KR19990072967A - Manufacture of flip-chip devices - Google Patents

Manufacture of flip-chip devices Download PDF

Info

Publication number
KR19990072967A
KR19990072967A KR1019990006458A KR19990006458A KR19990072967A KR 19990072967 A KR19990072967 A KR 19990072967A KR 1019990006458 A KR1019990006458 A KR 1019990006458A KR 19990006458 A KR19990006458 A KR 19990006458A KR 19990072967 A KR19990072967 A KR 19990072967A
Authority
KR
South Korea
Prior art keywords
layer
photoresist
substrate
solder
lower bump
Prior art date
Application number
KR1019990006458A
Other languages
Korean (ko)
Other versions
KR100682284B1 (en
Inventor
알퀴스트루이스넬스
데가니이논
Original Assignee
루센트 테크놀러지스 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 루센트 테크놀러지스 인크 filed Critical 루센트 테크놀러지스 인크
Publication of KR19990072967A publication Critical patent/KR19990072967A/en
Application granted granted Critical
Publication of KR100682284B1 publication Critical patent/KR100682284B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05164Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05171Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05671Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

본 발명은 상호 연결된 기판 상에 땜납 범프 상호 연결을 위해 하위 범프 금속화(UBM)에 적용하기 위한 공정을 개시하고 있다. 이러한 공정은 UBM을 한정하기 위한 리프트-오프(lift-off) 기술을 사용하고, 이 리프트-오프 기술은 석판 패턴화 후 포토레지스트의 광선 경화의 결과로서 개선된 에지 해상도를 갖는다.The present invention discloses a process for application to lower bump metallization (UBM) for solder bump interconnection on interconnected substrates. This process uses a lift-off technique to define the UBM, which has improved edge resolution as a result of photocuring of the photoresist after lithographic patterning.

Description

플립-칩 장치 제조 방법{Manufacture of flip-chip devices}Manufacture of flip-chip devices

본 발명은 다중 칩 모듈(MCM) 플립-칩(flip-chip) 장치의 제조 방법 및 플립 칩 결합을 위한 땜납 습윤성 금속 접촉을 형성하는 기술에 관한 것이다.The present invention relates to a method of manufacturing a multi-chip module (MCM) flip-chip device and to a technique for forming solder wettable metal contacts for flip chip bonding.

종래의 반도체 장치 패키징의 전형적인 상태는 전형적으로 패키지되지 않은 집적 회로(IC) 칩들 또는 노출된 다이가 실리콘, 세라믹, 또는 에폭시-유리 라미네이트의 단일 기판 상으로 기계적으로 및 전기적으로 모두 접속된 고밀도의 상호 연결된 구조물을 사용한다. 상호 연결 기술, 기판 물질 및 결합 처리 단계, 예를들면 클리닝의 선택은 모두 전체적인 어셈블리 기술을 정의하는 데 있어서 중요한 역할을 하며, MCM 단가 및 신뢰도에 영향을 미친다. 여러 가지 상호 연결 기술이 노출된 다이를 MCM 기판 상에 어셈블하기 위해 마이크로 전자 공업계에 사용되어 왔다. 이들 기판은 IC들 간의 전기적 상호 연결을 위한 "구조물(fabric)"로서 및 구조적 지지체로서 작용한다. 전형적으로 MCM은 여러 가지 공지된 기술, 즉, 와이어 본딩, 테이프 자동화 결합(TAB) 및 플립-칩 납땜 중의 하나를 사용하여 어셈블된다.Typical states of conventional semiconductor device packaging typically include high density interconnects in which unpackaged integrated circuit (IC) chips or exposed die are both mechanically and electrically connected onto a single substrate of silicon, ceramic, or epoxy-glass laminate. Use connected structures. The choice of interconnect technology, substrate material, and bonding process steps, such as cleaning, all play an important role in defining the overall assembly technology, affecting MCM cost and reliability. Various interconnect technologies have been used in the microelectronics industry to assemble exposed dies on MCM substrates. These substrates act as "fabrics" and as structural supports for electrical interconnections between ICs. Typically MCMs are assembled using one of several known techniques, namely wire bonding, tape automated bonding (TAB), and flip-chip soldering.

일반적으로, MCM 패키지의 디자인은 제조업체의 특정 능력, MCM 구조, 재료의 상대적 단가 및 요구되는 I/O 구조 및 밀도에 의존한다. 다시 말해, 상호 연결 기술 및 클리닝 공정의 선택은 높은 수율 및 제품 신뢰도를 위해 필요한 어셈블리 공정을 정의하는 데 중요한 역할을 한다.In general, the design of an MCM package depends on the manufacturer's specific capabilities, the MCM structure, the relative cost of the material, and the required I / O structure and density. In other words, the choice of interconnect technology and cleaning process plays an important role in defining the assembly process required for high yield and product reliability.

가장 일반적이고, 명목상으로 가장 낮은 단가의 상호 연결 기술은 와이어 본딩이다. 그러나, 와이어 본딩 연결은 많은 큰 밑넓이를 갖는 단점이 있으므로, 큰 기판을 초래하고 필연적으로 치밀하지 못한 MCM을 초래한다. 전자 공학 제법에 잘 알려진 바와 같이, 어셈블리에서 임의의 특징물의 증가된 크기는 직접적으로 증가된 단가로 나타난다. 더욱이, MCM 모듈에서, 모듈의 크기를 증가시키는 것은 상호 결합 길이를 증가시키고, 증가된 리드 인덕턴스 및 저항, 및 전자 성능의 저하를 유도한다. 더욱이, 전형적인 와이어 본딩 장치, 예를들면 스티치 결합기는 결합을 한 번에 하나로 만들고, 개선된 고속 결합기에 의해서 조차 시간 소비 오퍼레이션이 오늘날 이용되고 있다.The most common and nominally lowest cost interconnect technology is wire bonding. However, wire bonding connections have the disadvantage of having many large footprints, which results in large substrates and inevitably a dense MCM. As is well known in electronics manufacturing, the increased size of any feature in the assembly results in a directly increased cost. Moreover, in an MCM module, increasing the size of the module increases the mutual coupling length, leading to increased lead inductance and resistance, and a decrease in electronic performance. Moreover, typical wire bonding devices, such as stitch couplers, make the bonds one at a time and even time-consuming operations are used today even with improved high speed couplers.

TAB 결합은 보다 작은 밑넓이 및 부분 배치 처리라는 장점을 갖는다. 그러나, TAB 어셈블리는 일반적으로 각각의 IC 디자인에 대한 상이한 세공을 요하며, 이러한 본딩 기술에 현저한 비용을 덧부친다. 더욱이, TAB 어셈블리는 IC 디자인 융통성을 제한하는 주변 I/O 배열의 상호 연결로 제한된다. 주변 I/O 패드는 전형적으로 보다 큰 피치를 갖고, 따라서 플립-칩 땜납 본딩에 따라 사용될 수 있는 구역 I/O 배열보다 낮은 전체 I/O 밀도를 갖는다. 또한, TAB 결합된 상호 연결은 전형적으로 플립-칩 결합된 상호 연결보다 큰 커패시턴스 및 큰 와류(parasitic) 인덕턴스를 보여준다.TAB binding has the advantage of smaller footprint and partial batch processing. However, TAB assemblies generally require different pores for each IC design and add significant cost to this bonding technique. Moreover, TAB assemblies are limited to the interconnection of peripheral I / O arrays that limit IC design flexibility. Peripheral I / O pads typically have a larger pitch and therefore lower overall I / O density than the area I / O arrangements that can be used with flip-chip solder bonding. In addition, TAB coupled interconnects typically exhibit greater capacitance and larger parasitic inductance than flip-chip coupled interconnects.

현재 플립-칩 본딩은 주변 또는 구역 I/O 배열 모두에 가장 큰 I/O 밀도로 최상의 성능을 제공하는 것으로 인식되고 있다. 더욱이, 플립-칩 결합은 본래 고속의 높은 처리량의 제조 방법을 조장하는 배치 어셈블리 공정이다. 그러나, 여러 가지 이유 때문에, 플립-칩 MCM 어셈블리는 통상적으로 공지된 어셈블리 기술들 중에서 가장 고가의 기술로 간주된다. 이는 특히 상호 연결 기판으로서 다중층 동시 소성된 세라믹(MCM-C), 또는 증착된 박막 세라믹 또는 실리콘 기판(MCM-D)을 종종 사용하는 고성능 MCM 디자인에 대해 들어맞는다. 보다 단가가 낮은 대용물은 전형적으로 인쇄된 와이어링 보드, 즉, 에폭시-유리 섬유 라미네이트이다. 그러나, I/O 카운트 및 밀도가 종래의 어셈블리 상태에서 증가함에 따라, 실리콘은 단가 경쟁력이 있게 되고, 고성능 용도에 선택되는 상호 연결 기판을 대표한다.Flip-chip bonding is now recognized to provide the best performance at the largest I / O densities in both peripheral or regional I / O arrays. Moreover, flip-chip bonding is a batch assembly process that inherently promotes high speed, high throughput manufacturing methods. However, for various reasons, flip-chip MCM assemblies are typically considered the most expensive of the known assembly techniques. This is particularly true for high performance MCM designs that often use multilayer co-fired ceramic (MCM-C), or deposited thin film ceramic or silicon substrates (MCM-D) as interconnect substrates. Lower cost substitutes are typically printed wiring boards, ie epoxy-glass fiber laminates. However, as I / O counts and densities increase in conventional assembly conditions, silicon becomes cost competitive and represents an interconnect substrate of choice for high performance applications.

플립-칩 기술을 사용하는 전자 패키지의 어셈블리는 특히 컴퓨터 및 컴퓨터 주변 기기의 제조에서 지배적인 기술이다. 또한, 이 기술은 통신 네트워크 제품용의 전자 및 포토닉스 패키지의 어셈블리에 널리 사용된다. 플립-칩 어셈블리의 본질은 실리콘 웨이퍼, 세라믹 기판, 또는 인쇄된 회로 기판 등의 상호 연결 기판 상에 반도체 기판을 "거꾸로(upside-down)" 부착하는 것이다. 부착 수단은 전형적으로 볼, 패드, 또는 범프 형태의 땜납(이하 총칭적으로 범프라 칭함)이다. 땜납 범프는 반도체 칩 또는 상호 연결 기판, 또는 이들 모두에 적용될 수 있다. 본딩 동작에서, 칩은 기판과 접촉하게 놓이고, 땜납은 이 땜납을 환류시키고, 칩을 기판 상에 부착시키도록 가열된다. 성공적인 본딩을 위해, 땜납이 결합되는 부위는 땜납에 의해 습윤될 필요가 있다.Assembly of electronic packages using flip-chip technology is particularly dominant in the manufacture of computers and computer peripherals. The technology is also widely used in the assembly of electronic and photonics packages for communication network products. The essence of flip-chip assemblies is to "upside-down" a semiconductor substrate onto an interconnect substrate, such as a silicon wafer, a ceramic substrate, or a printed circuit board. The attachment means is typically solder in the form of balls, pads, or bumps (hereinafter collectively referred to as bump primers). Solder bumps can be applied to semiconductor chips or interconnect substrates, or both. In the bonding operation, the chip is placed in contact with the substrate and the solder is heated to reflux the solder and attach the chip on the substrate. For successful bonding, the area where the solder is bonded needs to be wetted by the solder.

집적 회로 기판 또는 카드에 전형적으로 사용되는 금속 상호 연결 패턴은 알루미늄이다. 알루미늄에 직접적으로 납땜하기 위한 기술들이 시도되어 왔지만, 알루미늄이 납땜에 바람직한 물질이 아니라는 것은 잘 알려져 있다. 결과적으로, 업계의 관행은 알루미늄 접촉 패드 상에 금속 코팅을 도포하고, 이 코팅에 땜납 범프 또는 패드를 인가하는 것이다. 금속 코팅은 전형적으로 하위 범프 금속화(UBM)라 칭한다.The metal interconnect pattern typically used for integrated circuit boards or cards is aluminum. Techniques for soldering directly to aluminum have been tried, but it is well known that aluminum is not a desirable material for soldering. As a result, industry practice is to apply a metal coating on aluminum contact pads and apply solder bumps or pads to the coating. Metal coatings are typically referred to as lower bump metallization (UBM).

UBM 기술에 사용된 금속 또는 금속들은 알루미늄에 잘 부착되어야 하고, 전형적인 주석 땜납 조성물에 의해 습윤될 수 있고, 고도로 전도성이어야 한다. 이들 요건에 부합되는 구조는 크롬과 구리의 착물이다. 크롬이 먼저 증착되어 알루미늄에 부착되고, 구리가 크롬 위에 도포되어 땜납 습윤성 표면을 제공한다. 크롬은 무기 물질 뿐만 아니라 유기 물질 등의 여러 가지 물질에 잘 부착되는 것으로 알려져 있다. 따라서, 크롬은 구리 및 알루미늄 등의 금속에 대해서 뿐만 아니라 유전성 물질, 예를들면 IC 처리에 통상적으로 사용된 SiO2, SINCAPS, 폴리이미드 등에 잘 부착된다. 그러나, 땜납 합금은 구리를 용해시키고 크롬으로부터 수분을 제거한다. 따라서, 크롬 바로 위의 구리 박층은 용융된 땜납에 용해되고, 이어서 땜납은 크롬층으로부터 수분 제거될 것이다. 땜납과 UBM 간의 인터페이스 보전을 보장하기 위해, 크롬과 구리의 착물 또는 합금층이 전형적으로 크롬층과 구리층 사이에 사용된다.The metal or metals used in the UBM technique should adhere well to aluminum, be wettable by typical tin solder compositions, and be highly conductive. Structures meeting these requirements are complexes of chromium and copper. Chromium is first deposited and attached to aluminum, and copper is applied over chromium to provide a solder wettable surface. Chromium is known to adhere well to various materials such as organic materials as well as inorganic materials. Thus, chromium adheres well to metals such as copper and aluminum, as well as to dielectric materials such as SiO 2 , SINCAPS, polyimide, and the like commonly used in IC processing. However, solder alloys dissolve copper and remove moisture from chromium. Thus, a thin layer of copper just above the chromium will dissolve in the molten solder, and the solder will then be dehydrated from the chromium layer. In order to ensure the integrity of the interface between the solder and the UBM, a complex or alloy layer of chromium and copper is typically used between the chromium layer and the copper layer.

상기 층들은 종래와 같이 스퍼터링되므로, 이들을 증착하기 위한 몇 가지 옵션을 편리하게 입수할 수 있다. 이 층은 합금 타겟으로부터 스퍼터링될 수 있다. 이는 크롬 타겟을 사용하여 스퍼터링될 수 있고, 이어서 구리 타겟으로 변화될 수 있다. 또는 이는 별개의 크롬 및 구리 타겟 및 이들 두 타겟 간의 천이를 이용하여 스퍼터링될 수 있다. 후자를 선택하면 분류된 조성을 갖는 층을 생산하므로, 이것이 바람직한 기술이다.Since the layers are sputtered as in the prior art, several options for depositing them are conveniently available. This layer can be sputtered from the alloy target. It can be sputtered using a chromium target and then converted to a copper target. Or it can be sputtered using separate chromium and copper targets and transitions between these two targets. The latter choice produces a layer with a sorted composition, which is the preferred technique.

그러한 구조물을 형성하는 데 있어서, 기재된 용인된 관행은 착물 층의 선택적 증착을 위한 추가 공정을 사용하는 것이다. 추가의 공정들은 공지되어 있으며, 통상적으로 리프트-오프(lift-off) 기술을 사용하여 구현된다. 그러나, 리프트-오프 공정은 본래 UBM을 증착시키기에 바람직한 기술, 예를들면 스퍼터링과 친화될 수 없다. 스퍼터링 시에 기판인 UBM은 100℃를 초과하는 온도에 이른다. 이들 온도에서, 리프트-오프 공정에 사용된 포토레지스트는 치수 변형되고, 포토레지스트 패턴의 에지 첨도(acuity)가 악화된다. 더욱이, 아래 놓인 기판에 대한 UBM의 접착을 개선하기 위해, 표면을 백 스퍼터링하여 이를 거칠게 만드는 것이 관례이다. 이러한 공정에서, 기판 및 포토레지스트는 역시 100℃를 초과하는 온도까지 가열되어, 공정에 대한 불친화도를 덧부친다.In forming such a structure, the accepted practice described is to use an additional process for selective deposition of the complex layer. Additional processes are known and are typically implemented using lift-off techniques. However, the lift-off process is inherently incompatible with the desired technique for depositing UBM, such as sputtering. In sputtering, the substrate UBM reaches temperatures in excess of 100 ° C. At these temperatures, the photoresist used in the lift-off process is dimensionally deformed and the edge acuity of the photoresist pattern is deteriorated. Moreover, in order to improve the adhesion of the UBM to the underlying substrate, it is customary to back sputter the surface to make it rough. In this process, the substrate and photoresist are also heated to temperatures above 100 ° C., adding an incompatibility to the process.

본 발명에 따라, 통상적인 처리 단계, 예를들면 스퍼터링, 백 스퍼터링 및 이온 밀링(ion milling)과 연관된 비교적 고온의 사용을 허용하는 하위 범프 이온화를 적용한 공정에 있어서 개선이 이루어진다. 이는 고온 처리 전에 패턴을 치수 안정화시키기 위해 리프트-오프에 사용된 포토레지스트를 처리함으로써 달성된다. 이러한 처리는 포토레지스트가 석판 인쇄에 의해 패턴화된 후 화학선 교차 결합 단계를 포함한다.In accordance with the present invention, improvements are made in processes employing sub-bump ionization which allows for the use of relatively high temperatures associated with conventional processing steps such as sputtering, back sputtering and ion milling. This is accomplished by treating the photoresist used for lift-off to dimensional stabilize the pattern before the high temperature treatment. This treatment includes actinic crosslinking after the photoresist is patterned by lithography.

도 1은 상호 연결된 기판 및 이 기판 상에 칩을 조립하기 직전에 땜납 범프된 플립 칩의 일부의 개략도.1 is a schematic representation of an interconnected substrate and a portion of a solder bumped flip chip just prior to assembling the chip on the substrate.

도 2는 하위 범프 금속화에 제공된 땜납 범프 결합 부위를 갖는 플립-칩의 개략도.2 is a schematic representation of a flip-chip with solder bump bond sites provided in lower bump metallization.

도 3 내지 도 7은 본 발명에 따른 도 2의 하위 범프 금속화 패턴을 생산하기 위해 사용된 전형적인 처리 단계의 개략도.3-7 are schematic diagrams of exemplary processing steps used to produce the lower bump metallization pattern of FIG. 2 in accordance with the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

11: 상호 연결된 기판 12: 접촉 패드11: interconnected substrate 12: contact pad

13: 플립 칩 14: I/O 접촉 패드13: flip chip 14: I / O contact pad

15, 32: 땜납 범프 21, 31: UBM 층15, 32: solder bumps 21, 31: UBM layer

22: 폴리이미드 보호층 24: 접촉 패드22: polyimide protective layer 24: contact pad

26: 포토레지스트 층 27: 윈도우26 photoresist layer 27 window

본 발명의 반도체 장치의 제조 방법에 따르면,According to the manufacturing method of the semiconductor device of the present invention,

기판 상의 금속 층이,The metal layer on the substrate,

a. 상기 기판 상에 포토레지스트 층을 도포하는 단계,a. Applying a photoresist layer on the substrate,

b. 상기 포토레지스트에 윈도우들을 형성하기 위해 상기 포토레지스트를 패턴화하는 단계,b. Patterning the photoresist to form windows in the photoresist,

c. 상기 패턴화된 포토레지스트 상에 금속화 층을 증착시키는 단계, 및c. Depositing a metallization layer on the patterned photoresist, and

d. 상기 기판으로부터 상기 포토레지스트 층을 제거함으로써 리프트-오프에 의해 상기 금속화층을 패턴화시키고, 상기 윈도우들에 상기 금속화의 부분들을 남기는 단계에 의해 패턴화되는 반도체 장치 제조 방법에 있어서, 상기 금속화 층을 증착시키는 단계 전에 UV선의 플럭스에 상기 패턴화된 포토레지스트를 노출시키는 단계를 수행하는 것을 특징으로 한다.d. A method of manufacturing a semiconductor device, wherein the metallization layer is patterned by lift-off by removing the photoresist layer from the substrate and patterned by leaving portions of the metallization in the windows. Exposing the patterned photoresist to a flux of UV radiation prior to depositing the layer.

도 1을 참조하여, 실리콘 상호 연결된 기판(11)의 절개부는 상호 연결된 기판 상의 러너(도시하지 않음)와 상호 연결된 접촉 패드(12)와 함께 나타낸다. 플립 칩(13)은 각각 땜납 범프(15)를 갖는 I/O 접촉 패드(14)의 배열과 함께 나타낸다. 전체적인 상호 연결 기판은 몇 개의 플립-칩 부위를 포함할 수 있거나 또는 도시한 칩을 지지하는 중간 상호 연결 기판일 수 있다. 본 명세서에 일반적으로 기재된 기술 및 본 발명은 광범위한 땜납 설치 장치를 커버하며, 세라믹 기판 및 에폭시 인쇄된 와이어링 보드 등의 기타 상호 연결 기판에 적용된다. 당업계의 숙련자들은 땜납 범프가 플립-칩 상의 접촉 패드 또는 상호 연결된 기판 상의 패드 또는 이들 모두와 접촉하도록 도포될 수 있음을 이해할 수 있을 것이다. 본 발명의 하기 설명에서, 땜납 범프는 플립-칩에 도포된다.Referring to FIG. 1, a cutout of a silicon interconnected substrate 11 is shown with contact pads 12 interconnected with runners (not shown) on the interconnected substrates. Flip chips 13 are shown with an array of I / O contact pads 14 each having solder bumps 15. The overall interconnect substrate may comprise several flip-chip portions or may be an intermediate interconnect substrate supporting the illustrated chip. The techniques generally described herein and the present invention cover a wide range of solder installation devices and apply to ceramic substrates and other interconnect substrates such as epoxy printed wiring boards. Those skilled in the art will appreciate that solder bumps may be applied to contact contact pads on flip-chips or pads on interconnected substrates or both. In the following description of the invention, solder bumps are applied to flip-chips.

상기한 바와 같이, 땜납 접합될 두 소자 상의 접촉 패드는 UBM을 구비하고 있다. UBM 층들은 땜납 범프 및 접촉 패드에 비해 얇고 도 1에 도시하지 않는다. UBM은 설명하기 위해 과장된 두께로 도 2에서 21로 나타낸다. 도 2는 알루미늄 러너(도시하지 않음)를 커버하는 전형적인 폴리이미드 보호층(22) 및 접촉 패드(24) 부분을 나타낸다. 접촉 패드는 알루미늄, 구리 또는 기타 적절한 금속화 물질일 수 있다. 이들 패드는 IC(도시하지 않음)의 필드 산화물 상에 전형적으로 형성되고, 보호용의 최종 폴리이미드 코팅(22)은 접촉 패드 위에 증착된다. 접촉 윈도우들은 바람직하게는 광 한정(photodefinition) 공정에 의해 폴리이미드층 내에 형성된다. 하위 범프 금속화 층(21)은 폴리이미드 윈도우에 형성된다. IC 처리의 이들 양상은 잘 알려져 있다. 단일층으로서 하지만 상기한 바와 같이 나타낸 UBM 층(21)은 Cr 및 Cu의 착물층이 바람직하다. 대안으로, 이 층은 Ti-Pd-Au, Ti-Ni-Au, 또는 기타 적절한 물질일 수 있다.As mentioned above, the contact pads on the two elements to be solder bonded have UBMs. UBM layers are thinner than solder bumps and contact pads and are not shown in FIG. 1. UBM is shown in FIG. 2 in FIG. 2 shows a typical polyimide protective layer 22 and contact pad 24 portion covering an aluminum runner (not shown). The contact pads may be aluminum, copper or other suitable metallization material. These pads are typically formed on the field oxide of an IC (not shown), and a protective final polyimide coating 22 is deposited over the contact pads. Contact windows are preferably formed in the polyimide layer by a photodefinition process. Lower bump metallization layer 21 is formed in the polyimide window. These aspects of IC processing are well known. The UBM layer 21, shown as a single layer but described above, is preferably a complex layer of Cr and Cu. Alternatively, this layer may be Ti-Pd-Au, Ti-Ni-Au, or other suitable material.

본 발명에 따라 도 2의 구조물을 생산하기 위해 사용된 공정 단계들은 도 3-7로서 나타낸다.The process steps used to produce the structure of FIG. 2 according to the invention are shown as FIGS. 3-7.

도 3에는 UBM의 형성 전의 플립-칩(13)을 나타낸다. 도 3를 참조하면, 포토레지스트 층(26)은 종래 수단을 사용하여 플립-칩 기판(13) 상에 스핀 코팅된다. 포토레지스트는 석판 인쇄에 의해 패턴화되고, 윈도우들(27)은 도 4에 나타낸 바와 같이 접촉 패드 배열 위에서 개방된다. 사용된 포토레지스트 공정은 리프트-오프를 위해 공지된 몇몇 종래 공정들 중의 하나이다. 포토레지스트 패턴 내의 윈도우들은 리프트-오프 후에 양호한 에지 해상도를 제공하도록 반대 각으로 재도입되는 것이 바람직하다. 반대 각 윈도우를 생성하기 위해, 이중-레벨 또는 삼중-레벨 레지스트는 현상 후 언더커트를 형성하기 위해 자주 사용된다. 단일 포토레지스트 레벨 만을 요하는 다른 옵션은 레지스트의 톤을 역전시키기 위해 포토레지스트와 첨가제를 혼합시키는 것이다. 반대 각을 갖는 윈도우들이 형성된다. 이러한 포토레지스트 기술에 대한 설명은 문헌[H. Klose, R. Sigush, W. Arden, "양성 포토레지스트의 반대 화상:특성화 및 모델링(Image Reversal of Positive Photoresist: Characterization and Modeling)", IEEE Transactions on Electron Devices, Vol. 제32판, 제9호, 1985년 9월]에 제공되어 있다.3 shows a flip chip 13 before formation of the UBM. Referring to FIG. 3, photoresist layer 26 is spin coated onto flip-chip substrate 13 using conventional means. The photoresist is patterned by lithography and the windows 27 are opened over the contact pad array as shown in FIG. 4. The photoresist process used is one of several conventional processes known for lift-off. The windows in the photoresist pattern are preferably reintroduced at opposite angles to provide good edge resolution after lift-off. To create opposite angle windows, double-level or triple-level resists are often used to form undercuts after development. Another option requiring only a single photoresist level is to mix the photoresist with additives to reverse the tone of the resist. Windows with opposite angles are formed. For a description of this photoresist technique, see H. Klose, R. Sigush, W. Arden, "Image Reversal of Positive Photoresist: Characterization and Modeling", IEEE Transactions on Electron Devices, Vol. 32nd Edition, 9, September 1985].

윈도우들을 패턴화시킨 후 남아있는 포토레지스트 물질이 광선에 과도하게 노출된다. 이 광선은 화살표(28)로 도 4에 나타낸다. 광원은 UV선의 임의의 소스일 수 있다. 이 광선은 패턴을 노출시키기 위해 사용된 동일한 광원일 수 있다. 그러나, 선량은 적어도 5의 인자만큼 실질적으로 더 크고, 적어도 20의 인자만큼 큰 것이 바람직하다. 이 선량은 전체적으로 누적된 플럭스의 견지에서 측정되고 10-200 주울/cm2범위인 것이 전형적이다. 이 광선은 패턴 노출과 유사한 방식으로 자유 라디칼의 형성을 유발하지만, 많은 선량으로 인해 자유 라디칼의 수는 훨씬 더 커지고, 현저하게 더 많은 교차 결합을 초래한다.After patterning the windows, the remaining photoresist material is excessively exposed to light. This ray is shown in FIG. 4 by arrow 28. The light source can be any source of UV rays. This ray may be the same light source used to expose the pattern. However, the dose is substantially greater by a factor of at least 5, and preferably as high as at least 20 factors. This dose is measured in terms of total accumulated flux and is typically in the range of 10-200 joules / cm 2 . This light causes the formation of free radicals in a manner similar to pattern exposure, but due to the high dose the number of free radicals is much larger, resulting in significantly more crosslinks.

큰 UV 선량으로부터 과도한 가교 결합의 결과로서, 패턴이 경화되고, 현저한 치수 변형 없이 후속 고온 처리를 견디기에 충분히 강해진다. 이러한 맥락에서 "고온" 체제는 100℃를 초과한다. 경화 공정 및 그와 연관된 화학적 성질에 대한 상세한 설명은 문헌[Mohondro 등, "광 안정화: 개선된 공정(Photostabilization: The Process of Improvement)", Future Fab International, 235-247페이지]에 기재되어 있으며, 이를 참고 문헌으로서 본 명세서에 인용한다.As a result of excessive crosslinking from large UV doses, the pattern cures and becomes strong enough to withstand subsequent high temperature treatments without significant dimensional deformation. In this context, the "hot" regime exceeds 100 ° C. A detailed description of the curing process and its associated chemical properties is described in Mohondro et al., “Photostabilization: The Process of Improvement”, Future Fab International, pp. 235-247. It is incorporated herein by reference.

이어서, 포스트 석판 인쇄 광선 처리된 웨이퍼는 스퍼터링 장치에 놓이고, UBM이 증착된다. 상기한 바와 같이, 바람직한 UBM은 Cr과 Cu의 다중층 착물이다. 그러나, 이것은 단지 여러 가지 적절한 UBM 물질들 중의 하나이고, 이들중 임의의 것이 본 발명의 내용에 따라 적용될 수 있음을 이해할 수 있을 것이다.The post lithographic light treated wafer is then placed in a sputtering apparatus and UBM is deposited. As noted above, preferred UBMs are multilayer complexes of Cr and Cu. However, it will be appreciated that this is just one of several suitable UBM materials, and that any of these may be applied in accordance with the teachings of the present invention.

UBM에 대한 다중층들은 순차로 증착되어 복합 층들의 Cr-Cr/Cu-Cu 구조를 형성한다. 복합 UBM은 단일층(31)으로서 도 5에 나타낸다. UBM 층은 윈도우들에 노출된 접촉 패드(24) 및 도시된 바의 포토레지스트 층(26)의 상단에 증착된다.Multiple layers for UBM are deposited sequentially to form Cr-Cr / Cu-Cu structures of the composite layers. The composite UBM is shown in FIG. 5 as a single layer 31. The UBM layer is deposited on top of the contact pads 24 exposed to the windows and the photoresist layer 26 as shown.

바람직한 실시예에서, 개개의 층들은 크롬 타겟 및 구리 타겟 모두를 함유하는 스퍼터링 장치에서 스퍼터링된다. 스퍼터링 기술은 잘 알려져 있으므로, 이에 대해 상세히 설명할 필요가 없다.In a preferred embodiment, the individual layers are sputtered in a sputtering apparatus containing both a chromium target and a copper target. Sputtering techniques are well known and need not be described in detail.

제 1 층은 500-5000Å, 바람직하게는 1000-3000Å 치수의 두께를 갖는 크롬이다. 크롬은 알루미늄 접촉(24)에 잘 접착될 뿐만 아니라 구조물 내에 존재하는 유전층들에도 부착된다. 크롬은 내화 물질이기도 하며, 알루미늄 접촉과 마모 저항 인터페이스를 형성한다. 제 2 층은 크롬층과 순차로 형성된 구리 층 간에 땜납 습윤성 및 야금술적으로 안전한 인터페이스를 제공하는 Cr/Cu의 얇은 천이 층이다. 상기한 바와 같이, 층(31)은 크롬 및 구리 타겟 모두와 함께 장치 내에서 스퍼터링 및 타겟들 간의 천이에 의해 형성되는 것이 바람직하다. 이는 순수한 크롬과 순수한 구리 사이에 변화하는 조성을 갖는 동시-스퍼터링된 층을 초래한다. 천이 층의 두께는 1000-5000Å, 바람직하게는 2000-3000Å의 치수이다.The first layer is chromium having a thickness of 500-5000 mm 3, preferably 1000-3000 mm 3. Chromium not only adheres well to aluminum contacts 24 but also to dielectric layers present in the structure. Chromium is also a refractory material and forms an aluminum contact and wear resistance interface. The second layer is a thin transition layer of Cr / Cu that provides a solder wettability and metallurgically safe interface between the chromium layer and the sequentially formed copper layer. As noted above, the layer 31 is preferably formed by sputtering and transition between targets in the apparatus, with both chromium and copper targets. This results in a co-sputtered layer having a varying composition between pure chromium and pure copper. The thickness of the transition layer is in the range of 1000-5000 mm 3, preferably 2000-3000 mm 3.

다음 층은 1000-10000Å, 바람직하게는 2000-6000Å 치수의 두께를 갖는 구리층이다. 구리 층은 땜납 범프에 통상적으로 사용되는 땜납 물질과 습윤될 수 있다. 주석 땜납과의 대부분의 구리 공융 혼합물의 융점은 비교적 낮고, 납땜 온도에서 구리층의 표면은 물리적으로 및 전기적으로 안전한 결합을 형성하는 땜납 범프에 용해된다. 심지어 모든 구리가 땜납 층에 용해되더라도, 땜납은 Cr/Cu 층을 여전히 접착시키고, 습윤시킬 것이다.The next layer is a copper layer with a thickness of 1000-10000 mm 3, preferably 2000-6000 mm 3. The copper layer can be wetted with the solder material conventionally used for solder bumps. The melting point of most copper eutectic mixtures with tin solder is relatively low, and at soldering temperatures the surface of the copper layer dissolves in solder bumps that form a physically and electrically safe bond. Even if all the copper is dissolved in the solder layer, the solder will still adhere and wet the Cr / Cu layer.

임의의 금 층이 구리 표면의 산화를 억제하기 위해 구리층의 표면에 도포될 수 있다. 임의의 금 층은 500-3000Å, 바람직하게는 1000-2000Å의 두께를 갖는다.Any gold layer can be applied to the surface of the copper layer to inhibit oxidation of the copper surface. Any gold layer has a thickness of 500-3000 mm 3, preferably 1000-2000 mm 3.

UBM 층(31)의 증착 후, 층의 목적하지 않는 부분들은 아세톤 등의 포토레지스트 용매에 포토레지스트 층을 용해시킴으로써 리프트-오프를 사용하여 제거한다. 리프트-오프 후 생성된 구조물은 도 6에 나타낸다.After deposition of the UBM layer 31, unwanted portions of the layer are removed using lift-off by dissolving the photoresist layer in a photoresist solvent such as acetone. The resulting structure after lift-off is shown in FIG. 6.

이어서, 땜납 범프(32)는 증착 등의 적절한 기술에 의해 UBM 층 위에 증착된다. 상기 공정에 성공적으로 사용될 수 있는 땜납 조성의 예는 다음과 같다:Solder bumps 32 are then deposited over the UBM layer by appropriate techniques such as deposition. Examples of solder compositions that can be used successfully in the process are as follows:

I II IIII II III

Sn 5 63 95Sn 5 63 95

Pb 95 37 0Pb 95 37 0

Sb 0 0 5Sb 0 0 5

본 발명의 치수 안정화 공정을 나타내기 위해, 하기 공정들이 후속되었다.In order to represent the dimensional stabilization process of the present invention, the following processes were followed.

이미다졸 1g을 Hoechst AZP-4620 양성 포토레지스트와 혼합하였다. 혼합물을 40℃까지 가열하고, 고온 플레이트로부터 제거하고, 45분 동안 가열 없이 교반시켰다. 용액을 실온에서 40초 동안 5000 RPM으로 실리콘 상호 연결 기판 상에 스핀-코팅하였다. 생성된 포토레지스트 두께는 5.5 μm였다. UBM 층은 전형적으로 0.5-1.0μm이기 때문에, 포토레지스트층은 적절한 리프트-오프를 보장하기 위해 UBM 층보다 실질적으로 더 두꺼워야 하고, 예를들면 0.2 μm보다 더 두꺼워야 한다.1 g of imidazole was mixed with Hoechst AZP-4620 positive photoresist. The mixture was heated to 40 ° C., removed from the hot plate and stirred without heating for 45 minutes. The solution was spin-coated on a silicon interconnect substrate at 5000 RPM for 40 seconds at room temperature. The resulting photoresist thickness was 5.5 μm. Since the UBM layer is typically 0.5-1.0 μm, the photoresist layer should be substantially thicker than the UBM layer to ensure proper lift-off, eg thicker than 0.2 μm.

이어서, 웨이퍼는 90℃의 고온 플레이트 상에서 2분 동안 구워진다. 생성된 웨이퍼는 석판 인쇄 기구에 놓이고, 400 mj/cm2의 전체 광선 에너지를 갖는 465nm의 화학선에 의해 패턴에 노출되었다. 이어서, 노출된 웨이퍼를 105℃에서 30분 동안 구운 후, 전체 웨이퍼 표면을 1500 mj/cm2의 전체 에너지를 갖는 465 nm 광선에 과도하게 노출시켰다. 이어서, 광 석판 인쇄 패턴을 400K 현상기(3:1)에 4.5분 동안 용해시키고, DI수에서 헹구고 건조시켰다. 포스트 석판 인쇄 광선 처리는 75 j/cm2의 전체적으로 축적된 에너지를 갖는 365 nm 광선에 웨이퍼를 과도하게 노출시키는 것이다. 생성된 패턴은 견고한 것으로 밝혀졌으며, 후속 열처리에 본질적으로 영향을 받지 않았다.The wafer is then baked for 2 minutes on a hot plate at 90 ° C. The resulting wafer was placed in a lithographic apparatus and exposed to the pattern by actinic radiation at 465 nm with a total light energy of 400 mj / cm 2 . The exposed wafer was then baked at 105 ° C. for 30 minutes and then the entire wafer surface was overexposed to 465 nm light with a total energy of 1500 mj / cm 2 . The lithographic pattern was then dissolved in a 400K developer (3: 1) for 4.5 minutes, rinsed in DI water and dried. Post lithographic light treatment is overexposing the wafer to 365 nm light with an overall accumulated energy of 75 j / cm 2 . The resulting pattern was found to be solid and was not essentially affected by subsequent heat treatment.

상기 예에서 양성 포토레지스트에 사용된 첨가제는 유기 염기인 이미다졸이었다. 그러나, 다른 염기들이 사용될 수도 있다.The additive used in the positive photoresist in this example was imidazole, an organic base. However, other bases may be used.

본 발명의 방법에 대한 상기 설명에서, 땜납 범프는 상호 연결 기판에 플립 칩을 부착시키기 위한 특정 수단으로서 제안되었다. 땜납 페이스트 등의 다른 형태의 땜납이 사용될 수도 있다. 접합된 두 기판은 전형적으로 UBM을 구비하지만, 일부 기판, 예를들면, 구리 인쇄된 회로 보드들은 본 발명의 방법이 접합된 하나의 기판에만 적용될 수 있는 경우에 UBM을 요할 수 없는 결합 영역을 갖는다.In the above description of the method of the invention, solder bumps have been proposed as specific means for attaching flip chips to interconnect substrates. Other forms of solder such as solder paste may be used. Two bonded substrates typically have a UBM, but some substrates, such as copper printed circuit boards, have a bonding area that may not require UBM if the method of the present invention can be applied only to one bonded substrate. .

상기 설명에서와 같이 본 발명의 리프트-오프 기술은 플립 칩 결합을 위한 땜납 범프 패턴을 만드는 내용에 기재되어 있다. 그러나, 당업계의 숙련자들은 본 발명의 기술을 사용하여 리프트-오프 레지스트를 처리함으로써 생산된 개선된 치수 안전성이 다른 리프트-오프 금속화 공정에 적용되는 것을 이해할 것이다.As described above, the lift-off technique of the present invention is described in the making of solder bump patterns for flip chip bonding. However, those skilled in the art will understand that the improved dimensional safety produced by treating lift-off resists using the techniques of the present invention applies to other lift-off metallization processes.

본 발명의 여러 가지 추가 변형이 당업계의 숙련자들에게 발생할 것이다. 본 발명의 원리 및 당업계의 진보를 통해 이루어진 동등물에 기본적으로 의존하는 본 발명의 특정 내용으로부터의 모든 일탈은 본 명세서에 기재되고, 특허 청구된 바의 본 발명의 범위에 속하는 것으로 간주되는 것이 적절하다.Many further modifications of the invention will occur to those skilled in the art. Any deviation from the specific subject matter of the present invention, which basically depends on the principles of the invention and the equivalents made through advances in the art, is deemed to be within the scope of the invention as described herein and claimed. proper.

Claims (23)

기판 상의 금속 층이,The metal layer on the substrate, a. 상기 기판 상에 포토레지스트 층을 도포하는 단계,a. Applying a photoresist layer on the substrate, b. 상기 포토레지스트에 윈도우들을 형성하기 위해 상기 포토레지스트를 패턴화하는 단계,b. Patterning the photoresist to form windows in the photoresist, c. 상기 패턴화된 포토레지스트 상에 금속화 층을 증착시키는 단계, 및c. Depositing a metallization layer on the patterned photoresist, and d. 상기 기판으로부터 상기 포토레지스트층을 제거함으로써 리프트-오프에 의해 상기 금속화층을 패턴화시키고, 상기 윈도우들에 상기 금속화의 부분들을 남기는 단계에 의해 패턴화되는 반도체 장치 제조 방법에 있어서,d. 10. A method of fabricating a semiconductor device, the method comprising patterning the metallization layer by lift-off by removing the photoresist layer from the substrate and leaving portions of the metallization in the windows. 상기 금속화 층을 증착시키는 단계 이전에 UV선의 플럭스에 상기 패턴화된 포토레지스트를 노출시키는 단계를 수행하는 것을 특징으로 하는 반도체 장치 제조 방법.Exposing the patterned photoresist to a flux of UV radiation prior to depositing the metallization layer. 제 1항에 있어서, 상기 금속화 층은 스퍼터링에 의해 증착되는 반도체 장치 제조 방법.The method of claim 1, wherein the metallization layer is deposited by sputtering. 제 2항에 있어서, 상기 포토레지스트는 처리동안 100℃ 이상의 온도로 가열되는 반도체 장치 제조 방법.The method of claim 2, wherein the photoresist is heated to a temperature of at least 100 ° C. during processing. 기판 상의 금속화 층이,The metallization layer on the substrate, a. 상기 기판 상에 제 1 두께(t1)를 갖는 포토레지스트 층을 스핀 코팅하는 단계,a. Spin coating a photoresist layer having a first thickness t 1 on the substrate, b. 상기 포토레지스트 층을 제 1 플럭스 레벨(f1)을 갖는 화학선(actinic radiation)의 패턴에 노출시키는 단계,b. Exposing the photoresist layer to a pattern of actinic radiation having a first flux level f 1 , c. 상기 기판의 부분들을 노출시키는 포토레지스트 층에 개구를 형성하기 위해 포토레지스트의 노출된 층을 현상하는 단계,c. Developing an exposed layer of photoresist to form an opening in the photoresist layer exposing portions of the substrate, d. f1보다 실질적으로 큰 플럭스 레벨(f2)을 갖는 화학선의 플럭스에 패턴화된 포토레지스트 층을 노출시키는 단계,d. exposing the patterned photoresist layer to a flux of actinic radiation having a flux level f 2 substantially greater than f 1 , e. 상기 포토레지스트 층 위에 t1보다 실질적으로 작은 제 2 두께(t2)를 갖는 금속화 층을 스퍼터링하여, 상기 기판 상의 금속 층들과 상기 포토레지스트 층 상의 금속 층 사이에는 일정 간격으로, 상기 개구 내의 상기 기판 상에 금속 층들 및 상기 포토레지스트 층 상에 금속층을 형성하는 상기 금속화층 스퍼터링 단계,e. Sputtering a metallization layer having a second thickness t 2 substantially less than t 1 over the photoresist layer, at regular intervals between the metal layers on the substrate and the metal layer on the photoresist layer, the The metallization layer sputtering to form metal layers on the photoresist layer and metal layers on a substrate, f. 상기 포토레지스트 층 및 이 포토레지스트 층 상의 상기 금속 층을 제거하는 단계를 포함하는 리프트-오프를 사용하여 패턴화되는 반도체 장치 제조 방법.f. Removing the photoresist layer and the metal layer on the photoresist layer, and patterning the semiconductor device using a lift-off. 제 4항에 있어서, 상기 기판은 실리콘 상호 연결 기판인 반도체 장치 제조 방법.The method of claim 4, wherein the substrate is a silicon interconnect substrate. 제 4항에 있어서, 상기 f2는 f1보다 적어도 5배 더 큰 반도체 장치 제조 방법.The method of claim 4, wherein f 2 is at least 5 times larger than f 1 . 제 4항에 있어서, 상기 단계(d)에서의 화학선은 UV선(UV radiation)인 반도체 장치 제조 방법.5. The method of claim 4, wherein the actinic radiation in step (d) is UV radiation. 기판이 땜납을 사용하여 다른 기판에 결합되고, 상기 기판이 하위 범프 금속화를 구비하는 플립-칩 결합된 반도체 장치 패키지 제조 방법에 있어서,A method of fabricating a flip-chip bonded semiconductor device package, wherein the substrate is bonded to another substrate using solder, the substrate having lower bump metallization. a. 상기 기판 상에 포토레지스트 층을 도포하는 단계,a. Applying a photoresist layer on the substrate, b. 상기 포토레지스트에 윈도우들을 형성하기 위해 상기 포토레지스트를 패턴화하는 단계,b. Patterning the photoresist to form windows in the photoresist, c. UV선의 플럭스에 상기 패턴화된 포토레지스트를 노출시키는 단계,c. Exposing the patterned photoresist to a flux of UV rays, d. 상기 패턴화된 포토레지스트 위에 하위 범프 금속화층을 증착시키는 단계,d. Depositing a lower bump metallization layer on the patterned photoresist, e. 리프트-오프에 의해 상기 하위 범프 금속화 층을 패턴화시키고, 상기 윈도우들 내의 상기 하위 범프 금속화 층 부분들을 남기는 단계, 및e. Patterning the lower bump metallization layer by lift-off, leaving the lower bump metallization layer portions in the windows, and f. 상기 기판을 다른 기판에 땜납 결합시키는 단계를 포함하는 플립-칩 결합된 반도체 장치 패키지 제조 방법.f. Solder-bonding the substrate to another substrate. 땜납 범프된 기판이 다른 기판에 결합되고, 땜납 범프된 기판 상의 땜납 범프가 하위 범프 금속화를 구비하는 플립-칩 결합된 반도체 장치 패키지의 제조 방법에 있어서,A method of manufacturing a flip-chip bonded semiconductor device package, wherein a solder bumped substrate is bonded to another substrate, and the solder bumps on the solder bumped substrate have lower bump metallization. a. 상기 땜납 범프된 기판 상에 포토레지스트 층을 도포하는 단계,a. Applying a photoresist layer on the solder bumped substrate, b. 상기 포토레지스트에 윈도우들을 형성하기 위해 상기 포토레지스트를 패턴화하는 단계,b. Patterning the photoresist to form windows in the photoresist, c. UV선의 플럭스에 상기 패턴화된 포토레지스트를 노출시키는 단계,c. Exposing the patterned photoresist to a flux of UV rays, d. 상기 패턴화된 포토레지스트 위에 하위 범프 금속화층을 증착시키는 단계,d. Depositing a lower bump metallization layer on the patterned photoresist, e. 리프트-오프에 의해 상기 하위 범프 금속화 층을 패턴화시키고, 상기 윈도우들 내의 상기 하위 범프 금속화 층 부분들을 남기는 단계, 및e. Patterning the lower bump metallization layer by lift-off, leaving the lower bump metallization layer portions in the windows, and f. 상기 하위 범프 금속화층의 상기 나머지 부분 상에 상기 땜납 범프를 증착시키는 단계를 포함하는 플립-칩 결합된 반도체 장치 패키지 제조 방법.f. Depositing the solder bumps on the remaining portion of the lower bump metallization layer. 제 9항에 있어서, 상기 하위 범프 금속화가 스퍼터링에 의해 증착되는 플립-칩 결합된 반도체 장치 패키지 제조 방법.10. The method of claim 9, wherein the lower bump metallization is deposited by sputtering. 제 10항에 있어서, 상기 하위 범프 금속화가 땜납 범프된 기판을 백 스퍼터링함으로써 선행되는 플립-칩 결합된 반도체 장치 패키지 제조 방법.12. The method of claim 10, wherein the lower bump metallization is preceded by back sputtering a solder bumped substrate. 제 9항에 있어서, 상기 UV선의 플럭스가 10-200 J/cm2범위인 플립-칩 결합된 반도체 장치 패키지 제조 방법.10. The method of claim 9, wherein the flux of UV radiation is in the range of 10-200 J / cm 2 . a. 기판 상에 복수개의 I/O 접촉 패드를 형성하는 단계,a. Forming a plurality of I / O contact pads on the substrate, b. i. 상기 I/O 접촉을 커버하는 상기 기판 상에 제 1 두께(t1)를 갖는 포토레지스트 층을 스핀-코팅하는 단계,bi-spinning a photoresist layer having a first thickness t 1 on the substrate covering the I / O contact, ii. 상기 포토레지스트 층을 제 1 플럭스 레벨(f1)을 갖는 화학선의 패턴에 노출시키는 단계,ii. Exposing the photoresist layer to a pattern of actinic radiation having a first flux level f 1 , iii. 포토레지스트 층 내에 상기 I/O 접촉을 노출시키는 개구를 형성하기 위해 노출된 포토레지스트 층을 현상하는 단계,iii. Developing the exposed photoresist layer to form an opening in the photoresist layer that exposes the I / O contact, iv. f1보다 실질적으로 더 큰 플럭스 레벨(f2)을 갖는 화학선의 플럭스에 패턴화된 포토레지스트 층을 노출시키는 단계,iv. exposing the patterned photoresist layer to a flux of actinic radiation having a flux level f 2 substantially greater than f 1 , v. 상기 포토레지스트 층 위에 t1보다 작은 제 2 두께(t2)를 갖는 하위 범프 금속화 층을 스퍼터링하여, 상기 I/O 접촉 상의 금속 층들과 상기 포토레지스트 층 상의 금속 층 사이에는 일정 간격으로, 상기 I/O 접촉 상에 금속 층들 및 상기 포토레지스트 층 상에 금속층을 형성하는 하위 범프 금속화 층 스퍼터링 단계,v. Sputtering a lower bump metallization layer having a second thickness t 2 less than t 1 over the photoresist layer, at regular intervals between the metal layers on the I / O contact and the metal layer on the photoresist layer; A lower bump metallization layer sputtering to form metal layers on the I / O contact and the metal layer on the photoresist layer, vi. 상기 포토레지스트 층 및 이 포토레지스트 층 상의 상기 금속 층을 제거하는 단계에 의해 상기 I/O 접촉 상에 하위 범프 금속화 층을 증착시키는 단계,vi. Depositing a lower bump metallization layer on the I / O contact by removing the photoresist layer and the metal layer on the photoresist layer, c. 하위 범프 금속화 층 상에 땜납을 증착시키는 단계, 및c. Depositing solder on the lower bump metallization layer, and d 기판들을 함께 결합시키기 위해 땜납을 가열함으로써 상기 기판을 다른 기판에 부착시키는 단계를 포함하는 플립-칩 결합된 반도체 장치 제조 방법.d attaching the substrate to another substrate by heating the solder to bond the substrates together. 제 13항에 있어서, 상기 땜납 범프된 기판은 실리콘 상호 연결 기판인 플립-칩 결합된 반도체 장치 제조 방법.14. The method of claim 13, wherein the solder bumped substrate is a silicon interconnect substrate. 제 13항에 있어서, 상기 하위 범프 금속화 층 상의 땜납은 땜납 범프를 포함하는 플립-칩 결합된 반도체 장치 제조 방법.14. The method of claim 13, wherein the solder on the lower bump metallization layer comprises solder bumps. 제 13항에 있어서, 상기 f2는 f1보다 적어도 5배 더 큰 플립-칩 결합된 반도체 장치 제조 방법.The method of claim 13, wherein f 2 is at least 5 times larger than f 1 . 제 13항에 있어서, 상기 단계(ii)에서의 화학선은 UV선인 플립-칩 결합된 반도체 장치 제조 방법.14. The method of claim 13, wherein the actinic radiation in step (ii) is UV radiation. 제 17항에 있어서, 상기 단계(iv)에서의 화학선은 UV선이고, f2는 10-200 J 범위인 플립-칩 결합된 반도체 장치 제조 방법.18. The method of claim 17 wherein the actinic rays in step (iv) are UV rays and f 2 is in the range of 10-200 J. 제 13항에 있어서, 상기 개구들은 반대 각도 개구들인 플립-칩 결합된 반도체 장치 제조 방법.The method of claim 13, wherein the openings are opposite angle openings. 제 19항에 있어서, 상기 포토레지스트는 염기와 혼합된 양성 레지스트인 플립-칩 결합된 반도체 제조 방법.20. The method of claim 19, wherein the photoresist is a positive resist mixed with a base. 제 13항에 있어서, 상기 하위 범프 금속화 스퍼터링은 땜납 범프된 기판을 백 스퍼터링함으로써 선행되는 플립-칩 결합된 반도체 제조 방법.14. The method of claim 13, wherein the lower bump metallized sputtering is preceded by back sputtering a solder bumped substrate. 제 13항에 있어서, 상기 포토레지스트 층은 처리동안 100℃ 이상의 온도로 가열되는 플립-칩 결합된 반도체 제조 방법.The method of claim 13, wherein the photoresist layer is heated to a temperature of at least 100 ° C. during processing. 제 20항에 있어서, 상기 염기는 이미다졸인 플립-칩 결합된 반도체 제조 방법.21. The method of claim 20, wherein said base is imidazole.
KR1019990006458A 1998-02-27 1999-02-26 Manufacture of flip-chip devices KR100682284B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9/032,338 1998-02-27
US09/032,338 US6015652A (en) 1998-02-27 1998-02-27 Manufacture of flip-chip device
US09/032,338 1998-02-27

Publications (2)

Publication Number Publication Date
KR19990072967A true KR19990072967A (en) 1999-09-27
KR100682284B1 KR100682284B1 (en) 2007-02-15

Family

ID=21864415

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990006458A KR100682284B1 (en) 1998-02-27 1999-02-26 Manufacture of flip-chip devices

Country Status (4)

Country Link
US (1) US6015652A (en)
EP (1) EP0939436B1 (en)
JP (1) JP3503739B2 (en)
KR (1) KR100682284B1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6089920A (en) * 1998-05-04 2000-07-18 Micron Technology, Inc. Modular die sockets with flexible interconnects for packaging bare semiconductor die
TW411726B (en) 1998-06-18 2000-11-11 Siemens Ag Manufacture of structurized electrodes
US6703707B1 (en) * 1999-11-24 2004-03-09 Denso Corporation Semiconductor device having radiation structure
US6258705B1 (en) 2000-08-21 2001-07-10 Siliconeware Precision Industries Co., Ltd. Method of forming circuit probing contact points on fine pitch peripheral bond pads on flip chip
US6692629B1 (en) 2000-09-07 2004-02-17 Siliconware Precision Industries Co., Ltd. Flip-chip bumbing method for fabricating solder bumps on semiconductor wafer
TW456008B (en) * 2000-09-28 2001-09-21 Siliconware Precision Industries Co Ltd Flip chip packaging process with no-flow underfill method
JP2002203869A (en) * 2000-10-30 2002-07-19 Seiko Epson Corp Forming method of bump, semiconductor device, method for manufacturing the device, circuit substrate and electronic equipment
US6372545B1 (en) * 2001-03-22 2002-04-16 Taiwan Semiconductor Manufacturing Company Method for under bump metal patterning of bumping process
US6602775B1 (en) 2001-08-16 2003-08-05 Taiwan Semiconductor Manufacturing Company Method to improve reliability for flip-chip device for limiting pad design
US6835593B2 (en) * 2002-08-01 2004-12-28 Rohm Co., Ltd. Method for manufacturing semiconductor device
KR100510543B1 (en) 2003-08-21 2005-08-26 삼성전자주식회사 Method for forming bump without surface defect
JPWO2005045911A1 (en) 2003-11-11 2007-11-29 旭硝子株式会社 Pattern forming method, electronic circuit manufactured thereby, and electronic apparatus using the same
US20070183920A1 (en) * 2005-02-14 2007-08-09 Guo-Quan Lu Nanoscale metal paste for interconnect and method of use
JP5204101B2 (en) * 2006-06-26 2013-06-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Flip-chip interconnect with formed bond
US20090309217A1 (en) * 2006-06-26 2009-12-17 Koninklijke Philips Electronics N.V. Flip-chip interconnection with a small passivation layer opening
JP2008060552A (en) 2006-08-02 2008-03-13 Osaka Univ Electronic circuit device and manufacturing method of same
US7569422B2 (en) * 2006-08-11 2009-08-04 Megica Corporation Chip package and method for fabricating the same
JP5175853B2 (en) * 2006-09-25 2013-04-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Flip chip interconnect through chip vias
JP4345808B2 (en) * 2006-12-15 2009-10-14 エルピーダメモリ株式会社 Manufacturing method of semiconductor device
KR100857365B1 (en) * 2007-02-28 2008-09-05 주식회사 네패스 Bump structure for semiconductor device
US7777184B2 (en) * 2007-08-30 2010-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method for photoresist characterization and analysis
US8446007B2 (en) * 2009-10-20 2013-05-21 Taiwan Semiconductor Manufacturing Company, Ltd. Non-uniform alignment of wafer bumps with substrate solders
TWI473227B (en) * 2012-11-15 2015-02-11 矽品精密工業股份有限公司 Connecting structure for substrate and method of forming same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224361A (en) * 1978-09-05 1980-09-23 International Business Machines Corporation High temperature lift-off technique
US4273859A (en) * 1979-12-31 1981-06-16 Honeywell Information Systems Inc. Method of forming solder bump terminals on semiconductor elements
JPS60121741A (en) * 1983-12-06 1985-06-29 Seiko Epson Corp Formation of bump electrode
US4982267A (en) * 1985-11-18 1991-01-01 Atmel Corporation Integrated semiconductor package
US5158860A (en) * 1990-11-01 1992-10-27 Shipley Company Inc. Selective metallization process
JPH07168368A (en) * 1993-12-15 1995-07-04 Nippon Telegr & Teleph Corp <Ntt> Formation of resist pattern and thin-film metallic pattern

Also Published As

Publication number Publication date
EP0939436A3 (en) 2000-11-02
KR100682284B1 (en) 2007-02-15
EP0939436A2 (en) 1999-09-01
US6015652A (en) 2000-01-18
EP0939436B1 (en) 2012-02-01
JPH11317418A (en) 1999-11-16
JP3503739B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
KR100682284B1 (en) Manufacture of flip-chip devices
US5792594A (en) Metallization and termination process for an integrated circuit chip
US5244833A (en) Method for manufacturing an integrated circuit chip bump electrode using a polymer layer and a photoresist layer
US5010389A (en) Integrated circuit substrate with contacts thereon for a packaging structure
KR100654823B1 (en) Flip chip metallization
US6232212B1 (en) Flip chip bump bonding
US5485038A (en) Microelectronic circuit substrate structure including photoimageable epoxy dielectric layers
US5492863A (en) Method for forming conductive bumps on a semiconductor device
US5891795A (en) High density interconnect substrate
JP2862126B2 (en) Method of manufacturing electronic package having multi-stage connection
EP0284624A1 (en) Method of forming a multichip integrated circuit package.
JP2003224158A (en) Flip chip for substrate assembly with no bump and polymer layer
JPH0653344A (en) Formation method of opening and electronic-circuit card
US6331447B1 (en) High density flip chip BGA
US6009620A (en) Method of making a printed circuit board having filled holes
US20070130763A1 (en) Method of fabricating electrical connection terminal of embedded chip
US6683384B1 (en) Air isolated crossovers
US7719853B2 (en) Electrically connecting terminal structure of circuit board and manufacturing method thereof
US5877560A (en) Flip chip microwave module and fabrication method
US6278185B1 (en) Semi-additive process (SAP) architecture for organic leadless grid array packages
US20050026416A1 (en) Encapsulated pin structure for improved reliability of wafer
US6294477B1 (en) Low cost high density thin film processing
KR19990048003A (en) Metal bump manufacturing method
JPH0794849A (en) Manufacture of substrate for loading semiconductor
JPH01128549A (en) Manufacture of solder bump

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130117

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140120

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160201

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180129

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190207

Year of fee payment: 13

EXPY Expiration of term