ground. The resistor can be inserted directly into the ground when connected or indirectly into the secondary side of the transformer, where the primary side is connected, for example, between the generator neutral and ground of FIG. 1.

작은 인덕턴스 접지인 작은 임피던스 접지는 동일 방식으로 레지스터에 대해 인덕터를 대체하여 이루어진다. 오움에서 인덕터의 값은 상기된 바와같이 공진 접지에 요구되는 것보다 작다.Small impedance ground, a small inductance ground, is achieved by replacing the inductor for a resistor in the same way. At ohms the value of the inductor is smaller than required for resonant ground as described above.

발전기 단자 및 공통 버스 사이에 회로 차단기를 가진 공통 공급 라인 또는 버스에 접속된 몇몇 발전기를 포함하는 시스템에 대해서는 작은 저항 또는 작은 임피던스 접지가 적당하다.Small resistance or small impedance grounds are suitable for systems containing several generators connected to a common supply line or bus with a circuit breaker between the generator terminals and the common bus.

효과적으로 접지하기 위하여 발전기의 중성점은 몇몇 차이를 가진 작은 저항 또는 작은 임피던스 접지 처럼 동일한 장점 및 단점을 가진다.In order to effectively ground, the generator's neutral point has the same advantages and disadvantages as small resistance or small impedance grounds with some differences.

시스템은 만약 접지 임피던스 크기를 제한하는 어떤 임피던스 요구가 달성되면 효과적으로 접지된다. 효과적으로 접지된 시스템에서, 결함없는 위상에서의 최대 위상 대 접지 전압은 접지 결함의 경우에 위상 대 위상 전압의 80%로 제한된다.The system is effectively grounded if any impedance requirement is met that limits the ground impedance magnitude. In an effectively grounded system, the maximum phase-to-ground voltage in the fault-free phase is limited to 80% of the phase-to-phase voltage in the case of ground faults.

전력 시스템 네트워크는 시스템에서 변압기의 중성점 접지 접속을 통하여 주로 접지되고 임피던스가 없는(접촉 저항은 제외), 소위 직접적으로 접지되거나, 어떤 임피던스를 가진다.The power system network is mainly grounded through the neutral ground connection of the transformer in the system and is so directly grounded or impedance-free (except for contact resistance).

이미 공지된 접지 기술은 1989년 9월 미국 뉴욕 Institute of Electrical and Electronics Engineers에 의해 공개된 동기화 시스템의 접지-Ⅱ 부분 전기 통일 시스템에서 중성점 접지 응용을 위한 IEEE 가이드의 공개공보 IEEE C62.92-1989에 기술된다.Known grounding techniques are described in IEEE C62.92-1989 of the IEEE Guide for Neutral Grounding Applications in Ground-II Partial Electrical Uniform Systems of Synchronized Systems, published by the Institute of Electrical and Electronics Engineers, New York, September 1989. Are described.

만약 발전기 중성점이 상기된 바와같이 작은 저항 또는 인덕턴스를 통하여 접지되면, 경로에는 발전기 중성점으로부터 접지로 제 3 고조파 전류가 형성된다. 만약 직접적으로 접지된 또는 작은 임피던스 접지 변압기 권선 또는 다른 작은 임피던스 접지 발전기가 직접적으로 상기 발전기에 접속되면, 제 3 고조파 전류는 정상적인 조건하에서 그 사이에서 순환할 것이다.If the generator neutral point is grounded through a small resistance or inductance as described above, a third harmonic current is formed in the path from the generator neutral point to ground. If a directly grounded or small impedance grounded transformer winding or other small impedance grounded generator is directly connected to the generator, the third harmonic current will cycle between them under normal conditions.

본 발명에 관한 발전기의 제 3 고조파 전류 및 AC 장치의 모터 동작에서의 문제를 해결하기 위한 기술은 스위덴 특허 출원 9602078-9 및 9700347-9에 기술된다.Techniques for solving problems in the third harmonic current of a generator and motor operation of an AC device according to the present invention are described in Swedish patent applications 9602078-9 and 9700347-9.

본 발명은 배전 또는 송전 네트워크에 직접적으로 접속되고, 적어도 하나의 권선을 포함하는 고전압 AC 장치에 관한 것이다.The present invention relates to a high voltage AC device connected directly to a distribution or transmission network and comprising at least one winding.

도 1은 동기화 발전기의 종래 기술 접지를 도시한다.1 shows a prior art grounding of a synchronous generator.

도 2는 본 발명에 따른 장치의 권선에 사용된 절연된 전도체의 실시예를 도시한다.2 shows an embodiment of an insulated conductor used in the winding of the device according to the invention.

도 3은 전력 시스템에 접속된 Y 접속 발전기 또는 모터 형태의 접지되지 않은 3상 장치를 도시한다.3 shows an ungrounded three-phase device in the form of a Y-connected generator or motor connected to a power system.

도 4-13은 도 3의 Y 접속 장치의 다른 접지 실시예를 도시한다.4-13 shows another grounding embodiment of the Y-connector of FIG.

도 14는 전력 시스템에 접속된 Δ 접속 발전기 또는 모터 형태의 본 발명에 따른 장치를 도시한다.14 shows an apparatus according to the invention in the form of a Δ connected generator or motor connected to a power system.

도 15는 도 14에 도시된 시스템에서 접지 변압기의 사용을 도시한다.FIG. 15 illustrates the use of a ground transformer in the system shown in FIG. 14.

본 발명의 목적은 상기된 바와같이 배전 또는 송전 네트워크에 직접적으로 접속하기에 적당한 고전압 AC 장치를 제공하는 것이고, 상기 장치에는 상기 장치의 다른 용도 및 동작 조건에 적당한 접지 수단이 제공된다.It is an object of the present invention to provide a high voltage AC device suitable for direct connection to a power distribution or transmission network as described above, wherein the device is provided with grounding means suitable for other uses and operating conditions of the device.

상기 목적은 상세한 설명의 서론부에 한정되고 청구항 제 1 항의 특징부를 가지는 종류의 고전압 AC 장치를 사용하여 달성된다.This object is achieved using a high voltage AC device of the kind defined in the introductory part of the description and having the features of claim 1.

본 발명에 따른 중요한 장점은 전기장이 반도체 특성을 가지는 제 2 층 바깥쪽 권선의 단부 지역에서 거의 영과 같다는 것이다. 그래서 전기장은 권선 외측에서 제어될 필요가 없어서, 전기장 집중이 시트, 권선 단부 지역, 그 사이 변화 지역에서 형성될 수 없다.An important advantage according to the invention is that the electric field is almost zero at the end region of the outer winding of the second layer having semiconductor properties. Thus, the electric field does not need to be controlled outside the windings, so that electric field concentrations cannot be formed in the sheet, the winding end region, and the changing region between them.

본 발명의 장치의 바람직한 실시예에 따라, 적어도 두 개의 인접한 층은 실질적으로 열팽창 계수가 같다. 이런 방식에서 권선에서의 열 운동의 결과로 발생하는 결함, 갈라짐등은 방지된다.According to a preferred embodiment of the device of the invention, at least two adjacent layers have substantially the same coefficient of thermal expansion. In this way defects, breaks, etc. resulting from thermal motion in the windings are prevented.

본 발명의 장치의 다른 바람직한 실시예에 따라, 상기 접지 수단은 권선에 대한 낮은 저항 접지용 수단을 포함한다. 이런 방식에서 과도 과전압 및 접지 결함 전류는 적당한 값으로 제한될 수 있다.According to another preferred embodiment of the device of the invention, the grounding means comprises means for low resistance grounding to the winding. In this way, transient overvoltage and ground fault currents can be limited to suitable values.

본 발명의 장치의 다른 바람직한 실시예에 따라, 상기 장치는 Y 접속 권선을 가지며, Y 접속 권선의 중성점은 이용할 수 있고, 높은 저항 접지 수단은 일차측이 중성점 및 접지 사이에 접속되는 변압기의 이차측에 접속되는 레지스터를 포함한다. 이런 방식에서 변압기의 이차측에 사용된 레지스터는 비교적 낮은 오움 값 및 튼튼한 구조로 이루어진다. 안전한 레벨로 과도 과전압을 감소시키기에 충분한 댐핑은 적당한 크기의 레지스터로 달성된다. 게다가 기계적 스트레스 및 결함 손상은 라인 대 접지 결함동안 결함 전류의 제한에 의해 제한된다. 상기 접지 장치는 발전기 중성점 및 접지 사이의 높은 오움 레지스터의 직접적인 삽입보다 경제적이다.According to another preferred embodiment of the device of the present invention, the device has a Y connecting winding, the neutral point of the Y connecting winding is available, and the high resistance grounding means has a secondary side of the transformer whose primary side is connected between the neutral point and ground. Contains the register connected to. In this way the resistors used on the secondary side of the transformer have a relatively low ohms value and a robust construction. Sufficient damping to reduce the transient overvoltage to a safe level is achieved with a resistor of the appropriate size. In addition, mechanical stress and fault damage are limited by the limitation of fault current during line-to-ground faults. The grounding device is more economical than the direct insertion of a high ohmic resistor between the generator neutral and ground.

본 발명의 장치의 다른 바람직한 실시예에 따라, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 접지 수단은 일차측이 중성점 및 접지 사이에 접속되는 변압기의 이차측에 접속된 리액터를 포함하고, 상기 리액터는 접지 결함동안 용량성 전류가 리액터에 의해 제공된 유도 전류의 동일 성분에 의해 실질적으로 중화되도록 하는 특성을 가진다. 이런 방식에서 네트 결함 전류는 병렬 공진 회로에 의해 작은 값으로 감소되어 형성되고, 상기 전류는 필수적으로 결함 전압과 동위상이다. 결함 위상상에서 전압 회복은 이런 경우 매우 느리고 과도 현상 성질의 어떤 접지 결함은 공진 접지 시스템에서 자동적으로 소멸된다.According to another preferred embodiment of the device of the invention, the device has a Y connection winding and the neutral point of the Y connection winding is available and the grounding means is connected to the secondary side of the transformer whose primary side is connected between the neutral point and ground. And a reactor having the property of causing the capacitive current to be substantially neutralized by the same component of the induced current provided by the reactor during the ground fault. In this way, the net fault current is reduced to a small value by the parallel resonant circuit, which is essentially in phase with the fault voltage. The voltage recovery on the fault phase is very slow in this case and any ground fault of transient nature is automatically eliminated in the resonant ground system.

본 발명의 장치의 다른 바람직한 실시예에 따라, 접지 수단은 장치의 네트워크 측면에 접속된 Y-Δ 접지 변압기 또는 소위 지그재그 접지 변압기를 포함한다. 상기 접지 변압기의 사용은 결함 전류 레벨 및 과도 과전압에 관련하여 낮은 인덕턴스 또는 낮은 저항 접지와 같다.According to another preferred embodiment of the device of the invention, the grounding means comprises a Y-Δ ground transformer or a so-called zigzag ground transformer connected to the network side of the device. The use of such a ground transformer is equal to low inductance or low resistance ground in terms of fault current level and transient overvoltage.

본 발명에 따른 장치의 보다 상세한 실시예로 본 발명을 설명하기 위하여, 실시예로서 선택된 것은 첨부 도면 도 2-11을 참조하여 보다 상세히 기술될 것이다.In order to explain the invention in a more detailed embodiment of the device according to the invention, what has been chosen as an embodiment will be described in more detail with reference to the accompanying drawings, Figures 2-11.

도 2에서 실시예는 본 발명에 따른 장치의 권선에 사용될 수 있는 절연된 전도체를 도시한다. 상기 절연된 전도체는 다수의 비절연 및 절연 스트랜드(strand)(5)로 구성된 적어도 하나의 전도체(4)를 포함한다. 전도체(4) 주변에는 비절연 스트랜드(5)의 적어도 몇몇과 접촉하는 내부 반도체 층(6)이 제공된다. 이런 반도체 층(6)은 돌출된 고체 절연층(7) 형태의 케이블 메인 절연에 의해 차례로 둘러싸진다. 절연층은 반도체 층(8)에 의해 둘러싸진다. 케이블의 전도체 영역은 80 및 3000㎟ 사이이고 케이블의 외부 직경은 20 및 250 ㎜ 사이이다.2 shows an insulated conductor that can be used in the windings of the device according to the invention. The insulated conductor comprises at least one conductor 4 composed of a plurality of non-insulated and insulated strands 5. Around the conductor 4 is provided an inner semiconductor layer 6 in contact with at least some of the non-insulated strands 5. These semiconductor layers 6 are in turn surrounded by cable main insulation in the form of a protruding solid insulating layer 7. The insulating layer is surrounded by the semiconductor layer 8. The conductor area of the cable is between 80 and 3000 mm 2 and the outer diameter of the cable is between 20 and 250 mm.

도 3은 전력 시스템(16)에 직접적으로 접속된 Y 접속 발전기 또는 모터(14) 형태의 접지되지 않은 고전압 AC 장치를 개략적으로 도시한다.3 schematically shows an ungrounded high voltage AC device in the form of a Y connected generator or motor 14 connected directly to the power system 16.

도 4는 Y 접속 장치(14)의 중성점(20) 및 접지 사이에 접속된 비선형 저항 피뢰기(18)같은 과전압 보호기 형태의 접지 수단을 도시한다. 중성점에 접속된 상기 비선형 저항 피뢰기(18)는 번개의 타격에 의해 유발된 과전압같은 과도 과전압에 대항하는 기계 권선에 사용된 절연된 전도체를 보호한다.4 shows grounding means in the form of an overvoltage protector, such as a nonlinear resistance arrester 18 connected between the neutral point 20 of the Y-connector 14 and ground. The nonlinear resistance arrester 18, connected to a neutral point, protects the insulated conductors used in the mechanical winding against transient overvoltages such as overvoltages caused by lightning strikes.

도 5는 비선형 저항 피뢰기(18)에 병렬로 접속된 높은 오움 레지스터(22)를 가지는 실시예를 도시한다. 비선형 저항 피뢰기(18)는 도 4에 도시된 실시예와 같은 방식으로 기능하고 레지스터(22)를 사용하여 레지스터(22) 양단의 전압을 측정함으로써 접지 결함을 민감하게 검출한다.5 shows an embodiment having a high ohm resistor 22 connected in parallel to a nonlinear resistance arrester 18. The nonlinear resistance arrester 18 functions in the same manner as the embodiment shown in FIG. 4 and sensitively detects a ground fault by measuring the voltage across the resistor 22 using the resistor 22.

도 6은 중성점(20)의 높은 저항 접지를 가지는 실시예를 도시한다. 이런 실시예에서 도 1과 관련하여 기술된 종래 기술과 유사한 기술이 사용된다. 그래서 레지스터(24)는 장치(14)의 중성점(20)으로부터 접지로 접속된 변압기의 일차측 권선(28)을 가지는 변압기의 이차측(26)에 접속된다. 레지스터(24)는 동일 결과를 얻기 위하여 중성점(20) 및 접지 사이에 직접적인 접속을 위해 필요한 높은 오움 레지스터와 비교하여 비교적 낮은 오움 및 튼튼한 구조로 되어있다. 레지스터의 전압 등급은 결과적으로 감소될 수 있다. 또한 이런 경우에 비선형 레지스터 피뢰기(18)는 일차측 권선(28)에 병렬로 접속된다. 이런 실시예에서 기계적 스트레스 및 결함 손상은 결함 전류를 제한함으로써 라인 대 접지 결함 동안 제한된다.6 illustrates an embodiment having a high resistance ground of neutral point 20. In this embodiment, a technique similar to the prior art described in connection with FIG. 1 is used. The resistor 24 is thus connected to the secondary side 26 of the transformer having the primary side winding 28 of the transformer connected to ground from the neutral point 20 of the device 14. The resistor 24 is of relatively low ohms and robust construction compared to the high ohm resistors needed for a direct connection between the neutral point 20 and ground to achieve the same result. The voltage rating of the resistor can be reduced as a result. Also in this case the nonlinear resistor arrester 18 is connected in parallel to the primary winding 28. In this embodiment mechanical stress and defect damage are limited during line to ground faults by limiting the fault current.

장치의 공진 접지는 라인 대 접지 결함 동안 용량성 전류가 리액터에 의해 제공된 유도 전류의 동일 성분에 의해 중성화되도록 하는 특성을 가지는 리액터로 레지스터(24)를 대체함으로써 동일 방식으로 실현될 수 있다. 그래서 네트 결함 전류는 병렬 공진 회로에 의해 감소되도록 형성되고 전류는 결함 전압과 필수적으로 동위상일 것이다. 결함을 없앤 후 결함 위상상의 전압 회복은 매우 느리고 상기 회복은 변압기/리액터 결합의 효과적인 저항 대 유도 리액턴스의 비율에 의해 결정된다. 따라서 과도 현상 성질의 어떤 접지 결함은 상기 공진 접지 시스템에서 자동적으로 소멸된다. 그래서 상기 공진 접지 수단은 실질적으로 영으로 접지 결함 전류를 제한하여 기계적 스트레스를 경감시킨다. 상기 장치의 다른 연속적인 동작은 순서적인 정지 동작이 배열될때까지 위상 대 접지 결함의 발생후 허용된다.The resonant grounding of the device can be realized in the same way by replacing the resistor 24 with a reactor having the characteristic that the capacitive current during the line-to-ground fault is neutralized by the same component of the induced current provided by the reactor. Thus the net fault current is formed to be reduced by the parallel resonant circuit and the current will be essentially in phase with the fault voltage. After eliminating the fault, the voltage recovery on the fault phase is very slow and the recovery is determined by the ratio of the effective resistance to inductive reactance of the transformer / reactor coupling. Thus any ground fault of transient nature will automatically disappear in the resonant ground system. The resonant grounding means thus substantially limit the ground fault current to zero to reduce mechanical stress. Another continuous operation of the device is allowed after the occurrence of phase to ground faults until an ordered stop operation is arranged.

도 7은 중성점(20) 및 접지 사이에 접속된 비선형 저항 피뢰기(18) 및 장치(14)의 네트워크 측면에 접속된 접지 변압기(30)를 가진 실시예를 도시한다. 접지 변압기(30)는 접지에 접속된 Y 접속부의 중성점을 가진 Y-Δ 설계이고, Δ-권선은 절연된다. 접지 변압기는 접지되지 않거나 높은 임피던스 접지 접속하는 시스템에 일반적으로 사용된다. 시스템 구성요소 처럼 접지 변압기는 로드를 가지지 않으며 정상적인 시스템 동작에 영향을 미치지 않는다. 언밸런스(unbalance)가 발생할 때 접지 변압기는 영의 시퀀스 네트워크에 작은 임피던스를 제공한다. 접지 변압기는 이런 방식에서 결함 전류 레벨 및 과도 과전압에 관련하여 작은 인덕턴스 또는 작은 저항 접지와 같다.7 shows an embodiment with a non-linear resistance arrester 18 connected between the neutral point 20 and ground and a ground transformer 30 connected to the network side of the device 14. The ground transformer 30 is a Y-Δ design with a neutral point of the Y connection connected to ground, and the Δ-winding is insulated. Ground transformers are commonly used in systems that are not grounded or have high impedance ground connections. Like system components, the ground transformer has no load and does not affect normal system operation. When unbalance occurs, the ground transformer provides a small impedance to the zero sequence network. In this way, a ground transformer is like a small inductance or a small resistive ground in terms of fault current level and transient overvoltage.

접지 변압기는 특정 권선 배열을 가진 소위 지그재그 변압기이다(1983년 Iowa State University Press/Ames의 Paul M. Anderson에 의한 "결함 전력 시스템의 분석(Analysis of Faulted Power Systems)"을 참조)A ground transformer is a so-called zigzag transformer with a specific winding arrangement (see "Analysis of Faulted Power Systems" by Paul M. Anderson of Iowa State University Press / Ames, 1983).

또한 가능한 보조 전력 변압기는 상기 접지를 위하여 사용될 수 있다.Possible auxiliary power transformers can also be used for the ground.

도 8은 장치(14)의 중성점(20) 및 접지 사이에 접속된 작은 오움 레지스터(32)를 가진 실시예를 도시한다. 상기 작은 저항 접지의 주요 장점은 과도 현상 및 일시적 과전압을 제한하는 능력이다. 그러나 전류는 하나의 위상 접지 결함의 경우에 보다 높다. 또한 제 3 고조파 전류는 방해되지 않는 동작에서 보다 높다.8 shows an embodiment with a small ohm resistor 32 connected between the neutral point 20 of the device 14 and ground. The main advantage of the small resistive ground is its ability to limit transients and transient overvoltages. However, the current is higher in the case of one phase ground fault. The third harmonic current is also higher in unobstructed operation.

도 9는 레지스터(32)가 중성점(20) 및 접지 사이에 접속된 작은 인덕턴스 인덕터(34)에 의해 대체되는 본 발명에 따른 장치의 다른 실시예를 도시한다. 작은 인덕턴스 접지는 작은 오움 접지와 동일 방식으로 작용한다. 오움에서 인덕터(34)의 값은 도 6의 설명에서 공진 접지에 대하여 요구된 것보다 작다.9 shows another embodiment of the device according to the invention in which the resistor 32 is replaced by a small inductance inductor 34 connected between the neutral point 20 and ground. Small inductance ground works in the same way as small ohm ground. At ohms the value of inductor 34 is less than that required for resonant ground in the description of FIG. 6.

중성점(20) 및 레지스터(32) 또는 인덕터(34) 접지 사이의 직접적인 접속에 대한 대안으로서, 그것들은 일차측이 중성점(20) 및 접지 사이에 접속되고 이차측이 도 6의 기술에서 처럼 레지스터 또는 인덕터를 포함하는 변압기의 도움으로 간접적으로 접속될 수 있다.As an alternative to the direct connection between the neutral point 20 and the ground of the resistor 32 or inductor 34, they may be connected between the primary side and the neutral point 20 and ground and the secondary side, as in the technique of FIG. It can be indirectly connected with the aid of a transformer comprising an inductor.

도 10에서 실시예는 장치(14)의 중성점(20) 및 접지 사이에 직렬로 접속된 두 개의 임피던스(36 및 38)를 포함하고, 임피던스(36)는 작은 임피던스 값을 가지며 임피던스(38)는 높은 임피던스 값을 가진다. 임피던스(38)는 단락 장치(40)에 의해 단락될 수 있다. 정상적인 동작에서 단락 장치(40)는 제 3 고조파 전류를 최소화하기 위하여 개방된다. 접지 결함의 경우에 단락 장치(40)는 임피던스(38)를 단락하도록 제어하고 중성점(20)의 전위는 작고 전류는 비교적 높게 접지로 통과한다.The embodiment in FIG. 10 includes two impedances 36 and 38 connected in series between the neutral point 20 of the device 14 and ground, the impedance 36 having a small impedance value and the impedance 38 being It has a high impedance value. Impedance 38 may be shorted by shorting device 40. In normal operation, the shorting device 40 is opened to minimize the third harmonic current. In the case of a ground fault, the shorting device 40 controls to short the impedance 38 and the potential of the neutral point 20 is small and the current passes through the ground relatively high.

장치(14)의 내부 접지 결함의 경우에 임피던스(38)는 단락되지 않는다. 결과적으로 전압은 중성점(20)에서 높지만 접지로의 전류는 제한될 것이다. 상기 상황에서 높은 전류가 이런 경우 손상을 발생시키기 때문에 바람직하다.In the case of an internal ground fault in the device 14, the impedance 38 is not shorted. As a result, the voltage is high at the neutral point 20 but the current to ground will be limited. High currents in this situation are preferable because they cause damage in this case.

AC 전기 장치를 3상 전력 네트워크에 직접적으로 접속할 때, 즉 점증 변압기가 장치 및 네트워크 사이에 사용되지 않을 때 제 3 고조파로부터 발생하는 문제점에 대처하기 위하여, 과전압 보호기(39) 및 제 3 고조파에 동조된 억제 필터(35, 37) 형태의 접지 수단은 도 11을 참조하여 사용될 수 있다. 그래서 필터는 인덕터(35) 및 용량성 리액턴스(37)로 구성된 병렬 공진 회로를 포함한다. 필터(35, 37) 및 그것의 고전압 보호기(39)의 크기는 병렬 회로가 정상 동작동안 장치로부터 제 3 고조파를 흡수할수있지만 과도현상 및 일시적인 과전압을 제한할 수 있는 크기이다. 결함의 경우에 과전압 보호기(39)는 만약 결함이 크다면 결함 전류가 과전압 보호기(39)를 통하여 흐르도록 결함 전압을 제한한다. 단상 접지 결함의 경우에 전류는 기본 임피던스가 작기 때문에 높은 저항 접지의 경우와 비교하여 보다 높다.Tuning in to the overvoltage protector 39 and the third harmonic, in order to cope with the problems arising from the third harmonic when the AC electrical device is directly connected to a three-phase power network, i.e. when the incremental transformer is not used between the device and the network. Grounding means in the form of suppressed filters 35, 37 can be used with reference to FIG. 11. The filter thus comprises a parallel resonant circuit composed of an inductor 35 and a capacitive reactance 37. The size of the filters 35 and 37 and its high voltage protector 39 are such that the parallel circuit can absorb third harmonics from the device during normal operation but can limit transients and transient overvoltages. In the case of a fault, the overvoltage protector 39 limits the fault voltage such that a fault current flows through the overvoltage protector 39 if the fault is large. In the case of a single-phase ground fault, the current is higher than in the case of a high resistance ground because the fundamental impedance is small.

도 12에서 실시예는 도시되고 접지 수단은 과전압 보호기(40)와 병렬로 접속된 동조되지 않은 스위칭 가능 제 3 고조파 억제 필터를 포함한다. 상기 필터는 몇몇의 다른 방식으로 실현되고 도 12는 직렬로 접속된 두 개의 인덕터(42, 44) 및 직렬 접속 인덕터(42, 44)에 병렬로 접속된 캐패시터(46)를 포함하는 실시예를 도시한다. 다른 단락 장치(48)는 인덕터(44) 양단에 접속된다.An embodiment in FIG. 12 is shown and the grounding means comprises an untuned switchable third harmonic suppression filter connected in parallel with the overvoltage protector 40. The filter is realized in several different ways and FIG. 12 shows an embodiment comprising two inductors 42, 44 connected in series and a capacitor 46 connected in parallel to the series connected inductors 42, 44. do. Another shorting device 48 is connected across the inductor 44.

단락 장치(48)는 필터 및 장치(14) 및 네트워크(16) 사이의 제 3 고조파 공진에 대한 위험성이 검출될 때 인덕터(44)를 단락함으로써 필터의 특성을 변화하도록 제어한다. 이것은 스웨덴 특허 출원 9700347-9에 상세히 기술된다. 이런 방식에서 제 3 고조파 전류는 정상적인 동작으로 강하게 제한된다. 과도현상 및 일시적인 과전압은 도 11과 관련하여 기술된 방식으로 제한되고 전류는 단상 접지 결함의 경우 보다 높을 것이다.The shorting device 48 controls to change the characteristics of the filter by shorting the inductor 44 when a risk for a third harmonic resonance between the filter and the device 14 and the network 16 is detected. This is described in detail in Swedish patent application 9700347-9. In this way the third harmonic current is strongly limited to normal operation. Transients and transient overvoltages are limited in the manner described in connection with FIG. 11 and the current will be higher than for single phase ground faults.

도 13은 장치(14)의 중성점(20)이 접지(21)에 직접 접속된 실시예를 도시한다. 상기 직접적인 접지는 과도현상 및 일시적 과전압을 제한하지만 접지 결함의 경우 높은 전류를 유발한다. 장치의 중성점(20)으로부터 접지로 제 3 고조파 전류 흐름은 정상적인 동작에서 보다 비교적 높다.FIG. 13 shows an embodiment in which the neutral point 20 of the device 14 is directly connected to ground 21. Direct grounding limits transients and transient overvoltages, but in the case of ground faults it causes high currents. The third harmonic current flow from the neutral point 20 of the device to ground is relatively higher than in normal operation.

본 발명에 따른 접지 수단의 다른 대안은 목표된 임피던스 특성을 가지는 접지에 중성점의 접속을 제공하기 위한 회로를 포함한다.Another alternative of the grounding means according to the invention comprises a circuit for providing a connection of the neutral point to ground having a desired impedance characteristic.

도 14에서 Δ 접속 3상 장치(50)는 분배 또는 전송 네트워크(16)에 직접적으로 도시된다.In FIG. 14 the Δ connection three-phase device 50 is shown directly in the distribution or transport network 16.

상기 상황에서 도 7에 도시된 실시예에 사용된 바와같은 접지 변압기는 장치(50)의 네트워크 측면상에 접속될 수 있다.In this situation, a ground transformer as used in the embodiment shown in FIG. 7 may be connected on the network side of the device 50.

도 7의 실시예 처럼 접지 변압기는 Y 접속 접지의 중성점을 가진 Y-Δ 접속 변압기이거나, 소위 지그재그 접지 변압기, 즉 Z 접지된 Z-O 접속 변압기이다. 접지 변압기는 일시적 과전압을 제한할 것이다.As in the embodiment of Fig. 7, the ground transformer is a Y-Δ connection transformer having a neutral point of Y connection ground, or a so-called zigzag ground transformer, that is, a Z-grounded Z-O connection transformer. The ground transformer will limit the transient overvoltage.

도 7의 실시예 처럼 가능한 보조 전력 변압기는 이런 목적을 위하여 사용될 수 있다.Possible auxiliary power transformers as in the embodiment of FIG. 7 can be used for this purpose.

Claims (34)

배전 또는 송전 네트워크(16)에 직접적으로 접속되고, 적어도 하나의 절연 전류 운송 전도체(4)를 포함하는 고전압 AC 장치에 있어서,In a high voltage AC device directly connected to a power distribution or power transmission network 16 and comprising at least one insulated current transport conductor 4, 반도체 특성을 가지는 제 1 층(6)은 상기 전도체(4) 둘레에 제공되고, 고체 절연층(7)은 상기 제 1 층 둘레에 제공되고, 반도체 특성을 가지는 제 2 층(8)은 상기 절연층 둘레에 제공되고, 접지 수단(18, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 44, 46, 48, 52)은 상기 권선의 적어도 한 포인트를 접지에 접속하기 위하여 제공되는 것을 특징으로 하는 고전압 AC 장치.A first layer 6 having semiconductor characteristics is provided around the conductor 4, a solid insulating layer 7 is provided around the first layer, and a second layer 8 having semiconductor characteristics is the insulation Are provided around the floor and the grounding means 18, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 44, 46, 48, 52 And at least one point of the winding is connected to ground. 제 1 항에 있어서, 상기 제 1 층의 전위는 전도체의 전위와 같은 것을 특징으로 하는 고전압 AC 장치.2. The high voltage AC device of claim 1, wherein the potential of the first layer is equal to that of a conductor. 제 1 항 또는 제 2 항에 있어서, 상기 제 2 층은 상기 전도체를 둘러싸는 동전위 표면을 구성하기 위하여 배열되는 것을 특징으로 하는 고전압 AC 장치.3. The high voltage AC device of claim 1 or 2, wherein the second layer is arranged to form a coincidence surface surrounding the conductor. 제 3 항에 있어서, 상기 제 2 층은 소정 전위에 접속되는 것을 특징으로 하는 고전압 AC 장치.4. The high voltage AC device of claim 3, wherein the second layer is connected to a predetermined potential. 제 4 항에 있어서, 상기 소정 전위는 접지 전위인 것을 특징으로 하는 고전압 AC 장치.5. The high voltage AC device of claim 4, wherein the predetermined potential is a ground potential. 제 1 항, 제 2 항, 제 3 항, 제 4 항 또는 제 5 항에 있어서, 적어도 두 개의 인접한 층은 동일한 열팽창 계수를 가지는 것을 특징으로 하는 고전압 AC 장치.6. The high voltage AC device of claim 1, 2, 3, 4 or 5, wherein at least two adjacent layers have the same coefficient of thermal expansion. 제 1 항 내지 제 6 항중 어느 한 항에 있어서, 상기 전류 운송 전도체는 다수의 스트랜드를 포함하고, 단지 소수의 스트랜드가 서로 절연되지 않는 것을 특징으로 하는 고전압 AC 장치.7. The high voltage AC device of any of claims 1-6, wherein the current carrying conductor comprises a plurality of strands and only a few strands are not insulated from each other. 제 1 항 내지 제 7 항중 어느 한 항에 있어서, 각각의 상기 3개의 층은 전체 접속 표면을 따라 인접 층에 접속되어 고정되는 것을 특징으로 하는 고전압 AC 장치.8. The high voltage AC device of any of claims 1 to 7, wherein each of said three layers is connected and fixed to an adjacent layer along the entire connecting surface. 자기 코어 및 적어도 하나의 권선을 포함하는 고전압용 자기 회로를 가지는 AC 장치에 있어서,An AC device having a magnetic circuit for high voltage comprising a magnetic core and at least one winding, 상기 권선은 하나 이상의 전류 운송 전도체를 포함하는 케이블로 형성되고, 각각의 전도체는 다수의 스트랜드, 각각의 전도체 둘레에 제공된 내부 반도체 층, 상기 내부 반도체 층 둘레에 제공된 고체 절연 재료의 절연 층, 및 상기 절연층 둘레에 제공된 외부 반도체 층을 가지며, 접지 수단은 상기 권선의 적어도 한 포인트를 접지에 접속하기 위하여 제공되는 것을 특징으로 하는 AC 장치.The winding is formed of a cable comprising one or more current carrying conductors, each conductor comprising a plurality of strands, an inner semiconductor layer provided around each conductor, an insulating layer of solid insulating material provided around the inner semiconductor layer, and the An external semiconductor layer provided around the insulating layer, wherein a grounding means is provided for connecting at least one point of the winding to ground. 제 9 항에 있어서, 상기 케이블은 금속 차폐부 및 외장을 포함하는 것을 특징으로 하는 AC 장치.10. The AC device of claim 9, wherein the cable comprises a metal shield and a sheath. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 접지 수단은 권선을 직접적으로 접지시키기 위한 수단을 포함하는 것을 특징으로 하는 AC 장치.The AC device according to claim 1, wherein the grounding means comprises means for directly grounding the winding. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 접지 수단은 상기 권선에 대해 작은 저항 접지 수단을 포함하는 것을 특징으로 하는 AC 장치.The AC device according to claim 1, wherein the grounding means comprises a small resistance grounding means for the winding. 제 12 항에 있어서, 상기 장치는 Y- 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 작은 저항 접지 수단은 중성점 및 접지 사이에 접속된 작은 저항 레지스터를 포함하는 것을 특징으로 하는 AC 장치.13. AC according to claim 12, wherein the device has a Y-connected winding and the neutral point of the Y connected winding is available and the small resistance grounding means comprises a small resistor resistor connected between the neutral and ground. Device. 제 12 항에 있어서, 상기 장치는 Y 접속 권선을 가지며, 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 작은 저항 접지 수단은 일차측이 중성점 및 접지 사이에 접속된 변압기의 이차측에 접속된 레지스터를 포함하는 것을 특징으로 하는 AC 장치.13. The apparatus according to claim 12, wherein the device has a Y connecting winding, the neutral point of the Y connecting winding is available, and the small resistance grounding means has a resistor connected to the secondary side of the transformer whose primary side is connected between the neutral point and ground. AC device comprising a. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 접지 수단은 권선에 대해 작은 인덕턴스 접지 수단을 포함하는 것을 특징으로 하는 AC 장치.11. An AC device according to any one of the preceding claims, wherein the grounding means comprises a small inductance grounding means for the windings. 제 15 항에 있어서, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 작은 인덕턴스 접지 수단은 중성점 및 접지 사이에 접속된 작은 인덕턴스 인덕터를 포함하는 것을 특징으로 하는 AC 장치.16. An AC device according to claim 15, wherein the device has a Y connecting winding and the neutral point of the Y connecting winding is available and the small inductance grounding means comprises a small inductance inductor connected between the neutral point and ground. . 제 15 항에 있어서, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 작은 인덕턴스 접지 수단은 일차측이 중성점 및 접지 사이에 접속된 변압기의 이차측에 접속되는 것을 특징으로 하는 AC 장치.16. The apparatus of claim 15, wherein the device has a Y connecting winding and the neutral point of the Y connecting winding is available and the small inductance grounding means is connected to the secondary side of the transformer whose primary side is connected between the neutral point and ground. AC device. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 접지 수단은 권선에 대해 높은 저항 접지 수단을 포함하는 것을 특징으로 하는 AC 장치.The AC device according to claim 1, wherein the grounding means comprises a high resistance grounding means for the winding. 제 18 항에 있어서, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 높은 저항 접지 수단은 중성점 및 접지 사이에 접속된 높은 저항 레지스터를 포함하는 것을 특징으로 하는 AC 장치.19. An AC device according to claim 18, wherein the device has a Y connecting winding and the neutral point of the Y connecting winding is available and the high resistance grounding means comprises a high resistance resistor connected between the neutral and ground. . 제 18 항에 있어서, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 높은 저항 접지 수단은 일차측이 중성점 및 접지 사이에 접속된 변압기의 이차측에 접속된 레지스터를 포함하는 것을 특징으로 하는 AC 장치.19. The apparatus of claim 18, wherein the device has a Y connecting winding and a neutral point of the Y connecting winding is available and the high resistance grounding means comprises a resistor connected to the secondary side of the transformer whose primary side is connected between the neutral point and ground. AC device comprising a. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 접지 수단은 권선에 대해 높은 인덕턴스 접지 수단을 포함하는 것을 특징으로 하는 AC 장치.11. An AC device according to any one of the preceding claims, wherein the grounding means comprises a high inductance grounding means for the windings. 제 21 항에 있어서, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 높은 인덕턴스 접지 수단은 중성점 및 접지 사이에 접속된 높은 인덕턴스 인덕터를 포함하는 것을 특징으로 하는 AC 장치.22. The AC device of claim 21 wherein the device has a Y connecting winding and the neutral point of the Y connecting winding is available and the high inductance grounding means comprises a high inductance inductor connected between the neutral point and ground. . 제 21 항에 있어서, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 높은 인덕턴스 접지 수단은 일차측이 중성점 및 접지 사이에 접속된 변압기의 이차측에 접속된 인덕터를 포함하는 것을 특징으로 하는 AC 장치.22. The apparatus of claim 21, wherein the device has a Y connecting winding and a neutral point of the Y connecting winding is available and the high inductance grounding means uses an inductor connected to the secondary side of the transformer whose primary side is connected between the neutral point and ground. AC device comprising a. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 장치는 Y 접속 권선이고 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 접지 수단은 일차측이 중성점 및 접지 사이에 접속된 변압기의 이차측에 접속된 리액터를 포함하고, 상기 리액터는 접지 결함동안 용량성 전류가 리액터에 의해 제공된 유도 전류의 동일 성분에 의해 중화되도록 하는 특성을 가지는 것을 특징으로 하는 AC 장치.The device according to claim 1, wherein the device is a Y connecting winding and the neutral point of the Y connecting winding is available and the grounding means is connected to the secondary side of the transformer whose primary side is connected between the neutral point and ground. And a connected reactor, said reactor having a property such that during a ground fault the capacitive current is neutralized by the same component of the induced current provided by the reactor. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 접지 수단은 접지 결함에 응답하여 접지에 대한 접속 임피던스를 변화시키기 위한 수단을 포함하는 것을 특징으로 하는 AC 장치.The AC device according to claim 1, wherein the grounding means comprises means for changing a connection impedance to ground in response to a ground fault. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 접지 수단은 능동 회로를 포함하는 것을 특징으로 하는 AC 장치.11. AC device according to one of the preceding claims, wherein the grounding means comprises an active circuit. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 접지 수단은 장치의 네트워크 측면에 접속된 Y-Δ 접지 변압기를 포함하는 것을 특징으로 하는 AC 장치.The AC device according to claim 1, wherein the grounding means comprises a Y-Δ grounding transformer connected to the network side of the device. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 접지 수단은 상기 장치의 네트워크 측면에 접속된 소위 지그재그 접지 변압기를 포함하는 것을 특징으로 하는 AC 장치.The AC device according to claim 1, wherein the grounding means comprises a so-called zigzag grounding transformer connected to the network side of the device. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 접지 수단은 n번째 고조파에 대해 동조된 억제 필터를 포함하는 것을 특징으로 하는 AC 장치.11. A device according to any one of the preceding claims, wherein the device has a Y connecting winding and the neutral point of the Y connecting winding is available and the grounding means comprises a suppression filter tuned to the nth harmonic. AC device. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 접지 수단은 n 번째 고조파에 대해 동조되지 않은 스위칭 가능 억제 필터를 포함하는 것을 특징으로 하는 AC 장치.The apparatus of claim 1, wherein the apparatus has a Y connecting winding and the neutral point of the Y connecting winding is available and the grounding means comprises a switchable suppression filter which is not tuned to the nth harmonic. AC device, characterized in that. 제 29 항 또는 제 30 항에 있어서, 상기 n 번째 고조파는 제 3 고조파인 것을 특징으로 하는 AC 장치.31. The AC device according to claim 29 or 30, wherein the nth harmonic is a third harmonic. 제 1 항 내지 제 10 항중 어느 한 항에 있어서, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 상기 접지 수단은 상기 중성점 및 접지 사이에 접속된 과전압 보호기를 포함하는 것을 특징으로 하는 AC 장치.The device according to claim 1, wherein the device has a Y connecting winding and the neutral point of the Y connecting winding is available and the grounding means comprises an overvoltage protector connected between the neutral point and ground. AC device characterized. 제 18 항 내지 제 31 항중 어느 한 항에 있어서, 상기 장치는 Y 접속 권선을 가지며 상기 Y 접속 권선의 중성점은 이용할 수 있고, 과전압 보호기는 상기 접지 수단에 병렬로 상기 중성점 및 접지 사이에 접속되는 것을 특징으로 하는 AC 장치.32. The device of any of claims 18 to 31, wherein the device has a Y connecting winding and a neutral point of the Y connecting winding is available, and an overvoltage protector is connected between the neutral point and ground in parallel to the grounding means. AC device characterized. 상기 장치는 제 1 항 내지 제 33 항중 어느 한 항에 따른 적어도 하나의 장치를 포함하는 것을 특징으로 하는 배전 또는 송전 네트워크.34. A power distribution or transmission network comprising at least one device according to any of the preceding claims.
KR1019980709600A 1996-05-29 1997-05-27 High voltage ac apparatus KR20000016037A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
SE9602079-7 1996-05-29
SE9602078-9 1996-05-29
SE9602078A SE510192C2 (en) 1996-05-29 1996-05-29 Procedure and switching arrangements to reduce problems with three-tier currents that may occur in alternator and motor operation of AC machines connected to three-phase distribution or transmission networks
SE9602079A SE9602079D0 (en) 1996-05-29 1996-05-29 Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same
SE9700347-9 1997-02-03
SE9700335A SE508556C2 (en) 1997-02-03 1997-02-03 Power transformer and reactor with windings with conductors
SE9700347A SE510631C2 (en) 1997-02-03 1997-02-03 Electric high voltage machine coupled to distribution or transmission network
SE9700335-4 1997-02-03

Publications (1)

Publication Number Publication Date
KR20000016037A true KR20000016037A (en) 2000-03-25

Family

ID=27484787

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980709600A KR20000016037A (en) 1996-05-29 1997-05-27 High voltage ac apparatus

Country Status (24)

Country Link
US (1) US6891303B2 (en)
EP (1) EP0888661B1 (en)
JP (1) JP2000511392A (en)
KR (1) KR20000016037A (en)
CN (1) CN1101988C (en)
AR (1) AR007339A1 (en)
AT (1) ATE254815T1 (en)
AU (1) AU718681B2 (en)
BR (1) BR9709619A (en)
CA (1) CA2255739A1 (en)
CO (1) CO4650249A1 (en)
CZ (1) CZ385898A3 (en)
DE (1) DE69726267T2 (en)
EE (1) EE03408B1 (en)
HK (1) HK1021085A1 (en)
NO (1) NO985553L (en)
NZ (1) NZ333599A (en)
PE (1) PE82798A1 (en)
PL (1) PL330225A1 (en)
RU (1) RU2211518C2 (en)
TR (1) TR199802471T2 (en)
TW (1) TW419878B (en)
UA (1) UA45452C2 (en)
WO (1) WO1997045926A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512952C2 (en) * 1997-09-30 2000-06-12 Abb Ab Method and apparatus for grounding a rotating electric machine, as well as a rotating electric machine
SE0003037D0 (en) * 2000-08-29 2000-08-29 Abb Ab Electric machine
DE10049817B4 (en) * 2000-10-09 2006-12-07 Siemens Ag Induction device with damping device
EP1280259A1 (en) * 2001-07-23 2003-01-29 ALSTOM (Switzerland) Ltd High-voltage Generator
SE525387C2 (en) * 2002-01-10 2005-02-08 Swedish Vertical Wind Ab Vertical axle wind turbine and its use
DE102006014613A1 (en) * 2006-03-29 2007-10-11 Siemens Ag Electric machine with damping winding
EP1879279B1 (en) * 2006-07-14 2011-11-30 Ansaldo Energia S.P.A. Stator of a turbo generator
US7876539B2 (en) * 2006-10-23 2011-01-25 Pentair Pump Group, Inc. Electrical apparatus with current dampening device
US7589943B2 (en) * 2007-03-24 2009-09-15 Ramirez Vanessa De Los Angeles GIC reducer
US20100123356A1 (en) * 2008-11-14 2010-05-20 General Electric Company Resonance mitigation system and method
US8901790B2 (en) 2012-01-03 2014-12-02 General Electric Company Cooling of stator core flange
US20140058202A1 (en) * 2012-08-21 2014-02-27 Robert Rife Bronchoscope cleaning device and method
WO2014122244A1 (en) * 2013-02-07 2014-08-14 Abb Technology Ltd A tubular insulation device, a high voltage power arrangement and a method for providing an insulated high voltage power cable
CN104091629A (en) * 2014-06-27 2014-10-08 罗广荣 Method and device for avoiding harmonic waves
DE102014213073A1 (en) * 2014-07-04 2016-01-07 Siemens Aktiengesellschaft High voltage device for a vehicle
JP2017524232A (en) 2014-08-07 2017-08-24 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Electroceramic coating of wires for use in bundled transmission cables
EP3154173A1 (en) * 2015-10-08 2017-04-12 ABB Schweiz AG Electrical machine with an active grounding
CN108768093B (en) * 2018-05-25 2020-04-07 长江勘测规划设计研究有限责任公司 Impedance type neutral point grounding method for giant hydroelectric generating set
CN108512211B (en) * 2018-05-25 2023-06-27 长江勘测规划设计研究有限责任公司 Neutral point grounding device of combined cabinet type impedance type giant generator set
DE102019112828A1 (en) * 2019-05-16 2020-11-19 Schaeffler Technologies AG & Co. KG Electric motor and drive with an electric motor
US11152918B1 (en) * 2019-10-16 2021-10-19 National Technology & Engineering Solutions Of Sandia, Llc Low modulation index 3-phase solid state transformer
RU196814U1 (en) * 2020-02-08 2020-03-17 Общество с ограниченной ответственностью "Росэнерготранс" (ООО "Росэнерготранс") REACTOR WIRING WIRE
US11398725B2 (en) 2020-04-16 2022-07-26 Southern California Edison Company Circuit for reducing fire hazard risk in a power distribution network
CN112287519B (en) * 2020-10-09 2024-03-22 南方电网科学研究院有限责任公司 Lightning stroke simulation model of three-phase transformer and construction method
US11323124B1 (en) 2021-06-01 2022-05-03 SambaNova Systems, Inc. Variable-length clock stretcher with correction for glitches due to finite DLL bandwidth

Family Cites Families (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2952679A (en) 1960-09-13 Cyanuricacro preparation
US1304451A (en) 1919-05-20 Locke h
US400616A (en) * 1889-04-02 Harrow attachment for land-rollers
US681800A (en) 1901-06-18 1901-09-03 Oskar Lasche Stationary armature and inductor.
US847008A (en) * 1904-06-10 1907-03-12 Isidor Kitsee Converter.
US1418856A (en) 1919-05-02 1922-06-06 Allischalmers Mfg Company Dynamo-electric machine
US1481585A (en) 1919-09-16 1924-01-22 Electrical Improvements Ltd Electric reactive winding
US1756672A (en) 1922-10-12 1930-04-29 Allis Louis Co Dynamo-electric machine
US1508456A (en) * 1924-01-04 1924-09-16 Perfection Mfg Co Ground clamp
US1728915A (en) 1928-05-05 1929-09-24 Earl P Blankenship Line saver and restrainer for drilling cables
US1781308A (en) 1928-05-30 1930-11-11 Ericsson Telefon Ab L M High-frequency differential transformer
US1762775A (en) 1928-09-19 1930-06-10 Bell Telephone Labor Inc Inductance device
US1747507A (en) 1929-05-10 1930-02-18 Westinghouse Electric & Mfg Co Reactor structure
US1742985A (en) 1929-05-20 1930-01-07 Gen Electric Transformer
US1861182A (en) 1930-01-31 1932-05-31 Okonite Co Electric conductor
US1904885A (en) * 1930-06-13 1933-04-18 Western Electric Co Capstan
US1974406A (en) 1930-12-13 1934-09-25 Herbert F Apple Dynamo electric machine core slot lining
US2006170A (en) 1933-05-11 1935-06-25 Gen Electric Winding for the stationary members of alternating current dynamo-electric machines
US2217430A (en) 1938-02-26 1940-10-08 Westinghouse Electric & Mfg Co Water-cooled stator for dynamoelectric machines
US2206856A (en) 1938-05-31 1940-07-02 William E Shearer Transformer
US2241832A (en) 1940-05-07 1941-05-13 Hugo W Wahlquist Method and apparatus for reducing harmonics in power systems
US2256897A (en) 1940-07-24 1941-09-23 Cons Edison Co New York Inc Insulating joint for electric cable sheaths and method of making same
US2295415A (en) 1940-08-02 1942-09-08 Westinghouse Electric & Mfg Co Air-cooled, air-insulated transformer
US2251291A (en) 1940-08-10 1941-08-05 Western Electric Co Strand handling apparatus
US2415652A (en) 1942-06-03 1947-02-11 Kerite Company High-voltage cable
US2462651A (en) 1944-06-12 1949-02-22 Gen Electric Electric induction apparatus
US2424443A (en) 1944-12-06 1947-07-22 Gen Electric Dynamoelectric machine
US2459322A (en) 1945-03-16 1949-01-18 Allis Chalmers Mfg Co Stationary induction apparatus
US2409893A (en) * 1945-04-30 1946-10-22 Westinghouse Electric Corp Semiconducting composition
US2436306A (en) 1945-06-16 1948-02-17 Westinghouse Electric Corp Corona elimination in generator end windings
US2446999A (en) 1945-11-07 1948-08-17 Gen Electric Magnetic core
US2498238A (en) 1947-04-30 1950-02-21 Westinghouse Electric Corp Resistance compositions and products thereof
US2650350A (en) * 1948-11-04 1953-08-25 Gen Electric Angular modulating system
US2721905A (en) 1949-03-04 1955-10-25 Webster Electric Co Inc Transducer
US2749456A (en) * 1952-06-23 1956-06-05 Us Electrical Motors Inc Waterproof stator construction for submersible dynamo-electric machine
US2780771A (en) 1953-04-21 1957-02-05 Vickers Inc Magnetic amplifier
US2846599A (en) 1956-01-23 1958-08-05 Wetomore Hodges Electric motor components and the like and method for making the same
US2947957A (en) 1957-04-22 1960-08-02 Zenith Radio Corp Transformers
US2885581A (en) 1957-04-29 1959-05-05 Gen Electric Arrangement for preventing displacement of stator end turns
CA635218A (en) 1958-01-02 1962-01-23 W. Smith John Reinforced end turns in dynamoelectric machines
US2943242A (en) 1958-02-05 1960-06-28 Pure Oil Co Anti-static grounding device
US2975309A (en) 1958-07-18 1961-03-14 Komplex Nagyberendezesek Expor Oil-cooled stators for turboalternators
US3014139A (en) * 1959-10-27 1961-12-19 Gen Electric Direct-cooled cable winding for electro magnetic device
US3157806A (en) 1959-11-05 1964-11-17 Bbc Brown Boveri & Cie Synchronous machine with salient poles
US3158770A (en) * 1960-12-14 1964-11-24 Gen Electric Armature bar vibration damping arrangement
US3098893A (en) 1961-03-30 1963-07-23 Gen Electric Low electrical resistance composition and cable made therefrom
US3130335A (en) 1961-04-17 1964-04-21 Epoxylite Corp Dynamo-electric machine
US3197723A (en) * 1961-04-26 1965-07-27 Ite Circuit Breaker Ltd Cascaded coaxial cable transformer
US3143269A (en) 1961-11-29 1964-08-04 Crompton & Knowles Corp Tractor-type stock feed
US3268766A (en) 1964-02-04 1966-08-23 Du Pont Apparatus for removal of electric charges from dielectric film surfaces
US3372283A (en) 1965-02-15 1968-03-05 Ampex Attenuation control device
SE318939B (en) 1965-03-17 1969-12-22 Asea Ab
US3304599A (en) 1965-03-30 1967-02-21 Teletype Corp Method of manufacturing an electromagnet having a u-shaped core
DE1488353A1 (en) * 1965-07-15 1969-06-26 Siemens Ag Permanent magnet excited electrical machine
US3365657A (en) 1966-03-04 1968-01-23 Nasa Usa Power supply
GB1117433A (en) 1966-06-07 1968-06-19 English Electric Co Ltd Improvements in alternating current generators
US3444407A (en) 1966-07-20 1969-05-13 Gen Electric Rigid conductor bars in dynamoelectric machine slots
US3484690A (en) 1966-08-23 1969-12-16 Herman Wald Three current winding single stator network meter for 3-wire 120/208 volt service
US3418530A (en) 1966-09-07 1968-12-24 Army Usa Electronic crowbar
US3354331A (en) * 1966-09-26 1967-11-21 Gen Electric High voltage grading for dynamoelectric machine
US3392779A (en) * 1966-10-03 1968-07-16 Certain Teed Prod Corp Glass fiber cooling means
US3437858A (en) 1966-11-17 1969-04-08 Glastic Corp Slot wedge for electric motors or generators
SU469196A1 (en) * 1967-10-30 1975-04-30 Engine-generator installation for power supply of passenger cars
FR1555807A (en) * 1967-12-11 1969-01-31
GB1226451A (en) 1968-03-15 1971-03-31
CH479975A (en) 1968-08-19 1969-10-15 Oerlikon Maschf Head bandage for an electrical machine
US3651402A (en) 1969-01-27 1972-03-21 Honeywell Inc Supervisory apparatus
US3813764A (en) * 1969-06-09 1974-06-04 Res Inst Iron Steel Method of producing laminated pancake type superconductive magnets
US3651244A (en) * 1969-10-15 1972-03-21 Gen Cable Corp Power cable with corrugated or smooth longitudinally folded metallic shielding tape
SE326758B (en) 1969-10-29 1970-08-03 Asea Ab
US3666876A (en) * 1970-07-17 1972-05-30 Exxon Research Engineering Co Novel compositions with controlled electrical properties
US3631519A (en) 1970-12-21 1971-12-28 Gen Electric Stress graded cable termination
US3675056A (en) 1971-01-04 1972-07-04 Gen Electric Hermetically sealed dynamoelectric machine
US3644662A (en) 1971-01-11 1972-02-22 Gen Electric Stress cascade-graded cable termination
US3660721A (en) * 1971-02-01 1972-05-02 Gen Electric Protective equipment for an alternating current power distribution system
US3684906A (en) * 1971-03-26 1972-08-15 Gen Electric Castable rotor having radially venting laminations
US3684821A (en) 1971-03-30 1972-08-15 Sumitomo Electric Industries High voltage insulated electric cable having outer semiconductive layer
US3716719A (en) 1971-06-07 1973-02-13 Aerco Corp Modulated output transformers
JPS4831403A (en) 1971-08-27 1973-04-25
US3746954A (en) 1971-09-17 1973-07-17 Sqare D Co Adjustable voltage thyristor-controlled hoist control for a dc motor
US3727085A (en) 1971-09-30 1973-04-10 Gen Dynamics Corp Electric motor with facility for liquid cooling
US3740600A (en) 1971-12-12 1973-06-19 Gen Electric Self-supporting coil brace
US3743867A (en) * 1971-12-20 1973-07-03 Massachusetts Inst Technology High voltage oil insulated and cooled armature windings
DE2164078A1 (en) 1971-12-23 1973-06-28 Siemens Ag DRIVE ARRANGEMENT WITH A LINEAR MOTOR DESIGNED IN THE TYPE OF A SYNCHRONOUS MACHINE
US3699238A (en) * 1972-02-29 1972-10-17 Anaconda Wire & Cable Co Flexible power cable
US3758699A (en) 1972-03-15 1973-09-11 G & W Electric Speciality Co Apparatus and method for dynamically cooling a cable termination
US3716652A (en) 1972-04-18 1973-02-13 G & W Electric Speciality Co System for dynamically cooling a high voltage cable termination
US3787607A (en) * 1972-05-31 1974-01-22 Teleprompter Corp Coaxial cable splice
CH547028A (en) * 1972-06-16 1974-03-15 Bbc Brown Boveri & Cie GLIME PROTECTION FILM, THE PROCESS FOR ITS MANUFACTURING AND THEIR USE IN HIGH VOLTAGE WINDINGS.
US3801843A (en) 1972-06-16 1974-04-02 Gen Electric Rotating electrical machine having rotor and stator cooled by means of heat pipes
US3792399A (en) 1972-08-28 1974-02-12 Nasa Banded transformer cores
US3778891A (en) 1972-10-30 1973-12-18 Westinghouse Electric Corp Method of securing dynamoelectric machine coils by slot wedge and filler locking means
US3932791A (en) 1973-01-22 1976-01-13 Oswald Joseph V Multi-range, high-speed A.C. over-current protection means including a static switch
CA1028440A (en) * 1973-02-26 1978-03-21 Uop Inc. Polymer compositions with treated filler
SE371348B (en) 1973-03-22 1974-11-11 Asea Ab
US3781739A (en) 1973-03-28 1973-12-25 Westinghouse Electric Corp Interleaved winding for electrical inductive apparatus
CH549467A (en) * 1973-03-29 1974-05-31 Micafil Ag PROCESS FOR MANUFACTURING A COMPRESSED LAYERING MATERIAL.
US3881647A (en) 1973-04-30 1975-05-06 Lebus International Inc Anti-slack line handling device
US3828115A (en) * 1973-07-27 1974-08-06 Kerite Co High voltage cable having high sic insulation layer between low sic insulation layers and terminal construction thereof
US3947278A (en) * 1973-12-19 1976-03-30 Universal Oil Products Company Duplex resistor inks
US3912957A (en) * 1973-12-27 1975-10-14 Gen Electric Dynamoelectric machine stator assembly with multi-barrel connection insulator
CA1016586A (en) * 1974-02-18 1977-08-30 Hubert G. Panter Grounding of outer winding insulation to cores in dynamoelectric machines
DE2430792C3 (en) * 1974-06-24 1980-04-10 Siemens Ag, 1000 Berlin Und 8000 Muenchen Power cable with plastic insulation and outer conductive layer
US3902000A (en) 1974-11-12 1975-08-26 Us Energy Termination for superconducting power transmission systems
US3943392A (en) 1974-11-27 1976-03-09 Allis-Chalmers Corporation Combination slot liner and retainer for dynamoelectric machine conductor bars
CH579844A5 (en) * 1974-12-04 1976-09-15 Bbc Brown Boveri & Cie
US4132914A (en) * 1975-04-22 1979-01-02 Khutoretsky Garri M Six-phase winding of electric machine stator
US3993860A (en) * 1975-08-18 1976-11-23 Samuel Moore And Company Electrical cable adapted for use on a tractor trailer
US4321426A (en) * 1978-06-09 1982-03-23 General Electric Company Bonded transposed transformer winding cable strands having improved short circuit withstand
JPS6044764B2 (en) * 1978-11-09 1985-10-05 株式会社フジクラ Cable conductor manufacturing method
US4207482A (en) * 1978-11-14 1980-06-10 Westinghouse Electric Corp. Multilayered high voltage grading system for electrical conductors
US4262209A (en) * 1979-02-26 1981-04-14 Berner Charles A Supplemental electrical power generating system
DE2920477A1 (en) * 1979-05-21 1980-12-04 Kabel Metallwerke Ghh Prefabricated three-phase alternating current winding for a linear motor
JPS5675411U (en) * 1979-11-15 1981-06-19
SU961048A1 (en) * 1979-12-06 1982-09-23 Научно-Исследовательский Сектор Всесоюзного Ордена Ленина Проектно-Изыскательского И Научно-Исследовательского Института "Гидропроект" Им.С.Я.Жука Generator stator
CS258107B2 (en) * 1980-02-11 1988-07-15 Siemens Ag Turbo-set with hydraulic propeller turbine
DE3016990A1 (en) * 1980-05-02 1981-11-12 Kraftwerk Union AG, 4330 Mülheim DEVICE FOR FIXING WINDING RODS IN SLOTS OF ELECTRICAL MACHINES, IN PARTICULAR TURBOGENERATORS
CA1140198A (en) * 1980-05-23 1983-01-25 National Research Council Of Canada Laser triggered high voltage rail gap switch
DE3031866A1 (en) * 1980-08-23 1982-04-01 Brown, Boveri & Cie Ag, 6800 Mannheim LADDER BAR FOR ELECTRICAL MACHINE
US4384944A (en) * 1980-09-18 1983-05-24 Pirelli Cable Corporation Carbon filled irradiation cross-linked polymeric insulation for electric cable
US4330726A (en) * 1980-12-04 1982-05-18 General Electric Company Air-gap winding stator construction for dynamoelectric machine
US4361723A (en) * 1981-03-16 1982-11-30 Harvey Hubbell Incorporated Insulated high voltage cables
US4401920A (en) * 1981-05-11 1983-08-30 Canadian Patents & Development Limited Laser triggered high voltage rail gap switch
US4365178A (en) * 1981-06-08 1982-12-21 General Electric Co. Laminated rotor for a dynamoelectric machine with coolant passageways therein
SE426895B (en) * 1981-07-06 1983-02-14 Asea Ab PROTECTOR FOR A SERIES CONDENSOR IN A HIGH VOLTAGE NETWORK
US4520287A (en) * 1981-10-27 1985-05-28 Emerson Electric Co. Stator for a multiple-pole dynamoelectric machine and method of fabricating same
FI76633C (en) * 1981-10-27 1988-11-10 Raychem Sa Nv Tube protection sleeve and method for protecting a tube with this sleeve
US4437464A (en) * 1981-11-09 1984-03-20 C.R. Bard, Inc. Electrosurgical generator safety apparatus
CA1222788A (en) * 1982-05-14 1987-06-09 Roderick S. Taylor Uv radiation triggered rail-gap switch
US4473765A (en) * 1982-09-30 1984-09-25 General Electric Company Electrostatic grading layer for the surface of an electrical insulation exposed to high electrical stress
US4508251A (en) * 1982-10-26 1985-04-02 Nippon Telegraph And Telephone Public Corp. Cable pulling/feeding apparatus
US4510077A (en) * 1983-11-03 1985-04-09 General Electric Company Semiconductive glass fibers and method
US4723083A (en) * 1983-11-25 1988-02-02 General Electric Company Electrodeposited mica on coil bar connections and resulting products
US4622116A (en) * 1983-11-25 1986-11-11 General Electric Company Process for electrodepositing mica on coil or bar connections and resulting products
GB2150153B (en) * 1983-11-25 1986-09-10 Gen Electric Electrodeposition of mica on coil or bar connections
US4724345A (en) * 1983-11-25 1988-02-09 General Electric Company Electrodepositing mica on coil connections
SE452823B (en) * 1984-03-07 1987-12-14 Asea Ab Series capacitor EQUIPMENT
US5066881A (en) * 1984-08-23 1991-11-19 General Electric Company Semi-conducting layer for insulated electrical conductors
US4853565A (en) * 1984-08-23 1989-08-01 General Electric Company Semi-conducting layer for insulated electrical conductors
US5036165A (en) * 1984-08-23 1991-07-30 General Electric Co. Semi-conducting layer for insulated electrical conductors
US4761602A (en) * 1985-01-22 1988-08-02 Gregory Leibovich Compound short-circuit induction machine and method of its control
US4654551A (en) * 1985-05-20 1987-03-31 Tecumseh Products Company Permanent magnet excited alternator compressor with brushless DC control
US4656379A (en) * 1985-12-18 1987-04-07 The Garrett Corporation Hybrid excited generator with flux control of consequent-pole rotor
US4771168A (en) * 1987-05-04 1988-09-13 The University Of Southern California Light initiated high power electronic switch
US4890040A (en) * 1987-06-01 1989-12-26 Gundersen Martin A Optically triggered back-lighted thyratron network
US4859989A (en) * 1987-12-01 1989-08-22 W. L. Gore & Associates, Inc. Security system and signal carrying member thereof
US4982147A (en) * 1989-01-30 1991-01-01 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Power factor motor control system
US5091609A (en) * 1989-02-14 1992-02-25 Sumitomo Electric Industries, Ltd. Insulated wire
US4949001A (en) * 1989-07-21 1990-08-14 Campbell Steven R Partial discharge detection method and apparatus
SE465240B (en) * 1989-12-22 1991-08-12 Asea Brown Boveri OVERVOLTAGE PROTECTION FOR SERIAL CONDENSER EQUIPMENT
US5030813A (en) * 1990-02-06 1991-07-09 Pulsair Anstalt Corporation Welding apparatus and transformer therefor
TW215446B (en) * 1990-02-23 1993-11-01 Furukawa Electric Co Ltd
US5171941A (en) * 1990-03-30 1992-12-15 The Furukawa Electric Co., Ltd. Superconducting strand for alternating current
JP2814687B2 (en) * 1990-04-24 1998-10-27 日立電線株式会社 Watertight rubber / plastic insulated cable
NL9002005A (en) * 1990-09-12 1992-04-01 Philips Nv TRANSFORMER.
US5067040A (en) * 1990-09-24 1991-11-19 Joel Fallik Expandable refrigerated enclosure for computer boards
DE4112161C2 (en) * 1991-04-13 1994-11-24 Fraunhofer Ges Forschung Gas discharge device
US5499178A (en) * 1991-12-16 1996-03-12 Regents Of The University Of Minnesota System for reducing harmonics by harmonic current injection
FR2692693A1 (en) * 1992-06-23 1993-12-24 Smh Management Services Ag Control device of an asynchronous motor
US5449861A (en) * 1993-02-24 1995-09-12 Vazaki Corporation Wire for press-connecting terminal and method of producing the conductive wire
US5399941A (en) * 1993-05-03 1995-03-21 The United States Of America As Represented By The Secretary Of The Navy Optical pseudospark switch
FR2707448B1 (en) * 1993-07-06 1995-09-15 Cableco Sa Power generator for an arc lamp.
US5550410A (en) * 1994-08-02 1996-08-27 Titus; Charles H. Gas turbine electrical power generation scheme utilizing remotely located fuel sites
US5533658A (en) * 1994-11-10 1996-07-09 Production Tube, Inc. Apparatus having replaceable shoes for positioning and gripping tubing
EP0729217B1 (en) * 1995-02-21 2000-01-12 Siemens Aktiengesellschaft Hybride excited synchronous machine
US5663605A (en) * 1995-05-03 1997-09-02 Ford Motor Company Rotating electrical machine with electromagnetic and permanent magnet excitation
FR2745117B1 (en) * 1996-02-21 2000-10-13 Whitaker Corp FLEXIBLE AND FLEXIBLE CABLE WITH SPACED PROPELLERS

Also Published As

Publication number Publication date
WO1997045926A2 (en) 1997-12-04
PL330225A1 (en) 1999-05-10
TR199802471T2 (en) 1999-03-22
EE9800415A (en) 1999-06-15
DE69726267T2 (en) 2004-09-09
CA2255739A1 (en) 1997-12-04
ATE254815T1 (en) 2003-12-15
AU2988697A (en) 1998-01-05
CN1220043A (en) 1999-06-16
AU718681B2 (en) 2000-04-20
PE82798A1 (en) 1998-11-24
EP0888661B1 (en) 2003-11-19
CO4650249A1 (en) 1998-09-03
CN1101988C (en) 2003-02-19
EE03408B1 (en) 2001-04-16
JP2000511392A (en) 2000-08-29
EP0888661A2 (en) 1999-01-07
WO1997045926A3 (en) 1998-01-22
TW419878B (en) 2001-01-21
NO985553D0 (en) 1998-11-27
RU2211518C2 (en) 2003-08-27
UA45452C2 (en) 2002-04-15
US6891303B2 (en) 2005-05-10
NZ333599A (en) 2000-05-26
BR9709619A (en) 1999-08-10
DE69726267D1 (en) 2003-12-24
AR007339A1 (en) 1999-10-27
US20020047439A1 (en) 2002-04-25
CZ385898A3 (en) 1999-05-12
NO985553L (en) 1998-11-27
HK1021085A1 (en) 2000-05-26

Similar Documents

Publication Publication Date Title
AU718681B2 (en) An electric high voltage AC machine
US7529073B2 (en) Protecting medium voltage inductive coupled device from electrical transients
Smugala et al. Wind turbine transformers protection method against high-frequency transients
RU98123559A (en) HIGH VAC ELECTRIC MACHINE
CA2275619A1 (en) Device and method relating to protection of an object against over-currents comprising over-current reduction and current limitation
AU772117B2 (en) Total electrical transient eliminator
Lopez-Roldan et al. Analysis, simulation and testing of transformer insulation failures related to switching transients overvoltages
WO1997045906A1 (en) Reduction of harmonics in ac machines
EP2287990A1 (en) A device protecting against high frequency overvoltage
Hoerauf et al. Avoiding potential transformer ferroresonant problems in industrial power systems
Sutherland Analysis of integral snubber circuit design for transformers in urban high rise office building
Boggs et al. Attenuating voltage surges in power cable by modifying the semiconductive shields
Sutherland Snubber circuit design for transformers in urban high rise office building
WO2008040128A1 (en) Method and device for suppressing vacuum switch restriking over-voltage
EP0901706B1 (en) A method and a device for reducing third harmonic phenomena in a rotating electric alternating current machine
Kreveld High wire act
Staats et al. Overvoltages in medium power transformers
CN115483665A (en) Voltage transformer low-frequency oscillation suppression wiring method and device applied to power distribution network
Furgał et al. Influence of serial choke on damping of switching transients in distribution transformers
JPH0759259A (en) Three-phase four-wire load circuit
JPH0218014B2 (en)
SE512299C2 (en) Series compensating rotating electric alternating current machines
MXPA99005677A (en) Device and method relating to protection of an object against over-currents comprising over-current reduction and current limitation
KR20020057456A (en) Total electrical transient eliminator
SE510631C2 (en) Electric high voltage machine coupled to distribution or transmission network

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application