KR20000001998A - Preventing method against edge adhesion in high temperature annealing of low temperature reheating directional electric steel plate - Google Patents

Preventing method against edge adhesion in high temperature annealing of low temperature reheating directional electric steel plate Download PDF

Info

Publication number
KR20000001998A
KR20000001998A KR1019980022527A KR19980022527A KR20000001998A KR 20000001998 A KR20000001998 A KR 20000001998A KR 1019980022527 A KR1019980022527 A KR 1019980022527A KR 19980022527 A KR19980022527 A KR 19980022527A KR 20000001998 A KR20000001998 A KR 20000001998A
Authority
KR
South Korea
Prior art keywords
annealing
mgo
temperature
high temperature
less
Prior art date
Application number
KR1019980022527A
Other languages
Korean (ko)
Inventor
최규승
한규석
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019980022527A priority Critical patent/KR20000001998A/en
Publication of KR20000001998A publication Critical patent/KR20000001998A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: The method is to prevent steel plate edges from sticking together in a large roll of coil form in the final process of high temperature annealing when producing the directional electric steel plate. CONSTITUTION: The method reheats at the temperature of 1,250-1,340°C a silicon steel slab to hot roll and anneal at 1000 or less°C for softening the plate, and then cold-rolls twice including decarbon-annealing under a humid environment to the final thickness. The method further performs recover-annealing at a dry environment to coat a melt-fusion preventive agent and roll into a coil.

Description

저온재가열 방향성전기강판의 고온소둔시 엣지 판붙음 방지방법How to prevent edge plate sticking during high temperature annealing of low temperature reheat oriented electrical steel sheet

본 발명은 스라브 저온재가열에 의한 방향성전기강판의 제조시 마무리고온소둔공정에서 발생되는 대형코일의 엣지 판붙음현상을 방지하는 방법에 관한 것이다.The present invention relates to a method of preventing the edge plate sticking phenomenon of a large coil generated in the finishing high temperature annealing process in the production of grain-oriented electrical steel sheet by slab low temperature reheating.

상세히는, 강판에 도포되는 MgO중심의 융착방지제의 성분 및 배합비를 조정하여 점착성을 향상시켜 우수한 MgO도포성을 확보함으로서, 이후 MgO스러리의 건조중 코일 중심부로의 밀림현상을 막아 마무리고온소둔정에서의 엣지부판붙음을 방지하는 것이다. 이에 따라, 작업성 및 실수율을 대폭적으로 향상시키고 또한 제품의 품질안정성을 확보할 수 있는 저온방향성 전기강판의 엣지 판붙음 방지기술을 제공하는 것이다.In detail, by adjusting the composition and the mixing ratio of the MgO center fusion inhibitor applied to the steel sheet to improve the adhesion to ensure excellent MgO coating properties, to prevent the sliding phenomenon to the center of the coil during the drying of the MgO slurry in the finish high temperature annealing It is to prevent the edge plate sticking. Accordingly, it is to provide an edge plate pasting prevention technology of low-temperature oriented electrical steel sheet which can greatly improve workability and error rate and ensure product quality stability.

방향성 전기강판이란 결정립의 방위가 (110)[001]방향으로 정열된 집합조직을 가지고 있으며, 이 제품은 압연방향으로 극히 우수한 자기적특성을 가지고 있으므로 이 특성을 이용하여 변압기, 전동기, 발전기 및 기타 전기기기 등의 철심재료로 사용된다. 일반 방향성 전기강판의 제조 공정은 약 2-4%의 규소와 입성장억제제로 대부분 MnS나 MnSe를 함유하고 있는 성분계를 용해하여 스라브를 만든 후, 「재가열 및 열간압연→예비 소둔→중간소둔이 낀 2회의 냉간압연→탈탄 소둔→용착방지제 도포→최종 마무리 고온소둔」등의 복잡한 공정을 거쳐서 최종 제품으로 완성된다.A grain-oriented electrical steel has an aggregate structure in which the orientation of grains is aligned in the direction of (110) [001], and this product has extremely excellent magnetic properties in the rolling direction. It is used as iron core material for electric equipment. The manufacturing process of general oriented electrical steel sheet is about 2-4% of silicon and grain growth inhibitor, and melts the component system containing mostly MnS or MnSe to make slab, and then re-heats and hot rolls → pre-annealed → intermediate annealing. The final product is completed through a complex process such as two times cold rolling, decarburization annealing, application of anti-deposition agent, and final high temperature annealing.

이러한 복잡한 제조공정중 가장 제조상 어려운 것은 고온에서 열처리를 행하는 스라브 재가열공정이다. 이 스라브 재가열공정은 입성장억제제로 사용되는 MnS 나 AlN 등의 석출물들을 완전히 고용 분산시킨 후 미세하게 석출시키기 위하여 약 1400 ℃ 정도의 고온에서 5시간 정도의 유지가 필요하다. 이때, 고온의 스라브 표면에서는 공기와의 산화반응으로 Si 및 Fe성분이 복합된 파이어라이트(Fe2SiO4)라는 산화물이 생기는데, 이산화물은 융점이 1340℃ 정도로 낮아 재가열시 표면에서 부터 녹아서 흘러 내린다. 이때, 용융상태의 산화물은 일부 로 바깥으로 흘러내리게 설계되어 있지만, 대부분은 로 상부의 내화물 등에 축척되어 작업종료와 동시에 산화물 제거를 위한 전체적인 내부수리가 불가피하다.Among the complicated manufacturing processes, the most difficult in manufacturing is the slab reheating process, which is heat-treated at a high temperature. This slab reheating process needs to be maintained at high temperature of about 1400 ℃ for 5 hours in order to completely disperse the precipitates such as MnS and AlN used as grain growth inhibitors. At this time, on the surface of the hot slab, an oxide called pyrite (Fe 2 SiO 4 ), in which Si and Fe components are combined, is formed by oxidation with air, and the dioxide melts and flows down from the surface upon reheating due to its low melting point. At this time, the molten oxide is designed to flow out of the furnace partly, but most of it is accumulated in the refractory of the upper part of the furnace, so that the entire internal repair for removing the oxide is inevitable at the end of the work.

스라브 재가열온도의 하향화 노력은 선진 제조사를 중심으로 총력적인 관심속에 진행되고 있으며, 여러 가지 방법이 제시되고 있는 중이다. 즉, 재가열온도를 파이어라이트 산화물이 녹지 않는 약 1350℃이하의 온도에서 가열하는 것을 기준으로 하여 기본 성분계의 조정을 행하고, 이 성분설계에 부가하여 제조공정중의 석출물 관리기법등이 제안되고 있다.Efforts to lower the slab reheating temperature are proceeding with full attention from leading manufacturers, and various methods are being proposed. That is, the basic component system is adjusted on the basis of heating the reheating temperature at about 1350 ° C. or less at which the pyrite oxide does not dissolve, and in addition to the component design, a precipitate management method during the manufacturing process and the like have been proposed.

이에, 본 발명자들은 재래식 방향성전기강을 125-1340℃의 부근에서 열처리하여 열간압연을 행하도록 하는 성분계를 설계하고, 기존의 제조공정에서 추가적인 설비보완이나 신설이 없이도 작업이 가능한 새로운 제조방법을 확립하여 대한민국 특허출원 93-23751호에, 부가적인 요소기술들을 94-21388, 21389, 21390 및 21391호 등에 제안한 바 있다.Therefore, the present inventors have designed a component system to heat-treat conventional directional electrical steel in the vicinity of 125-1340 ° C. to perform hot rolling, and establish a new manufacturing method that can work without additional equipment supplement or new installation in the existing manufacturing process. Accordingly, Korean Patent Application No. 93-23751 proposes additional element technologies such as 94-21388, 21389, 21390, and 21391.

상기 제안한 저온재가열법을 이용하여 실기 생산시 높은 실수율 및 우수한 자기적 특성을 갖는 제품을 생산 할 수 있었다. 이 제조방법의 특징은 1차 냉간압연 후인 통상 0.60~0.70mm의 중간두께에서 탈탄소둔을 하고 2차냉간압연으로 최종두께로 조정하며 이어 600℃이하에서 회복소둔후 MgO를 주성분으로 하는 융착방지제를 스러리상태로 도포한 다음 건조하여 대형코일로 만든후 2차재결정을 위한 최종 마무리고온소둔을 행하는 것이다.By using the low temperature reheating method proposed above, it was possible to produce a product with high real rate and excellent magnetic properties in actual production. Characteristic of this manufacturing method is decarbonization annealing at the intermediate thickness of 0.60 ~ 0.70mm after the first cold rolling, and then adjusted to the final thickness by secondary cold rolling, followed by recovery-annealing at 600 ℃ or less. It is applied in a slurry state and dried to make a large coil, followed by final finishing high temperature annealing for secondary recrystallization.

그런데, 상기 마무리고온소둔시 최고균열온도 1200℃부근에서 고온으로 장시간소둔하기 때문에 코일 엣지부에 융착방지제의 도포특성이 나쁘거나 불완전시 엣지프레아(Edge flare)현상 등에 의해 엣지부위의 판이 서로 붙어버리는 현상이 나타난다. 이러한 코일은 이후 미반응 MgO를 제거하고 최종 장력코팅제 도포를 위한 후속처리시 판상호간이 붙어있기 때문에 코일이 풀어지지 않고 판이 찢어지는 판파단현상이 나타나서 연속작업공정 전체를 마비시키고 또한, 제품 실수율이 대폭 저하되어 경제적인 손실이 크게 될 수 밖에 없다.However, when the finishing high temperature annealing is annealed at a high temperature around 1200 ° C. for the highest cracking temperature, the coating property of the fusion inhibitor is poor at the edge of the coil, or the edges of the plates adhere to each other due to edge flare. Appears. Since the coil is attached to the plate between subsequent removal of unreacted MgO and subsequent application of the final tension coating agent, the plate breakage occurs because the coil is not released and the plate is torn, thus paralyzing the entire continuous work process. It is greatly reduced and the economic loss is inevitably large.

따라서, 고온소둔시의 엣지부 판붙음을 방지하기 위하여, 본 발명자들은 이문제와 관련된 제반공정조건을 검토한 결과, 융착방지제를 도포할 때 코일 엣지부의 도포특성이 중간부에 비해 불안정하거나 나쁘다는 것을 확인하고, 이의 개선방안을 제안하게 이르렀다.Therefore, in order to prevent the edge part sticking at the time of high temperature annealing, the present inventors have reviewed all the process conditions related to this problem and found that the coating characteristics of the coil edge part are unstable or bad compared to the middle part when applying the fusion inhibitor. It was confirmed and suggested a way to improve it.

본 발명의 목적은 방향성전기강판의 엣지부 판붙음을 방지할 수 있는 방법을 제공함에 있다.An object of the present invention is to provide a method capable of preventing the edge portion sticking of the grain-oriented electrical steel sheet.

상기 목적을 달성하기 위한 본 발명은, 중량%로 Si:2.9~3.3%, C:0.025~0.045%, P:0.015%이하, 용존Al:0.008~0.020%, N:0.0080~0.012%, S:0.007%이하, Mn:0.12~0.42%이하, Cu:0.6%이하 및 Fe와 기타 불가피하게 함유되는 되는 불순물로 이루어지는 규소강 스라브를 1250-1340℃로 저온재가열하고, 열간압연한 후 1000℃이하의 온도에서 열연판소둔한 다음 습윤분위기에서 탈탄소둔을 포함한 2회의 냉간압연으로 최종두께로 조정하고, 이어 600℃이하의 건조분위기에서 회복소둔후, 회복소둔한 강판에 MgO: 12~13중량%, MgO대비 TiO2:1-2중량%, 황산마그네슘 또는 황산알미늄중 선택된 1종을 MgO 대비 0.5-2%로 조성되는 융착방지제를 도포하고, 건조한 다음 권취하여 코일로 만들고, 권취된 코일을 100%수소분위기에서 700-1200℃구간의 승온율을 15℃/hr이상 유지하면서 1200±10℃의 온도에서 20시간 이상 균열한 후 냉각하는 마무리고온소둔공정을 포함하여 구성된다.The present invention for achieving the above object, Si: 2.9 ~ 3.3%, C: 0.025 ~ 0.045%, P: 0.015% or less, dissolved Al: 0.008 ~ 0.020%, N: 0.0080 ~ 0.012%, S: Silicon steel slab consisting of 0.007% or less, Mn: 0.12 to 0.42% or less, Cu: 0.6% or less, and Fe and other inevitable impurities is reheated to 1250-1340 ° C. at low temperature, and hot rolled to 1000 ° C. or less. After hot-rolled annealing at the temperature, adjusted to the final thickness by two cold rollings including decarbonization annealing in a wet atmosphere, followed by recovery annealing in a dry atmosphere below 600 ° C., MgO: 12-13% by weight, TiO 2 : 1-2% by weight compared to MgO, magnesium sulfate or aluminum sulfate selected by applying a fusion inhibitor composed of 0.5-2% compared to MgO, dried and wound to make a coil, wound coil 100% 20 hours or more at 1200 ± 10 ℃ while maintaining the temperature increase rate of 700-1200 ℃ in the hydrogen atmosphere over 15 ℃ / hr It is configured to include a high-temperature finish annealing step of cooling after.

이하 본 발명에 대하여 설명한다.Hereinafter, the present invention will be described.

본 발명자들은 저온재가열방향성 전기강판의 마무리고온소둔시 코일엣지부의 융착방지제 도포성 불량부가 쉽게 서로 융착하는 문제의 요인들을 규명해 본 결과 다음과 같은 사실을 밝혀냈다.The inventors of the present invention have found the following facts as a result of finding out the problem that the poor adhesion of the fusion inhibitor coating property of the coil edge portion during the high temperature annealing of low-temperature reheating oriented electrical steel sheet.

즉, 저온재가열 방향성전기강판의 공정 특이성 즉, 1차 중간소둔탈탄시 형성된 산화물층이 2차 냉간압연공정에서 압연특성상 판엣지부로 부터 많이 분리 탈락하여 후속되는 마무리고온소둔시 표면융착의 부분적인 요인으로 작용시키는 점이 확인 되었다. 그러나, 가장 중요한 요인은 융착방지제로 도포되는 MgO스러리의 판표면 도포성이 불량하여 엣지부 약 1mm이하의 끝부분에는 MgO스러리들이 극히 얇거나 거의 도포되지 않는다는 점이다.In other words, the process specificity of low-temperature reheat oriented electrical steel sheet, that is, the oxide layer formed during the primary intermediate annealing and decarburization is separated and removed from the plate edge part due to the rolling characteristics in the secondary cold rolling process. It was confirmed that the action. However, the most important factor is that the MgO slurry coated with the fusion inhibitor is poor in the surface coating property of the MgO slurry, so that the MgO slurry is extremely thin or hardly applied at the edge of about 1 mm or less at the edge portion.

이에, 엣지부 도포특성을 향상시킬수 있는 방안을 깊이있게 연구한 결과, 융착방지제의 점착성을 향상시키는 방법을 강구하게 되었다.Therefore, as a result of in-depth study of ways to improve the coating properties of the edge portion, a method of improving the adhesiveness of the fusion inhibitor has been devised.

일반적으로 융착방지제 조성물은, MgO도포성과 함께 마무리고온소둔시 표면외관현상을 좌우하게 되므로 유리질 절연피막형성에 악영향을 주지 않는 특성이 기본적으로 요구된다. 이러한 두가지의 역할을 행할수 있는 화합물이 용질원소임을 확인하고, 융착방지제의 첨가제로 피막형성에 유리한 마그네슘과 알미늄의 황산염을 택하게 되었다.In general, the anti-fusion agent composition, since the surface appearance phenomenon during the high temperature annealing finish with MgO coating properties are required to have a characteristic that does not adversely affect the formation of the glass insulation film. It was confirmed that the compound capable of performing these two roles is a solute element, and as an additive of the anti-fusion agent, sulphate of magnesium and aluminum, which is advantageous for film formation, was selected.

먼저, 황산마그네슘의 경우는 고온소둔전 MgO와 황산가스로 분해되어, MgO는 융착방지제의 주성분과 동일하게 반응하며, 황산가스는 소재중의 2차재결정성장억제제의 외부 확산을 막아주는 역할을 하여 자기특성의 향상을 보조할 수 있는 유용한 역할을 할 수 있다. 또한, 황산알미늄의 경우도 고온소둔시 분해하여 Al2O3및 황산가스로 분해되어, Al2O3는 형성되는 유리질절연피막형성에 유용한 물질로 작용함으로서 도리어 소재의 특성향상에 유용하게 작용될 수 있다.First, magnesium sulfate is decomposed into MgO and sulfuric acid gas before high temperature annealing, and MgO reacts with the main components of the fusion inhibitor, and sulfuric acid gas prevents the external diffusion of secondary recrystallization growth inhibitors in the material. It can play a useful role in helping to improve magnetic properties. In addition, in case of aluminum sulfate, it is decomposed at high temperature annealing and decomposed into Al 2 O 3 and sulfuric acid gas.Al 2 O 3 acts as a useful material for forming a glass insulating film, which is useful for improving the characteristics of the material. Can be.

상기 황산마그네슘 및 황산알루미늄 첨가시의 도포특성을 검토하기 위하여 통상의 융착방지제 조성물인 MgO가 12% 함유된 물에 보조제로 TiO21.5%를 기본적으로 첨가하고, 여기에 황산마그네슘 및 황산알루미늄을 첨가하여 특성을 비교하였다.In order to examine the coating properties when the magnesium sulfate and aluminum sulfate are added, 1.5% of TiO 2 is basically added to water containing 12% of MgO, which is a conventional anti-fusion agent composition, and magnesium sulfate and aluminum sulfate are added thereto. The characteristics were compared.

이러한 MgO혼합조성물을 물과 혼합하여 5분간 교반후 스러리액의 점착성을 조사하여 cps로 나타내었다. 또한, MgO도포성을 비교하기 위하여 이 혼합스러리액에 7x7cm의 탈탄판을 침적 도포시 교반시간별 시편에 부착되는 MgO스러리의 총량을 조사하여 아래 표 1에 나타냈다.The MgO mixture was mixed with water, stirred for 5 minutes, and examined for adhesion of the slurry solution, and expressed as cps. In addition, in order to compare the MgO coating properties, the total amount of MgO slurry attached to the specimens by stirring time when the decarburized plate of 7 × 7 cm was deposited on the mixed slurry liquid was investigated and shown in Table 1 below.

번호number 황산염sulfate 교반시간별 도포량(g)Coating amount by stirring time (g) 종류Kinds 첨가량Amount 5분5 minutes 10분10 minutes 15분15 minutes 20분20 minutes 25분25 minutes AA 무첨가No addition 00 1.281.28 1.331.33 1.351.35 1.341.34 1.331.33 BB 황산마그네슘Magnesium sulfate 1One 1.491.49 1.561.56 1.631.63 1.681.68 1.721.72 CC 황산마그네슘Magnesium sulfate 22 1.541.54 1.661.66 1.731.73 1.861.86 1.971.97 DD 황산알루미늄Aluminum sulfate 1One 1.531.53 1.591.59 1.701.70 1.831.83 1.881.88 EE 황산알루미늄Aluminum sulfate 22 1.601.60 1.751.75 1.871.87 1.921.92 2.032.03

상기 표 1에서 보면, MgO 및 TiO2만을 첨가한 혼합물의 스러지에서는 도포액의 점성이 낮아서 교반시간별 도포량도 1.28-1.33g 수준으로 작다. 그러나, 이 혼합물에 황산마그네슘을 첨가한 경우 도포액의 점도가 증가하여 도포특성이 크게 개선됨을 알 수 있다. 또한, 황산알루미늄을 첨가한 경우에도 황산마그네슘의 첨가의 경우와 유사하게 도포특성이 크게 향상됨을 확인할 수 있다.In Table 1, in the sludge of the mixture to which only MgO and TiO 2 are added, the viscosity of the coating liquid is low, so that the coating amount for each stirring time is also small at 1.28-1.33 g. However, it can be seen that when magnesium sulfate is added to this mixture, the viscosity of the coating liquid is increased to significantly improve the coating properties. In addition, even when aluminum sulfate was added, it was confirmed that coating properties were greatly improved similarly to the case of addition of magnesium sulfate.

본 발명은 상기와 같은 연구와 실험을 통하여 저온재가열 방향성 전기강판에 적용될 수 있는 융착방지제를 완성하게 된 것이다. 구체적으로 본 발명의 융착방지제는 MgO: 12~13중량%, MgO대비 TiO2:1-2중량%, 황산마그네슘 또는 황산알미늄중 선택된 1종을 MgO 대비 0.5-2중량%로 조성되는 것이다.The present invention is to complete the fusion preventive agent that can be applied to the low-temperature reheating oriented electrical steel sheet through the above research and experiment. Specifically, the anti-fusion agent of the present invention is MgO: 12 to 13% by weight, TiO 2 : 1-2% by weight compared to MgO, magnesium sulfate or aluminum sulfate is selected from 0.5-2% by weight compared to MgO.

MgO는 12%미만에서는 전체적인 두께가 얇아지고 13%를 넘으면 도포량 과다로 인해 두께 관리가 불안정하여 표면특성 열화의 주 요인이 된다. 그리고, 보조제로 TiO2분말을 혼합사용하면 효과적인데, 그 함량이 1%미만에서는 형성피막이 얇아지고 엣지부 판붙음이 부분적으로 존재하고 2%를 넘으면 최종제품의 표면색상이 다소 검게 변색되어 품질특성을 저하시킬 수 있다. 또, 융착방지제의 점착성향상을 위해 황산마그네슘 또는 황산알루미늄의 용질원소를 첨가하는데, 이때 첨가량이 0.5%미만에서는 점착성향상 효과가 적어서 도포특성향상에 도움이 적어 부분적인 판붙음현상이 나타나고, 2%를 넘으면 점착성이 너무 높아 코팅두께 관리가 어렵고 형성피막의 산화변색 등의 결함발생의 요인이 된다.If the MgO is less than 12%, the overall thickness becomes thin, and if it exceeds 13%, thickness management becomes unstable due to excessive coating amount, which is a major factor in deterioration of surface properties. In addition, when TiO 2 powder is used as an adjuvant, it is effective.If the content is less than 1%, the formed film becomes thin and the edge plate is partially present. If the content exceeds 2%, the surface color of the final product is slightly changed to black. Can be lowered. In addition, the solute element of magnesium sulfate or aluminum sulfate is added to improve the adhesion of the fusion inhibitor. At this time, when the addition amount is less than 0.5%, the effect of improving the adhesion is small due to the small amount of adhesion improvement. If it exceeds, the adhesiveness is too high, so that it is difficult to manage the coating thickness and cause defects such as oxidation discoloration of the formed film.

이러한 본 발명의 융착방지제는 저온재가열 및 중간소둔을 포함한 2회의 냉간압연공정과 마무리고온소둔의 공정을 거치는 방향성전기강판의 제조공정에 적용될 수 있는 것이다.The fusion preventive agent of the present invention can be applied to the manufacturing process of the grain-oriented electrical steel sheet subjected to the cold rolling process and the final high temperature annealing process including low temperature reheating and intermediate annealing.

특히, 본원발명의 융착방지제는 중량%로, Si:2.9~3.3%, C:0.025~0.045%, P:0.015%이하, 용존Al:0.008~0.020%, N:0.0080~0.012%, S:0.007%이하, Mn:0.12~0.42%이하, Cu:0.6%이하 및 Fe와 기타 불가피하게 함유되는 불순물로 이루어지는 방향성전기강판에 매우 적합하다.In particular, the fusion preventive agent of the present invention in weight%, Si: 2.9 ~ 3.3%, C: 0.025 ~ 0.045%, P: 0.015% or less, dissolved Al: 0.008 ~ 0.020%, N: 0.0080 ~ 0.012%, S: 0.007 It is very suitable for grain-oriented electrical steel sheets composed of% or less, Mn: 0.12 to 0.42% or less, Cu: 0.6% or less, and Fe and other inevitable impurities.

이하, 본 발명에 적용되는 대표적인 방향성전기강판 성분의 수치한정이유 및 그 제조방법을 설명한다.Hereinafter, the reason for numerical limitation of a typical grain-oriented electrical steel sheet component to be applied to the present invention and a manufacturing method thereof will be described.

C는 AlN석출물의 미세 고용 분산에 유리하게 작용하고, 적정한 압연조직을 형성하게 하며, 냉간압연시 가공에너지를 부여하기 때문에 가능한한 상향 관리하는 것이 유리하나 이후 탈탄공정의 어려움을 고려하여 0.025-0.045%의 범위로 첨가하는 것이 바람직하다.C is advantageous to finely disperse AlN precipitates, form an appropriate rolled structure, and give processing energy during cold rolling, so it is advantageous to manage it upwards as much as possible, but it is 0.025-0.045 considering the difficulty of decarburization process. It is preferable to add in the range of%.

Si는 소재의 비저항치를 증가시켜 철손을 낮추는 역할을 하지만, 첨가 함량이 2.9%미만에서는 철손특성이 나쁘고, 첨가 함량이 3.3%를 넘는 경우에는 강이 취약해져 냉간압연성이 극히 나빠지므로 첨가함량은 2.9-3.3%로 한정하는 것이 바람직하다.Si plays a role of lowering iron loss by increasing the resistivity of the material, but the content of iron is poor at the addition content of less than 2.9%, and the steel is vulnerable and the cold rolling property is extremely bad at the addition content of more than 3.3%. It is preferable to limit to 2.9-3.3%.

Mn은 재가열시 석출물의 고용온도를 낮추며 열간압연시 소재 양 끝 부분에 생성는 크랙을 방지하는 역할을 하는데, 0.12%미만의 경우 석출물형성에 불리하며, 0.42%룰 넘으면 Mn산화물에 의해 고온소둔시 형성되는 포스테라이트피막의 밀착성이 악화되므로 0.12-0.42%로 첨가하는 것이 바람직하다.Mn lowers the solubility temperature of the precipitate during reheating and prevents crack formation at both ends of the material during hot rolling.It is disadvantageous for the formation of precipitates when less than 0.12%. Since the adhesion of the forsterite film to be deteriorated, it is preferable to add 0.12-0.42%.

S은 가능한 하한 관리가 필요하며 만약 0.007%이상 함유되면 열연에서 저온재가열시 중심편석부의 고용 및 확산이 어려워지므로 탈S공정을 채용하여 강력억제하여야 한다.S needs to be managed as low as possible, and if it contains more than 0.007%, it is difficult to employ and diffuse the central segregation part during low temperature reheating in hot rolled steel.

Al은 N과 함께 AlN의 석출물을 형성하여 입성장억제력을 확보하는 중심원소로 0.008%이하에서는 2차재결정에 필요한 충분한 역제력을 갖지 못하기 때문에 결정립크기가 적고 불완전 미립자가 나타나며, 0.020%이상에서는 억제력이 너무 강해 2차재결정 형성 자체를 어렵게 하여 자기적 특성이 급격히 열화되므로 중점관리가 필요한 대표적 성분이다. 따라서 Al은 0.008-0.020%로 한정하는 것이 바람직하다.Al forms the precipitate of AlN together with N to secure grain growth inhibition. At less than 0.008%, Al has a small grain size and incomplete grains. It is a representative component that needs to be focused, since its suppressive force is so strong that it makes it difficult to form secondary recrystallization. Therefore, Al is preferably limited to 0.008-0.020%.

N는 용존Al과 반응 석출물을 형성하여 2차재결정형성에 있어서 필수적인 성분이며 0.008%이하에서는 석출물의 형성이 부족하게 되고, 0.012%이상 첨가시에는 강판표면에 브리스터라는 결함이 생겨 제품이 표면특성을 열화시키므로 과잉 함유를 억제한다.N forms a reaction precipitate with dissolved Al, which is an essential component in the formation of secondary recrystallization, and below 0.008%, the formation of precipitates is insufficient. When 0.012% or more is added, a blister defect occurs on the surface of the steel sheet, resulting in a surface characteristic of the product. Since it deteriorates, excess content is suppressed.

Cu는 불순성분인 S과 결합하여 Cu2S의 석출물을 형성하고, 석출물중 가장 저온에서 고용되므로 가능한 한 많이 첨가할수록 유리하다. 그러나 0.6%이상되면 탈탄소둔시 형성되는 산화물이 절연피막 형성에 악영향을 주므로 0.6%까지로 한정한다.Cu combines with S, which is an impure component, to form a precipitate of Cu 2 S, and it is advantageous to add as much as possible because it is solid-solution at the lowest temperature among the precipitates. However, if more than 0.6%, the oxide formed during decarbonization annealing adversely affects the formation of the insulating film, so it is limited to 0.6%.

상기와 같이 조성되는 스라브는 저온재가열하는데, 이때 스라브 가열온도는 자기적특성의 확보가 가능한 1250℃에서 스라브 용융직전인 1340℃가 적당하다. 이와 같이 저온재가열한 후 스라브를 열간압연하고, 이를 1000℃이하의 온도에서 열연판소둔을 행한 다음, 1차 냉간압연시에 최종 2차 냉연율이 46~69%가 되도록 중간두께를 조정한다. 이때의 중간 탈탄소둔은 온도 890~960℃의 습윤분위기에서 행하는데, 이는 890℃이하에서는 탈탄성이 저조하고 960℃이상에서는 고온에 의한 과대한 구멍발생으로 적합하지 않기 때문이다. 상기와 같이 2차 냉간압연을 행하여 최종두께로 조정 후 600℃이하의 온도에서 회복소둔하고, MgO: 12~13중량%, MgO대비 TiO2:1-2중량%, 황산마그네슘 또는 황산알미늄중 선택된 1종을 MgO 대비 0.5-2%로 조성되 본 발명의 융착방지제를 도포한다.The slab formed as described above is a low-temperature reheating, the heating temperature of the slab is suitable 1340 ℃ immediately before the slab melting at 1250 ℃ that can secure the magnetic properties. Thus, after reheating the low temperature, the slab is hot rolled, hot-rolled sheet annealing is performed at a temperature of 1000 ° C. or lower, and the intermediate thickness is adjusted so that the final secondary cold rolling rate is 46 to 69% during the primary cold rolling. At this time, the intermediate decarbonization annealing is performed in a wet atmosphere at a temperature of 890 ° C to 960 ° C, because decarburization is poor at temperatures below 890 ° C and excessive pore generation due to high temperatures above 960 ° C. After performing the second cold rolling as described above, after adjusting to the final thickness, recovery annealing is carried out at a temperature of 600 ° C. or lower, MgO: 12 to 13% by weight, TiO 2 : 1-2% by weight of MgO, selected from magnesium sulfate or aluminum sulfate. 1 type is 0.5-2% of MgO, and the fusion inhibitor of the present invention is applied.

상기와 같은 융착방지제가 도포된 냉연강판을 건조한 다음, 권취하여 대형코일로 만들고, 권취된 코일을 마무리고온소둔한다. 구체적인 최종 마무리소둔은 전구간을 100%수소분위기로 하고, 700~1200℃구간의 승온율은 15℃/hr이상 유지하며, 1200±10℃의 온도에서 20시간 이상 균열한후 냉각하는 열사이클을 거쳐 2차재결정을 완료한다.The cold rolled steel sheet coated with the above-mentioned fusion inhibitor is dried, and then wound into a large coil, and the wound coil is finished by high temperature annealing. The final finish annealing is 100% hydrogen atmosphere in all sections, the temperature increase rate of 700 ~ 1200 ℃ is maintained at 15 ℃ / hr or more, and it undergoes heat cycle to cool after cracking for 20 hours or more at 1200 ± 10 ℃. Complete the secondary recrystallization.

이어 산세처리하여 표면의 미반응 MgO를 제거하는데, 이때 산세조건은 H2SO4용액으로 60-90℃온도에서 행하는 것을 예로 들 수 있다. 이와 같이 최종적으로 산세처리후 장력코팅제를 도포함으로서 방향성전기강판을 제조할 수 있다.Subsequently, pickling treatment removes the unreacted MgO from the surface. In this case, the pickling condition may be performed at 60-90 ° C. with H 2 SO 4 solution. Thus, after the pickling treatment, it is possible to produce a grain-oriented electrical steel sheet by including a tension coating agent.

상술한 본 발명의 구성에 있어서 융착방지제의 조성물을 제외하고는 저온재가열 방향성전기강판 제조분야에서 통상적용하고 있는 방법이며, 이러한 통상의 제조조건들은 다양한 변경이 가능하므로 본 발명은 여기에 한정되는 것이 아니다.Except for the composition of the fusion preventive agent in the configuration of the present invention described above is a method commonly used in the field of low-temperature reheat oriented electrical steel sheet manufacturing, these conventional manufacturing conditions can be variously changed, so the present invention is limited thereto. no.

이하 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

중량비로 Si:3.13%, C:0.035%, P:0.015%, 용존Al:0.014%, N:0.0092%, S:0.005%, Mn:0.24%, Cu:0.48%이고 나머지 Fe로 조성되는 220mm두께의 스라브를 만들었다. 이것을 표면용융이 없는 1300℃의 온도에서 4시간 저온재가열한후 열간압연을 행하여 2mm두께의 열연판을 만들었다. 이어 900℃에서 열연판소둔을 시행하고 산세후 0.7mm두께까지 1차 냉간압연을 한후 중간탈탄소둔을 실시하였다. 탈탄소둔은 900℃의 온도에서 습윤분위기로 3분간 행하였다. 이어서 2차냉간압연하여 최종두께인 0.30mm로 조정하고, 550℃의 건조분위기에서 회복소둔을 한 다음 MgO를 주성분으로 하는 융착방지제를 도포하였다.Si: 3.13%, C: 0.035%, P: 0.015%, Dissolved Al: 0.014%, N: 0.0092%, S: 0.005%, Mn: 0.24%, Cu: 0.48% by weight, 220mm thick Made a slab. This was reheated for 4 hours at a temperature of 1300 ° C. without surface melting, followed by hot rolling to make a hot rolled sheet having a thickness of 2 mm. Subsequently, hot-rolled sheet annealing was performed at 900 ° C, and after cold pickling, primary cold rolling was performed to 0.7 mm thickness, followed by intermediate decarbonization annealing. Decarbonization annealing was performed for 3 minutes in a humid atmosphere at the temperature of 900 degreeC. Subsequently, secondary cold rolling was carried out to adjust the final thickness to 0.30 mm, recovery annealing was carried out in a dry atmosphere at 550 ° C., and a fusion inhibitor containing MgO as a main component was applied.

이때 융착방지제의 조성은 물에 MgO의 혼합비를 통상대로 12%로 하고, 여기에 TiO2분말을 MgO대비 1.5% 첨가한 것을 기본조성으로 하고, 여기에 황산마그네슘 또는 황산알미늄을 추가 첨가하였으며 이때의 첨가량은 MgO대비 3%까지 변화시켰다. 이 혼합조성물을 물과 혼합해 5분간 강력교반하여 MgO스러리를 만든후 표면에 도포하였다. 이것을 직화건조로에서 700℃, 13초간 건조한 다음 각각 권취하여 대형코일로 만든 다음 최종마무리소둔공정을 행한다. 이때 최종 마무리소둔은 전 구간을 100% 수소분위기이며, 700~1200℃구간의 승온율을 18℃/hr로 유지하면서 120℃의 온도에서 25시간 균열한후 냉각하는 열사이클을 거쳐 2차재결정 소둔을 완료하였다. 이후 표면의 미반응 MgO주성분의 융착방지제 제거를 위해 산세하였으며 최종적으로 장력코팅제를 도포하여 방향성전기강판제품을 만들었다. 상기 장력코팅제 도포작업시 코일의 엣지부 판이 붙는 수 및 이공정에서의 실수율 그리고, 표면외관상태를 조사하여 이들의 결과를 종합하여 아래 표 2에 나타냈다.In this case, the composition of the anti-fusion agent is 12% of MgO in water as usual, and 1.5% of TiO 2 powder is added to MgO as the basic composition, and magnesium sulfate or aluminum sulfate is further added thereto. The addition amount was changed to 3% compared to MgO. This mixed composition was mixed with water and vigorously stirred for 5 minutes to form MgO slurry and then applied to the surface. This is dried in a direct-drying furnace at 700 ° C for 13 seconds, then wound up to make a large coil, followed by a final finishing annealing process. At this time, the final finishing annealing is 100% hydrogen atmosphere in all sections, and secondary recrystallization annealing through thermal cycle cooling after cracking at 120 ℃ for 25 hours while maintaining the temperature raising rate of 700 ~ 1200 ℃ at 18 ℃ / hr. Completed. After pickling to remove the fusion inhibitor of the unreacted MgO main component of the surface and finally applied to the tension coating agent to produce a grain-oriented electrical steel sheet products. The number of edge plates attached to the coil during the coating operation of the tension coating agent, the number of errors in this step, and the surface appearance were investigated, and the results are summarized in Table 2 below.

구분division 첨가량(%)Addition amount (%) 조업특성Operating characteristics 황산마그네슘Magnesium sulfate 황산알루미늄Aluminum sulfate 판붙음 수Plate number 공정실수율Process yield 표면외관Surface appearance 종래재1Conventional Materials 1 -- -- 50이상50 or more 7878 양호Good 비교재1Comparative Material 1 0.20.2 -- 1212 9393 양호Good 발명재1Invention 1 1One -- 00 9898 양호Good 발명재2Invention 2 1.51.5 -- 00 9898 양호Good 비교재2Comparative Material 2 33 -- 00 9898 산화변색Oxidation discoloration 비교재3Comparative Material 3 -- 0.30.3 88 8686 양호Good 발명재3Invention 3 -- 1.21.2 00 9898 양호Good 비교재4Comparative Material 4 -- 2.52.5 00 9898 산화변색Oxidation discoloration

상기 표 2에 나타난 바와 같이, 황산마그네슘 또는 황산알미늄이 첨가 안된 종래재(1)에서는 엣지부 부착에 의한 판붙음이 심하여 공정실수율이 저하된다. 이에 반해 황산알미늄 또는 황산마그네슘을 0.5-2%까지 첨가한 발명재(1-3)에서는 엣지부 판붙음이 전혀없고 표면외관색상도 결함이 없어 양호하였으며, 공정실수율도 98%수준으로 우수하였다.As shown in Table 2, in the conventional material (1) to which magnesium sulfate or aluminum sulfate is not added, the plate adhesion due to the edge portion is severe and the process yield is lowered. On the other hand, the invention material (1-3) to which aluminum sulfate or magnesium sulfate was added up to 0.5-2% had no edge plate adhesion and no surface appearance color defects, and the process yield was excellent at 98%.

그러나, 비교재(1,3)의 경우 부분적인 미세 판붙음이 존재하여 공정 실수율을 떨어뜨린다. 또한, 비교재(2,4)의 경우처럼 과잉의 첨가제 투입시 도포량이 과잉으로 증가되어 엣지부 판붙음 결함은 없지만, 소재표면에 소지노출에 의한 산화변색의 결함이 나타나서 정상 제품화에 문제가 있음에 따라 본 발명의 조건에서는 제외하였다.However, in the case of the comparative materials (1, 3), there is a partial fine plate sticking to reduce the process error rate. In addition, as in the case of the comparative materials (2, 4), the application amount is excessively increased when an excessive amount of additive is added, so there is no edge plate defect, but defects of oxidation discoloration due to the exposure of the substrate appear on the surface of the material, which causes problems in normal product. According to the conditions of the present invention.

[실시예 2]Example 2

상기 실시예 1의 2차 회복소둔판에 융착방지제로 물에 MgO의 혼합비를 12-14%로 하고 여기에 TiO2를 MgO대비 0.5-2.5%를 변화하는 조성물에 본 발명의 황산마그네슘을 1.5% 첨가를 기준으로 하여 MgO혼합비 및 TiO2첨가비의 변화에 따른 이후 고온소둔후의 조업 및 표면품질 특성을 비교하고자 하였다(종래재는 황산마그네슘 첨가안된 것임). 이 변화된 조성물의 스러지를 도포하고 건조시, 720℃에서 직화가열 상태에서 건조후 권취하였다. 이후 최종고온소둔을 마친후 표면의 미반응 MgO주성분의 융착방지제 제거를 위해 산세하였으며 최종적으로 장력코팅제를 도포하여 방향성 전기강판제품을 만들었다. 이때 코팅제 도포시 코일의 엣지부 판이 붙는 수 및 이 공정에서의 실수율 그리고, 표면외관상태를 조사하여 이들의 결과를 종합하여 표 3에 나타냈다.The magnesium sulfate of the present invention in the composition to change the mixing ratio of MgO in water to 12-14% and TiO 2 0.5-2.5% compared to MgO in the secondary recovery annealing plate of Example 1 On the basis of the addition, we tried to compare the operation and surface quality characteristics after the high temperature annealing according to the change of the MgO mixing ratio and the TiO 2 addition ratio (the conventional materials are not magnesium sulfate added). The sludge of this changed composition was applied and dried upon drying after drying in a direct heating at 720 ° C. After finishing high temperature annealing, pickling was performed to remove fusion inhibitor of unreacted MgO main component on the surface. Finally, tension coating was applied to make oriented electrical steel sheet. At this time, the number of the edge plate of the coil adhered when coating the coating agent, the real rate in this process, and the surface appearance state were investigated and the results are summarized in Table 3.

구분division 첨가량(%)Addition amount (%) 조업특성Operating characteristics MgO혼합비MgO Mixing Ratio TiO2첨가비TiO 2 addition ratio 판붙음수Plate number 공정실수율Process yield 표면외관Surface appearance 종래재2Conventional material 2 1212 1.51.5 44 8989 양호Good 발명재4Invention 4 1313 1.51.5 00 9898 양호Good 비교재5Comparative Material 5 1414 1.51.5 00 9898 변색discoloration 비교재6Comparative Material 6 1313 0.50.5 22 9696 양호Good 발명재5Invention 5 1313 1.51.5 00 9898 양호Good 비교재7Comparative Material7 1313 2.52.5 00 9898 산화변색Oxidation discoloration

표 3에 나타난 바와 같이, 종래재(2)의 조건에서는 일부의 판붙음현상이 나타났으며, MgO혼합비가 과잉의 비교재(5)에서는 표면색상의 변색이 나타났다. 또한, TiO2첨가제 변화시험에서도 0.5%첨가제 및 2.5%첨가제의 경우 부분적인 판붙음 및 표면색상의 변화로 제품화가 불가능하여 본 발명의 범위에서 제외하였다.As shown in Table 3, some plate adhesion phenomenon was observed under the conditions of the conventional material (2), and the discoloration of the surface color appeared in the comparative material (5) in which the MgO mixing ratio was excessive. In addition, in the TiO 2 additive change test, 0.5% additive and 2.5% additive were excluded from the scope of the present invention because they were not commercialized due to partial plate adhesion and surface color change.

상술한 바와 같이, 본 발명은 공정실수율을 대폭적으로 향상시키고 또한, 전체적인 제품의 품질안정성을 확보하며, 특히, 방향성전기강판의 엣지부 판붙음을 방지할 수 있는 효과가 있는 것이다.As described above, the present invention significantly improves the process yield, and also ensures the quality stability of the overall product, and in particular, has the effect of preventing the edge portion sticking of the grain-oriented electrical steel sheet.

Claims (1)

중량%로 Si:2.9~3.3%, C:0.025~0.045%, P:0.015%이하, 용존Al:0.008~0.020%, N:0.0080~0.012%, S:0.007%이하, Mn:0.12~0.42%이하, Cu:0.6%이하 및 Fe와 기타 불가피하게 함유되는 되는 불순물로 이루어지는 규소강 스라브를 1250-1340℃로 저온재가열하고, 열간압연한 후 1000℃이하의 온도에서 열연판소둔한 다음 습윤분위기에서 탈탄소둔을 포함한 2회의 냉간압연으로 최종두께로 조정하고, 이어 600℃이하의 건조분위기에서 회복소둔후 MgO를 주성분으로 하는 융착방지제를 도포하고 건조한 다음 권취하여 코일로 만들고, 권취된 코일을 100%수소분위기에서 700-1200℃구간의 승온율을 15℃/hr이상 유지하면서 1200±10℃의 온도에서 20시간 이상 균열한 후 냉각하는 마무리고온소둔을 행하여 저온재가열 방향성전기강판을 제조하는 방법에 있어서,By weight% Si: 2.9 ~ 3.3%, C: 0.025 ~ 0.045%, P: 0.015% or less, dissolved Al: 0.008 ~ 0.020%, N: 0.0080 ~ 0.012%, S: 0.007% or less, Mn: 0.12 ~ 0.42% Below, silicon steel slab consisting of Cu: 0.6% or less and Fe and other unavoidable impurities is reheated to 1250-1340 ° C. at low temperature, hot rolled and then hot rolled at 1000 ° C. or lower in a wet atmosphere. Adjust the final thickness by two cold rolling including decarbonization annealing, then recover and anneal in a dry atmosphere below 600 ℃, apply MgO-based fusion inhibitor, dry it and wind it up to make a coil, and wound coil 100% In the method of manufacturing a low-temperature reheat oriented electrical steel sheet by performing a high temperature annealing that is cooled after cracking for more than 20 hours at a temperature of 1200 ± 10 ° C. while maintaining a temperature rising rate of 700-1200 ° C. over 15 ° C./hr in a hydrogen atmosphere. , 상기 융착방지제는 MgO: 12~13중량%, MgO대비 TiO2:1-2중량%, 황산마그네슘 또는 황산알미늄중 선택된 1종을 MgO 대비 0.5-2중량%를 포함함을 특징으로 하는 방향성전기강판의 엣지부 판붙음 방지방법.The fusion inhibitor is a grain-oriented electrical steel sheet characterized in that it comprises MgO: 12 ~ 13% by weight, TiO 2 : 1-2% by weight compared to MgO, magnesium sulfate or aluminum sulfate 0.5-2% by weight compared to MgO To prevent edge sticking
KR1019980022527A 1998-06-16 1998-06-16 Preventing method against edge adhesion in high temperature annealing of low temperature reheating directional electric steel plate KR20000001998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980022527A KR20000001998A (en) 1998-06-16 1998-06-16 Preventing method against edge adhesion in high temperature annealing of low temperature reheating directional electric steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980022527A KR20000001998A (en) 1998-06-16 1998-06-16 Preventing method against edge adhesion in high temperature annealing of low temperature reheating directional electric steel plate

Publications (1)

Publication Number Publication Date
KR20000001998A true KR20000001998A (en) 2000-01-15

Family

ID=19539633

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980022527A KR20000001998A (en) 1998-06-16 1998-06-16 Preventing method against edge adhesion in high temperature annealing of low temperature reheating directional electric steel plate

Country Status (1)

Country Link
KR (1) KR20000001998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797989B1 (en) * 2006-10-11 2008-01-28 주식회사 포스코 Edge part sticky prevention apparatus of coil type oriented electrical steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797989B1 (en) * 2006-10-11 2008-01-28 주식회사 포스코 Edge part sticky prevention apparatus of coil type oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP5479448B2 (en) Method for producing directional silicon steel with high electromagnetic performance
KR101651431B1 (en) Method of manufacturing oriented electrical steels
JP5040131B2 (en) Manufacturing method of unidirectional electrical steel sheet
EP0484904B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
KR100797997B1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR101353550B1 (en) Grain-oriented electrical steel sheet and manufacturing method for the same
KR101089303B1 (en) Method for making forsterite film of grain-oriented electrical steel sheets
KR101410474B1 (en) Gran-oriented electrical steel sheet and manufacturing method for the same
KR100435478B1 (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR20090020046A (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
KR20000001998A (en) Preventing method against edge adhesion in high temperature annealing of low temperature reheating directional electric steel plate
KR102171694B1 (en) Grain oriented electrical steel sheet and manufacturing method of the same
KR100340565B1 (en) A method of preventing sticking in the edge part of grain oriented electrical steel sheet
KR100340506B1 (en) A Method of spraying MgO agent on Oriented Electrical Steel Sheet for Preventing Sticking of its edge parts
KR20000008646A (en) Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating
JP2006316314A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property and film property
KR100325534B1 (en) Method for manufacturing grain oriented silicon steel sheet
KR20140131790A (en) Gran-oriented electrical steel sheet and manufacturing method for the same
KR100435456B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film
KR101059216B1 (en) Method for manufacturing oriented electrical steel sheet with excellent glass coating properties
KR100268855B1 (en) The manufacturing method of oriented steelsheet with low reheat treatment
KR100435477B1 (en) A method for manufacturing grain-oriented electrical steel sheet having no surface defects and superior punching property
KR100435479B1 (en) A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property
KR100241003B1 (en) The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property
KR100340500B1 (en) A Method for Manufacturing Oriented Electrical Steel Sheets Having Superior Decarburization within Shot Annealing-time

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application