KR20000004367A - Method for manufacturing mos field effect transistors - Google Patents

Method for manufacturing mos field effect transistors Download PDF

Info

Publication number
KR20000004367A
KR20000004367A KR1019980025799A KR19980025799A KR20000004367A KR 20000004367 A KR20000004367 A KR 20000004367A KR 1019980025799 A KR1019980025799 A KR 1019980025799A KR 19980025799 A KR19980025799 A KR 19980025799A KR 20000004367 A KR20000004367 A KR 20000004367A
Authority
KR
South Korea
Prior art keywords
polysilicon layer
forming
polysilicon
oxide
layer
Prior art date
Application number
KR1019980025799A
Other languages
Korean (ko)
Other versions
KR100325452B1 (en
Inventor
윤경일
허용진
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019980025799A priority Critical patent/KR100325452B1/en
Publication of KR20000004367A publication Critical patent/KR20000004367A/en
Application granted granted Critical
Publication of KR100325452B1 publication Critical patent/KR100325452B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A fabrication method of an MOS field effect transistor having an LDD(lightly doped drain) structure is provided to prevent downing of threshold voltage and remove trade-off between punch-through voltage and conductivity by using double gate polysilicon and a native oxide. CONSTITUTION: The method comprises the steps of: forming a gate oxide(12) on a silicon substrate(10); forming a first polysilicon layer(14) on the gate oxide(12); growing a native oxide(16) on the first polysilicon layer(14); forming a second polysilicon layer(18) having thick thickness compared to the first polysilicon layer on the native oxide(16); exposing a portion of the first polysilicon layer(14); forming a lightly doped impurity region(22a,22b) by ion-implantation into the exposed polysilicon layer; forming a spacer(24) at both sides of the native oxide and the polysilicon layers; exposing a portion of the lightly doped impurity region(22a,22b) by blanket etching the exposed first polysilicon(14); forming an SELOCS(SELective Oxide Coating of Silicon-gate) oxide(26) at sides of the first polysilicon layer(14a); and forming highly doped impurity regions(28a,28b).

Description

모스 전계 효과 트랜지스터의 제조 방법Manufacturing method of MOS field effect transistor

본 발명은 모스 전계 효과 트랜지스터의 기술에 관한 것으로, 특히 네츄럴(natural) 산화막을 사용하여 LDD(Lightly Doped Drain/Source)를 가지는 모스 전계 효과 트랜지스터의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the technology of MOS field effect transistors, and more particularly, to a method of manufacturing a MOS field effect transistor having a LDD (Lightly Doped Drain / Source) using a natural oxide film.

반도체 장치가 고집적됨에 따라, 단채널 트랜지스터의 형성이 필수적이다. 이 때문에, 핫케리어와 펀치 스루의 특성이 악화되었다. 이를 해결하고 높은 신뢰성을 얻기 위해 종래에는 DDD(Double Diffused Drain)이나 LDD(Lightly Doped Drain)을 채용하는 트랜지스터가 제안되었다. 그런데 이러한 트랜지스터의 드레인 구조는 핫 캐리어 및 문턱 전압의 하강을 방지할 수 있으나, 펀치 스루우 전압과 전달 전도도 간의 트레이트 오프가 존재하는 문제가 있다.As semiconductor devices are highly integrated, the formation of short channel transistors is essential. For this reason, the characteristics of a hot carrier and a punch through deteriorate. In order to solve this problem and to obtain high reliability, a transistor employing a double diffused drain (DDD) or a lightly doped drain (LDD) has been proposed. However, the drain structure of the transistor can prevent the drop of the hot carrier and the threshold voltage, but there is a problem that there is a trade off between the punch-through voltage and the transfer conductivity.

따라서, 본 발명의 목적은, 이런 문제를 해결하여 높은 신뢰성을 가지는 모스 전계 효과 트랜지스터의 제조 방법을 제공하는 것이다.Accordingly, it is an object of the present invention to solve such a problem and to provide a method for producing a MOS field effect transistor having high reliability.

본 발명의 목적을 달성하기 위해, 게이트 폴리 실리콘을 2차에 걸쳐 형성하되, 제 1 게이트 폴리 실리콘 형성후, 내츄럴 산화막을 형성하고 상기 내츄럴 산화막 상부에 제 2 게이트 폴리 실리콘을 형성한다.In order to achieve the object of the present invention, the gate polysilicon is formed on the secondary, and after forming the first gate polysilicon, a natural oxide film is formed and a second gate polysilicon is formed on the natural oxide film.

도 1 내지 도 4는 본 발명에 따른 모스 전계 효과 트랜지스터의 제조 단계를 나타내는 단면도들.1 to 4 are cross-sectional views illustrating steps in manufacturing a MOS field effect transistor according to the present invention.

이하 본 발명을 첨부한 도면을 참조로 설명한다.Hereinafter, the present invention will be described with reference to the accompanying drawings.

도 1에서, P형 기판(10) 상부에 산화막(12)을 공지의 방법으로 형성한다. 산화막(12) 상부에 약 50 ㎚의 제 1 폴리 실리콘층(14)을 형성한다. 이후, 에어 큐어링으로 약 5 내지 10Å의 내츄럴 산화막(14)을 성장시킨다. 상기 내츄럴 산화막(14)은 이후에 형성되는 제 2 폴리 실리콘층의 식각시 식각 저지층으로서의 역할을 할 수 있을 정도면 족하다. 상기 자연 산화막(16) 상부에 제 2 폴리 실리콘층(18)을 형성하여 게이트 폴리를 완성한다. 연이어 상기 제 2 폴리 실리콘층(18) 상부에 제 1 절연층(20)을 형성한다.In Fig. 1, an oxide film 12 is formed on the P-type substrate 10 by a known method. A 50 nm first polysilicon layer 14 is formed over the oxide film 12. Thereafter, the natural oxide film 14 of about 5 to 10 kPa is grown by air curing. The natural oxide layer 14 may be sufficient to serve as an etch stop layer during etching of the second polysilicon layer formed thereafter. The second polysilicon layer 18 is formed on the natural oxide layer 16 to complete the gate poly. Subsequently, a first insulating layer 20 is formed on the second polysilicon layer 18.

도 2에서, 제 2 폴리 실리콘층(18)을 선택도가 높은 건식 식각을 이용하여 패터닝하여, 절연층(20)에 의해 노출된 부분의 제 2 폴리 실리콘층(18)이 제거되어 얇은 제 1 폴리 실리콘층(14)과 함께 16a, 18a도 남는다. 다음, 제 1 절연층을 마스크로 이용하여 인 이온을 기판에 주입하여, 저농도 불순물층(22a, 22b)을 형성한다. 인 이온 주입 공정은 제 1 폴리 실리콘층(14)을 고려하여 약 80Kev 에너지를 사용한다.In FIG. 2, the second polysilicon layer 18 is patterned using dry etching with high selectivity, so that the second polysilicon layer 18 in the portion exposed by the insulating layer 20 is removed to obtain a thin first. Together with the polysilicon layer 14, 16a and 18a are also left. Next, phosphorus ions are implanted into the substrate using the first insulating layer as a mask to form the low concentration impurity layers 22a and 22b. The phosphorus ion implantation process uses about 80 Kev energy in consideration of the first polysilicon layer 14.

도 3에서, 저농도 불순물층(22a, 22b)이 형성된 결과물에 스페이서인 제 2 절연층(24)을 형성한다. 제 2 절연층(24)은 제 1 절연층(20), 제 1 및 제 2 폴리 실리콘층 및 자연 산화막(16)의 측면에 형성된다. 제 2 절연층은 질화물 또는 산화물로 구성된다. 제 2 절연층(24)에 의해 노출된 제 1 폴리 실리콘층(12)을 별도의 마스크 추가 없이 블랭킷 식각하여 불순물층의 일부를 노출시킨다. 상기 제 1 폴리 실리콘층(14a)의 측면에 불순물층(소오스 및 드레인)과 게이트 폴리와의 중첩 길이를 제어하기 위해 SELOCS(SELective Oxide Coating of Silicon-gate) 산화막(26)을 형성한다.In Fig. 3, a second insulating layer 24, which is a spacer, is formed on the resultant product in which the low concentration impurity layers 22a and 22b are formed. The second insulating layer 24 is formed on the side surfaces of the first insulating layer 20, the first and second polysilicon layers, and the natural oxide film 16. The second insulating layer is composed of nitride or oxide. A portion of the impurity layer is exposed by blanket etching the first polysilicon layer 12 exposed by the second insulating layer 24 without adding a mask. A SELOCS (Selective Oxide Coating of Silicon-gate) oxide layer 26 is formed on the side of the first polysilicon layer 14a to control the overlap length between the impurity layer (source and drain) and the gate poly.

도 4에서는, 상기 제 2 절연층(24)을 이용하여 기판(10)에 n 형 불순물 특히 As이온을 이온 주입하여, 고농도 불순물 영역(28a, 28b)을 형성한다. 저농도 불순물 영역(22a, 22b)의 불순물 농도는 고농도 불순물 영역(28a, 28b)의 불순물 농도에 비해 저농도이다. 따라서, 트랜지스터의 소오스 및 드레인 영역은 각각 고농도의 불순물 영역(28a, 28b)과 저농도의 불순물 영역(22a, 22b)으로 구성된 LDD 구조이다.In FIG. 4, n type impurity, especially As ion, is ion-implanted to the board | substrate 10 using the said 2nd insulating layer 24, and high concentration impurity regions 28a and 28b are formed. The impurity concentration of the low concentration impurity regions 22a and 22b is lower than that of the high concentration impurity regions 28a and 28b. Therefore, the source and drain regions of the transistor are LDD structures each composed of high concentration impurity regions 28a and 28b and low concentration impurity regions 22a and 22b.

본 실시예에서는, 게이트 폴리 실리콘을 2단계로 증착하여 제 1 게이트 폴리 실리콘층과 제 2 게이트 폴리 실리콘층 사이에 내츄럴 산화막을 형성한다. 이 내츄럴 산화막은 제 2 폴리 실리콘을 선택적으로 식각하고 패터닝한다. 다음, 인 이온을 주입하여 저농도의 불순물층을 형성함으로써 게이트 산화막과 스페이서 안으로 주입되는 핫 캐리어를 억제시킨다. 또한, 드레인의 전계와 전자-홀의 결합률을 감소시켜 단채널 효과를 억제한다. 즉, 문턱 전압의 강하를 방지하고 전달 전도도 및 펀치 스루우 전압 특성을 향상시킬 수 있다.In this embodiment, the gate polysilicon is deposited in two steps to form a natural oxide film between the first gate polysilicon layer and the second gate polysilicon layer. This natural oxide film selectively etches and patternes the second polysilicon. Next, phosphorus ions are implanted to form a low concentration impurity layer to suppress hot carriers injected into the gate oxide film and the spacer. In addition, the coupling ratio between the electric field of the drain and the electron-hole is reduced to suppress the short channel effect. That is, it is possible to prevent the drop in the threshold voltage and to improve the transfer conductivity and the punch through voltage characteristics.

Claims (5)

기판 상에 게이트 산화막을 형성하는 단계,Forming a gate oxide film on the substrate, 상기 게이트 산화막 상에 제 1 폴리 실리콘층을 형성하는 단계,Forming a first polysilicon layer on the gate oxide layer, 상기 제 1 폴리 실리콘층 상에 자연 산화막을 형성하는 단계,Forming a natural oxide film on the first polysilicon layer, 상기 산화막 상에 제 1 폴리 실리콘층 보다 두꺼운 제 2 폴리 실리콘층을 형성하는 단계,Forming a second polysilicon layer thicker than the first polysilicon layer on the oxide film, 상기 제 2 폴리 실리콘층 상에 제 1 절연층을 형성하는 단계,Forming a first insulating layer on the second polysilicon layer, 상기 제 1 절연층을 마스크로 이용하여 상기 제 2 폴리 실리콘층의 소정 부분을 식각하여 상기 제 1 폴리 실리콘층의 일부를 노출시키는 단계,Etching a predetermined portion of the second polysilicon layer using the first insulating layer as a mask to expose a portion of the first polysilicon layer, 상기 노출된 제 1 폴리 실리콘층으로 인 이온을 주입하여 저농도의 불순물 영역을 형성하는 단계,Implanting phosphorus ions into the exposed first polysilicon layer to form a low concentration impurity region, 상기 저농도의 불순물 영역이 형성된 결과물 전면에 제 2 절연층을 형성하고 식각하여 스페이서를 형성하는 단계,Forming a spacer by forming and etching a second insulating layer on the entire surface of the resultant impurity region having low concentration, 상기 제 1 절연층과 상기 스페이서를 마스크로 이용하여 기판 전면에 대해 식각 공정을 실시하는 단계,Performing an etching process on the entire surface of the substrate using the first insulating layer and the spacer as a mask; 상기 제 1 폴리 실리콘층 측면에 SELOS(SELective Oxide Coating of Silicon-gate) 산화막을 형성하는 단계, 및Forming a SELOS (SELECTive Oxide Coating of Silicon-gate) oxide film on the side of the first polysilicon layer, and 상기 SELOS 산화막이 형성된 결과물 전면에 제 1 불순물 영역과 동일한 형의 불순물을 이온 주입하여 고농도의 불순물 영역을 형성하는 단계를 구비함을 특징으로 하는 모스 전계 효과 트랜지스터의 제조 방법.And ion-implanting impurities of the same type as the first impurity region on the entire surface of the resultant on which the SELOS oxide film is formed to form a high concentration impurity region. 제 1 항에 있어서, 상기 자연 산화막은 약 5 내지 10 Å인 모스 전계 효과 트랜지스터의 제조 방법.10. The method of claim 1, wherein the native oxide film is about 5-10 kV. 제 1 항에 있어서, 상기 제 1 폴리 실리콘층의 두께는 약 50㎚인 모스 전계 효과 트랜지스터의 제조 방법.2. The method of claim 1, wherein the thickness of the first polysilicon layer is about 50 nm. 제 1 항에 있어서, 상기 제 2 폴리 실리콘층은 건식 식각되고 상기 제 1 폴리 실리콘층은 습식 식각되는 모스 전계 효과 트랜지스터의 제조 방법.The method of claim 1, wherein the second polysilicon layer is dry etched and the first polysilicon layer is wet etched. 제 1 항에 있어서, 상기 제 2 절연층은 질화물 또는 산화물인 모스 전계 효과 트랜지스터의 제조 방법.The method of claim 1, wherein the second insulating layer is nitride or oxide.
KR1019980025799A 1998-06-30 1998-06-30 Manufacturing method of MOS field effect transistor KR100325452B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980025799A KR100325452B1 (en) 1998-06-30 1998-06-30 Manufacturing method of MOS field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980025799A KR100325452B1 (en) 1998-06-30 1998-06-30 Manufacturing method of MOS field effect transistor

Publications (2)

Publication Number Publication Date
KR20000004367A true KR20000004367A (en) 2000-01-25
KR100325452B1 KR100325452B1 (en) 2002-08-21

Family

ID=19542187

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980025799A KR100325452B1 (en) 1998-06-30 1998-06-30 Manufacturing method of MOS field effect transistor

Country Status (1)

Country Link
KR (1) KR100325452B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807981B1 (en) * 2006-11-29 2008-02-28 동부일렉트로닉스 주식회사 Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807981B1 (en) * 2006-11-29 2008-02-28 동부일렉트로닉스 주식회사 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
KR100325452B1 (en) 2002-08-21

Similar Documents

Publication Publication Date Title
KR970011744B1 (en) Mosfet of ldd type and a method for fabricating the same
KR100392901B1 (en) Method of manufacturing an asymmetric slightly doped drain (LCD) MOS device
KR20000000919A (en) Method for manufacturing cmos transistors
KR20020067795A (en) Method of fabricating Metal Oxide Semiconductor transistor with Lightly Doped Drain structure
EP0465045B1 (en) Method of field effect transistor fabrication for integrated circuits
KR100299553B1 (en) Semiconductor device and manufacturing method of the same
EP0727098B1 (en) High-voltage ldd-mosfet with increased breakdown voltage and method of fabrication
US6051471A (en) Method for making asymmetrical N-channel and symmetrical P-channel devices
US7033879B2 (en) Semiconductor device having optimized shallow junction geometries and method for fabrication thereof
KR20050069579A (en) Semiconductor device and method for manufacturing the same
JPH11284178A (en) Insulating gate transistor, its manufacture and semiconductor integrated circuit device
US6146953A (en) Fabrication method for mosfet device
KR100325452B1 (en) Manufacturing method of MOS field effect transistor
KR0167301B1 (en) Method for fabricating mosfet
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
KR100205310B1 (en) A semiconductor device and a method of the same
KR100327438B1 (en) method for manufacturing of low voltage transistor
KR100334968B1 (en) Method for fabricating buried channel type PMOS transistor
KR100198648B1 (en) Manufacture of dram cmos
KR100357173B1 (en) Method for manufacturing thin film transistor
KR100374543B1 (en) Method for manufacturing semiconductor device
JPS6057971A (en) Manufacture of semiconductor device
KR100451463B1 (en) Method for fabricating semiconductor device having double gate oxide
JPH06196495A (en) Semiconductor device, complementary semiconductor device, and manufacture thereof
KR19980045172A (en) Manufacturing method of LED semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100126

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee